LSGP-USFNet: Automated Attention Deficit Hyperactivity Disorder Detection Using Locations of Sophie Germain’s Primes on Ulam’s Spiral-Based Features with Electroencephalogram Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Proposed Model
2.3. Continuous Wavelet Transform
2.4. Feature Extraction Based on the Locations of Sophie Germain’s Primes on Ulam’s Spiral
2.4.1. Ulam’s Spiral
2.4.2. Sophie Germain’s Prime Numbers
2.5. Feature Selection and Classification
2.5.1. Relief Feature Selection
- 1.
- Initialization: initialize the weight vectors for each feature to zero.
- 2.
- For each instance in the dataset:
- 2.1.
- Randomly select another instance from the same class (nearest hit).
- 2.2.
- Randomly select an instance from a different class (nearest miss).
- 3.
- Update the weight vectors:
- 3.1
- Increase the weight of features that are similar for the instance and its nearest miss.
- 3.2.
- Decrease the weight of features that are similar for the instance and its nearest hit.
- 4.
- Repeat steps 2 and 3 for a fixed number of iterations or until convergence.
- 5.
- Calculate the final feature scores based on the accumulated weights.
- 6.
- Select the top-k features with the highest scores as the relevant features.
2.5.2. SVM Classifier
3. Experimental Results
Ablation Study
4. Discussions
- Using a variable window size in patch extraction enabled the proposed approach to be applicable to various input image sizes.
- All channels of the EEG signals were used in this study.
- The location of Sophie Germain’s primes on Ulam’s spiral produced a unique pattern for the images.
- Feature selection reduced the number of gray tones, significantly reducing the run time of classifiers within acceptable limits.
- By using the patch extraction on the whole time–frequency input image, the need for rhythm extraction was eliminated. The rhythm-based features were also acquired with the patch extraction procedure.
- The ReliefF feature selection method is time-consuming.
- The rotational invariance property of the proposed method was not fully investigated.
- We have used only 61 ADHD and 60 normal children in this work.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willcutt, E.G. The Prevalence of DSM-IV Attention-Deficit/Hyperactivity Disorder: A Meta-Analytic Review. Neurotherapeutics 2012, 9, 490–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, R.; Sanders, S.; Doust, J.; Beller, E.; Glasziou, P. Prevalence of Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-analysis. Pediatrics 2015, 135, e994–e1001. [Google Scholar] [CrossRef] [Green Version]
- Lenartowicz, A.; Loo, S.K. Use of EEG to Diagnose ADHD. Curr. Psychiatry Rep. 2014, 16, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loh, H.W.; Ooi, C.P.; Barua, P.D.; Palmer, E.E.; Molinari, F.; Acharya, U.R. Automated detection of ADHD: Current trends and future perspective. Comput. Biol. Med. 2022, 146, 105525. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, C.; Bhat, S.; Acharya, U.R.; Adeli, H.; Bairy, G.M. Diagnosis of attention deficit hyperactivity disorder using imaging and signal processing techniques. Comput. Biol. Med. 2017, 88, 93–99. [Google Scholar] [CrossRef]
- Khare, S.K.; Acharya, U.R. An explainable and interpretable model for attention deficit hyperactivity disorder in children using EEG signals. Comput. Biol. Med. 2023, 155, 106676. [Google Scholar] [CrossRef]
