Detection of Audio Tampering Based on Electric Network Frequency Signal
Abstract
:1. Introduction
2. Research Process
2.1. Related Work
2.2. ENF Extraction
2.3. Wavelet Decomposition
2.4. AR (Auto Regressive Model) Model
- : the nth detail ENF signal.
- : the ith AR coefficient.
- : prediction error.
2.5. Training Different Classification Models
3. Experimental Setup and Database
3.1. Chinese ENF Databases
3.2. Acoustic Environment
3.3. Verification of ENF Existence
3.4. Environment Selection
3.5. Equipment Selection
4. Experiment and Result
4.1. Experiment 1—Detection of Chinese Tampering Audio Based on Chinese ENF Database’s ENF Signal
4.2. Experiment 2—Comparison of Whether Audio Length Affects Experimental Accuracy
4.3. Expriment 3—Comparison of the Number of Splice Points in a Tampered Audio Files Affects Experimental Accuracy
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, S.; Cho, S.; Kuo, C.C.J. Current Developments and Future Trends in Audio Authentication. IEEE Multimed. 2012, 19, 50–59. [Google Scholar] [CrossRef]
- Grigoras, C. Digital audio recording analysis–the electric network frequency criterion. Int. J. Speech Lang. Law 2005, 12, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Brixen, E.B. Techniques for the authentication of digital audio recordings. In Proceedings of the 122nd Audio Engineering Society Convention, Vienna, Austria, 5–8 May 2017. [Google Scholar]
- Maher, R.C. Audio forensic examination. IEEE Signal Process. Mag. 2009, 26, 84–94. [Google Scholar] [CrossRef]
- Huijbregtse, M.; Geradts, Z. Using the ENF criterion for determining the time of recording of short digital audio recordings. In Proceedings of the Computational Forensics: Third International Workshop, The Hague, The Netherlands, 13–14 August 2009; pp. 116–124. [Google Scholar]
- Garg, R.; Varna, A.L.; Wu, M. Modeling and analysis of electric network frequency signal for timestamp verification. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), Costa Adeje, Spain, 2–5 December 2012; pp. 67–72. [Google Scholar]
- Güneş, A.S.; Vatansever, S. A Review of Electrical Network Frequency (ENF) Based Applications in Media Forensics. In Proceedings of the 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Online, 8–10 June 2023; pp. 1–7. [Google Scholar]
- Li, Y.; Lin, X.; Qiu, Y.; Zeng, H. A Conv-Attention Network for Detecting the Presence of ENF Signal in Short-Duration Audio. In Proceedings of the 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP), Shanghai, China, 26–28 September 2022; pp. 1–6. [Google Scholar]
- Poredi, N.; Nagothu, D.; Chen, Y.; Li, X.; Aved, A.; Ardiles-Cruz, E.; Blasch, E. Robustness of Electrical Network Frequency Signals as a Fingerprint for Digital Media Authentication. In Proceedings of the 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP), Shanghai, China, 26–28 September 2022; pp. 1–6. [Google Scholar]
- Nicolalde Rodriguez, D.P.; Apolinario, J.A.; Biscainho, L.W.P. Audio Authenticity: Detecting ENF Discontinuity With High Precision Phase Analysis. IEEE Trans. Inf. Forensics Secur. 2010, 5, 534–543. [Google Scholar] [CrossRef]
- Nicolalde-Rodríguez, D.P.; Apolinário, J.A.; Biscainho, L.W. Audio authenticity based on the discontinuity of ENF higher harmonics. In Proceedings of the 21st European Signal Processing Conference, Marrakech, Morocco, 9–13 September 2013; pp. 1–5. [Google Scholar]
- Esquef, P.A.A.; Apolinário, J.A.; Biscainho, L.W. Edit detection in speech recordings via instantaneous electric network frequency variations. IEEE Trans. Inf. Forensics Secur. 2014, 9, 2314–2326. [Google Scholar] [CrossRef]
- Esquef, P.A.A.; Apolinário, J.A.; Biscainho, L.W.P. Improved edit detection in speech via ENF patterns. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), Roma, Italy, 16–19 November 2015; pp. 1–6. [Google Scholar]
- Min-Dianey, K.; Le, T.; Choi, J.; Pham, P. Advanced Optical Detection through the Use of a Deformably Transferred Nanofilm. Nanomaterials 2021, 11, 816. [Google Scholar] [CrossRef] [PubMed]