- Bakhtyari, M.; Mirzaei, S. ADHD detection using dynamic connectivity patterns of EEG data and ConvLSTM with attention framework. Biomed. Signal Process. Control 2022, 76, 103708. [Google Scholar] [CrossRef]
- Khare, S.K.; Gaikwad, N.B.; Bajaj, V. VHERS: A Novel Variational Mode Decomposition and Hilbert Transform-Based EEG Rhythm Separation for Automatic ADHD Detection. IEEE Trans. Instrum. Meas. 2022, 71, 4008310. [Google Scholar] [CrossRef]
- Chen, H.; Song, Y.; Li, X. A deep learning framework for identifying children with ADHD using an EEG-based brain network. Neurocomputing 2019, 356, 83–96. [Google Scholar] [CrossRef]
- Dubreuil-Vall, L.; Ruffini, G.; Camprodon, J.A. Deep Learning Convolutional Neural Networks Discriminate Adult ADHD from Healthy Individuals on the Basis of Event-Related Spectral EEG. Front. Neurosci. 2020, 14, 251. [Google Scholar] [CrossRef]
- Moghaddari, M.; Lighvan, M.Z.; Danishvar, S. Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG. Comput. Methods Programs Biomed. 2020, 197, 105738. [Google Scholar] [CrossRef]
- Ghaderyan, P.; Moghaddam, F.; Khoshnoud, S.; Shamsi, M. New interdependence feature of EEG signals as a biomarker of timing deficits evaluated in Attention-Deficit/Hyperactivity Disorder detection. Measurement 2022, 199, 111468. [Google Scholar] [CrossRef]
- Maniruzzaman; Hasan, A.M.; Asai, N.; Shin, J. Optimal Channels and Features Selection Based ADHD Detection from EEG Signal Using Statistical and Machine Learning Techniques. IEEE Access 2023, 11, 33570–33583. [Google Scholar] [CrossRef]
- Vahid, A.; Bluschke, A.; Roessner, V.; Stober, S.; Beste, C. Deep Learning Based on Event-Related EEG Differentiates Children with ADHD from Healthy Controls. J. Clin. Med. 2019, 8, 1055. [Google Scholar] [CrossRef] [Green Version]
- Tor, H.T.; Ooi, C.P.; Lim-Ashworth, N.S.; Wei, J.K.E.; Jahmunah, V.; Oh, S.L.; Acharya, U.R.; Fung, D.S.S. Automated detection of conduct disorder and attention deficit hyperactivity disorder using decomposition and nonlinear techniques with EEG signals. Comput. Methods Programs Biomed. 2021, 200, 105941. [Google Scholar] [CrossRef]
- Alim, A.; Imtiaz, M.H. Automatic Identification of Children with ADHD from EEG Brain Waves. Signals 2023, 4, 193–205. [Google Scholar] [CrossRef]
- Güven, A.; Altınkaynak, M.; Dolu, N.; İzzetoğlu, M.; Pektaş, F.; Özmen, S.; Demirci, E.; Batbat, T. Combining functional near-infrared spectroscopy and EEG measurements for the diagnosis of attention-deficit hyperactivity disorder. Neural Comput. Appl. 2019, 32, 8367–8380. [Google Scholar] [CrossRef]
- Deniz, E.; Akpinar, M.H.; Sengur, A. Bidirectional LSTM Based Harmonic Prediction. In Proceedings of the VII International European Conference on Interdisciplinary Scientific Research, Rome, Italy, 26–27 August 2022; Volume 1, pp. 70–79. [Google Scholar]
- Deniz, E.; Şengür, A.; Kadiroğlu, Z.; Guo, Y.; Bajaj, V.; Budak, Ü. Transfer learning based histopathologic image classification for breast cancer detection. Health Inf. Sci. Syst. 2018, 6, 18. [Google Scholar] [CrossRef]
- Nasrabadi, A.M.; Allahverdy, A.; Samavati, M.; Mohammadi, M.R. EEG data for ADHD/Control Children. IEEE Dataport 2022. Available online: https://ieee-dataport.org/open-access/eeg-data-adhd-control-children (accessed on 7 April 2023).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 2013. Available online: https://www.psychiatry.org/psychiatrists/practice/dsm (accessed on 7 April 2023).