- Min-Dianey, K.; Le, T.; Qadir, A.; M’Bouana, N.; Malik, M.; Kim, S.; Choi, J.; Pham, P. The Ripple Effect of Graphite Nanofilm on Stretchable Polydimethylsiloxane for Optical Sensing. Nanomaterials 2021, 11, 2934. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Kang, X. Supervised audio tampering detection using an autoregressive model. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 2142–2146. [Google Scholar]
- Fechner, N.; Kirchner, M. The Humming Hum: Background Noise as a Carrier of ENF Artifacts in Mobile Device Audio Recordings. In Proceedings of the Eighth International Conference on IT Security Incident Management & IT Forensics, Münster, Germany, 12–14 May 2014; pp. 3–13. [Google Scholar]
- Hajj-Ahmad, A.; Wong, C.W.; Gambino, S.; Zhu, Q.; Yu, M.; Wu, M. Factors Affecting ENF Capture in Audio. IEEE Trans. Inf. Forensics Secur. 2019, 14, 277–288. [Google Scholar] [CrossRef]
- Brixen, E.B. Further investigation into the ENF criterion for forensic authentication. In Proceedings of the 123rd Audio Engineering Society Convention, New York, NY, USA, 5–8 October 2007. [Google Scholar]
- Garg, R.; Varna, A.; Wu, M. ’Seeing’ ENF: Natural time stamp for digital video via optical sensing and signal processing. In Proceedings of the 19th International Conference on Multimedea, Scottsdale, AZ, USA, 28 November–1 December 2011; pp. 23–32. [Google Scholar]
- Selesnick, I.W.; Odegard, J.E.; Burrus, C.S. Nearly symmetric orthogonal wavelets with non-integer dc group delay. In Proceedings of the IEEE Digital Signal Processing Workshop Proceedings, Loen, Norway, 1–4 September 1996; pp. 431–434. [Google Scholar]
- Haykin, S.S. Adaptive Filter Theory, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 2002; ISBN 978-013-090-126-2. [Google Scholar]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; Wiley: Hoboken, NJ, USA, 2015; ISBN 978-111-867-502-1. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Quiros, A.R.F.; Bedruz, R.A.; Uy, A.C.; Abad, A.; Bandala, A.; Dadios, E.P.; Fernando, A. A kNN-based approach for the machine vision of character recognition of license plate numbers. In Proceedings of the Tencon IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 1081–1086. [Google Scholar]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
Average Accuracy (%) | |
---|---|
Deletion | 91.04 ± 2.009 |
Copy | 93.39 ± 2.492 |
Different signal tampering | 92.04 ± 2.059 |
5 s | 15 s | 25 s | 35 s | 45 s | |
---|---|---|---|---|---|
Deletion | 99.11 | 97.78 | 94.44 | 84.45 | 85.56 |
Copy | 96.67 | 94.44 | 86.67 | 81.11 | 90.00 |
Different signal tampering | 97.78 | 95.56 | 93.33 | 97.78 | 98.89 |
1 Point | 3 Points | 5 Points | 7 Points | |
---|---|---|---|---|
Deletion | 89.32 | 94.64 | 95.81 | 98.23 |
Copy | 95.82 | 97.01 | 98.83 | 100 |
Different signal tampering | 93.51 | 94.64 | 97.03 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, H.-P.; Jiang, Z.-R.; Li, L.-Y.; Tsai, T.-C.; Hung, C.-H.; Chang, S.-C.; Wang, S.-S.; Fang, S.-H. Detection of Audio Tampering Based on Electric Network Frequency Signal. Sensors 2023, 23, 7029. https://doi.org/10.3390/s23167029
Hsu H-P, Jiang Z-R, Li L-Y, Tsai T-C, Hung C-H, Chang S-C, Wang S-S, Fang S-H. Detection of Audio Tampering Based on Electric Network Frequency Signal. Sensors. 2023; 23(16):7029. https://doi.org/10.3390/s23167029
Chicago/Turabian StyleHsu, Hsiang-Ping, Zhong-Ren Jiang, Lo-Ya Li, Tsai-Chuan Tsai, Chao-Hsiang Hung, Sheng-Chain Chang, Syu-Siang Wang, and Shih-Hau Fang. 2023. "Detection of Audio Tampering Based on Electric Network Frequency Signal" Sensors 23, no. 16: 7029. https://doi.org/10.3390/s23167029
APA StyleHsu, H. -P., Jiang, Z. -R., Li, L. -Y., Tsai, T. -C., Hung, C. -H., Chang, S. -C., Wang, S. -S., & Fang, S. -H. (2023). Detection of Audio Tampering Based on Electric Network Frequency Signal. Sensors, 23(16), 7029. https://doi.org/10.3390/s23167029