- Tasci, I.; Tasci, B.; Barua, P.D.; Dogan, S.; Tuncer, T.; Palmer, E.E.; Fujita, H.; Acharya, U.R. Epilepsy detection in 121 patient populations using hypercube pattern from EEG signals. Inf. Fusion 2023, 96, 252–268. [Google Scholar] [CrossRef]
- Sadowsky, J. Investigation of Signal Characteristics Using the Continuous Wavelet Transform. Johns Hopkins APL Tech. Dig. 1996, 29, 2352–2449. [Google Scholar]
- Ozcelik, S.T.A.; Uyanık, H.; Deniz, E.; Sengur, A. Automated Hypertension Detection Using ConvMixer and Spectrogram Techniques with Ballistocardiograph Signals. Diagnostics 2023, 13, 182. [Google Scholar] [CrossRef] [PubMed]
- Deniz, E.; Sobahi, N.; Omar, N.; Sengur, A.; Acharya, U.R. Automated robust human emotion classification system using hybrid EEG features with ICBrainDB dataset. Health Inf. Sci. Syst. 2022, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Trockman, A.; Kolter, J.Z. Patches are all you need? arXiv 2022, arXiv:2201.09792. [Google Scholar]
- Gardner, M. Mathematical Games: The Remarkable Lore of the Prime Number. Sci. Am. 1964, 210, 120–128. [Google Scholar] [CrossRef]
- Dalmedico, A.D. Sophie Germain. Sci. Am. 1991, 265, 116–123. [Google Scholar] [CrossRef]
- Kononenko, I. Estimating Attributes: Analysis and Extensions of RELIEF. In European Conference on Machine Learning, ECML-94: Machine Learning, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1994; Volume 784, pp. 171–182. [Google Scholar]
- Chen, P.H.; Lin, C.J.; Schölkopf, B. A Tutorial On ν-Support Vector Machines. Appl. Stoch. Models Bus. Ind. 2005, 21, 111–136. [Google Scholar] [CrossRef]
- Choi, H.; Park, J.; Yang, Y.-M. A Novel Quick-Response Eigenface Analysis Scheme for Brain–Computer Interfaces. Sensors 2022, 22, 5860. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, C.; Abualigah, L. Foreign exchange forecasting and portfolio optimization strategy based on hybrid-molecular differential evolution algorithms. Soft Comput. 2023, 27, 3921–3939. [Google Scholar] [CrossRef]
- Yang, W.; Wang, K.; Zuo, W. Fast neighborhood component analysis. Neurocomputing 2012, 83, 31–37. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer Topics in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 37–38. [Google Scholar]
- Kalousis, A.; Prados, J.; Hilario, M. Stability of feature selection algorithms: A study on high-dimensional spaces. Knowl. Inf. Syst. 2006, 12, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Arun, P.; Singh, S.; Kaur, D. EEG Based Decision Support System to Diagnose Adults with ADHD. In Proceedings of the 2018 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 7–9 December 2018; pp. 87–91. [Google Scholar]
- Mohammadi, M.R.; Khaleghi, A.; Nasrabadi, A.M.; Rafieivand, S.; Begol, M.; Zarafshan, H. EEG Classification of ADHD and Normal Children Using Non-Linear Features and Neural Network. Biomed. Eng. Lett. 2016, 6, 66–73. [Google Scholar] [CrossRef]
- Chang, Y.; Stevenson, C.; Chen, I.-C.; Lin, D.-S.; Ko, L.-W. Neurological state changes indicative of ADHD in children learned via EEG-based LSTM networks. J. Neural Eng. 2022, 19, 016021. [Google Scholar] [CrossRef]
- Loh, H.W.; Ooi, C.P.; Seoni, S.; Barua, P.D.; Molinari, F.; Acharya, U.R. Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Comput. Methods Programs Biomed. 2022, 226, 107161. [Google Scholar] [CrossRef]
- Jahmunah, V.; Ng, E.; Tan, R.-S.; Oh, S.L.; Acharya, U.R. Explainable detection of myocardial infarction using deep learning models with Grad-CAM technique on ECG signals. Comput. Biol. Med. 2022, 146, 105550. [Google Scholar] [CrossRef]
- Jahmunah, V.; Ng, E.; Tan, R.S.; Oh, S.L.; Acharya, U.R. Uncertainty quantification in DenseNet model using myocardial infarction ECG signals. Comput. Methods Programs Biomed. 2023, 229, 107308. [Google Scholar] [CrossRef]
- Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu, L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya, U.R.; et al. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Inf. Fusion 2021, 76, 243–297. [Google Scholar] [CrossRef]
- Koh, J.; Ooi, C.P.; Lim-Ashworth, N.S.; Vicnesh, J.; Tor, H.T.; Lih, O.S.; Tan, R.-S.; Acharya, U.; Fung, D.S.S. Automated classification of attention deficit hyperactivity disorder and conduct disorder using entropy features with ECG signals. Comput. Biol. Med. 2021, 140, 105120. [Google Scholar] [CrossRef]
- Khare, S.K.; March, S.; Barua, P.D.; Gadre, V.M.; Acharya, U.R. Application of data fusion for automated detection of children with developmental and mental disorders: A systematic review of the last decade. Inf. Fusion 2023, 99, 101898. [Google Scholar] [CrossRef]
Authors | Method | Dataset | Class | Accuracy (%) | Limitations |
---|---|---|---|---|---|
Khare et al. [6] | Variational mode decomposition (VMD) and Hilbert Transform (HT)-based feature extraction and machine-learning-based classification | IEEE dataport | 2 | 99.90 | Highly complex and missing data samples |
Bakhtyari et al. [7] | Convolutional long short-term memory and attention mechanisms | Own dataset | 2 | 99.34 | Highly complex and intensive computational load |
Khare et al. [8] | VMD-HT-based statistical features and extreme learning machines | IEEE dataport | 2 | 99.95 | Highly complex and missing data samples |
Cehn et al. [9] | Channel selection and deep learning | Own dataset | 2 | 94.67 | Highly complex and low accuracy |
Dubreuil-Vall et al. [10] | Time–frequency images and convolutional neural network (CNN) | Own dataset | 2 | 88.00 | Low accuracy |
Moghaddari et al. [11] | Rhythm extraction and CNN | Own dataset | 2 | 98.48 | Highly complex and intensive computational load |
Ghaderyan et al. [12] | Dynamic frequency warping (DFW) on rhythms of EEG signals and SVM | Own dataset | 2 | 99.17 | Highly complex and intensive computational load |
Maniruzzaman et al. [13] | Hybrid channel selection, fractal and nonlinear statistical features, and SVM | IEEE dataport | 2 | 97.5 | Highly complex and intensive computational load |
Vahid et al. [14] | Deep-learning-based EEGNet model and LOOS validation method | Own dataset | 2 | 82.00 | Low accuracy |
Tor et al. [15] | Empirical mode decomposition (EMD) and discrete wavelet transform (DWT)-based features and feature selection and K-nearest neighborhood (KNN) classifier | Own dataset | 3 | 97.88 | Highly complex and intensive computational load |
Alim et al. [16] | Statistical properties, time domain and frequency domain features, and SVM | IEEE dataport | 2 | 94.2 | Highly complex and intensive computational load |
Güven et al. [17] | Lempel–Ziv complexity and fractal-dimension-based feature extraction and Naive Bayes (NB) classifier | Own dataset | 2 | 79.54 | Low accuracy |
Accuracy (%) | Sensitivity (%) | Precision (%) | F1 Score (%) | |
---|---|---|---|---|
Part 1 | 98.78 ± 0.0070 | 98.82 ± 0.0137 | 98.24 ± 0.0081 | 98.53 ± 0.0085 |
Part 2 | 98.52 ± 0.0063 | 98.28 ± 0.0151 | 98.57 ± 0.0096 | 98.41 ± 0.0069 |
Part 1 + Part 2 | 97.20 ± 0.0058 | 97.78 ± 0.0093 | 95.97 ± 0.0120 | 96.86 ± 0.0064 |
Accuracy (%) | Sensitivity (%) | Precision (%) | F1 Score (%) | |
---|---|---|---|---|
Part 1 | 98.97 ± 0.0084 | 99.06 ± 0.0122 | 98.49 ± 0.0088 | 98.77 ± 0.0101 |
Part 2 | 98.19 ± 0.0040 | 97.53 ± 0.0141 | 98.11 ± 0.0079 | 97.87 ± 0.0050 |
Part 1 + Part 2 | 97.46 ± 0.0104 | 96.98 ± 0.0164 | 97.58 ± 0.0117 | 97.28 ± 0.0112 |
Accuracy (%) | Sensitivity (%) | Precision (%) | F1 Score (%) | |
---|---|---|---|---|
Part 1 | 98.25 ± 0.0025 | 98.71 ± 0.0067 | 98.16 ± 0.0043 | 98.44 ± 0.0027 |
Part 2 | 97.37 ± 0.0158 | 96.79 ± 0.0220 | 97.59 ± 0.0184 | 97.17 ± 0.0170 |
Part 1 + Part 2 | 96.09 ± 0.0110 | 95.55 ± 0.0095 | 95.63 ± 0.0185 | 95.58 ± 0.0121 |
Accuracy (%) | Sensitivity (%) | Precision (%) | F1 Score (%) | |
---|---|---|---|---|
Part 1 | 96.14 ± 0.0153 | 95.27 ± 0.0278 | 96.23 ± 0.0160 | 95.84 ± 0.0168 |
Part 2 | 97.90 ± 0.0113 | 96.82 ± 0.0167 | 98.10 ± 0.0158 | 97.45 ± 0.0136 |
Part 1 + Part 2 | 93.51 ± 0.0125 | 91.59 ± 0.0259 | 93.60 ± 0.0163 | 92.56 ± 0.0149 |
Accuracy (%) | Sensitivity (%) | Precision (%) | F1 Score (%) | |
---|---|---|---|---|
Part 1 | 95.70 ± 0.0134 | 92.32 ± 0.0339 | 97.18 ± 0.0161 | 94.65 ± 0.0179 |
Part 2 | 94.08 ± 0.0268 | 92.78 ± 0.0398 | 94.52 ± 0.0297 | 93.60 ± 0.0294 |
Part 1 + Part 2 | 91.52 ± 0.0183 | 88.66 ± 0.0273 | 91.89 ± 0.0239 | 90.22 ± 0.0211 |
Accuracy (%) | Sensitivity (%) | Precision (%) | F1 Score (%) | |
---|---|---|---|---|
Part 1 | 93.26 ± 0.0114 | 88.21 ± 0.0254 | 95.26 ± 0.0272 | 91.55 ± 0.0142 |
Part 2 | 92.81 ± 0.0190 | 90.36 ± 0.0320 | 94.08 ± 0.0239 | 92.15 ± 0.0213 |
Part 1 + Part 2 | 88.40 ± 0.0185 | 83.45 ± 0.0388 | 89.61 ± 0.0199 | 86.37 ± 0.0236 |
Accuracy (%) | Sensitivity (%) | Precision (%) | F1 Score (%) | |
---|---|---|---|---|
ReliefF | 98.97 ± 0.0084 | 99.06 ± 0.0122 | 98.49 ± 0.0088 | 98.77 ± 0.0101 |
NCA | 95.46 ± 0.0175 | 93.39 ± 0.0381 | 95.61 ± 0.0242 | 94.43 ± 0.0224 |
PCC | 94.63 ± 0.0232 | 96.11 ± 0.0232 | 91.45 ± 0.0282 | 93.70 ± 0.0266 |
TVFS | 94.38 ± 0.0103 | 90.57 ± 0.0207 | 95.67 ± 0.0164 | 93.03 ± 0.0130 |
9 × 9 | 15 × 15 | 25 × 25 | 45 × 45 | 75 × 75 | |
---|---|---|---|---|---|
Part 1 | 1431 s | 1095 s | 1041 s | 1000 s | 940 s |
Part 2 | 1260 s | 1117 s | 1102 s | 1049 s | 984 s |
Study | Data | Features | Classifier | Validation Method | Accuracy (%) |
---|---|---|---|---|---|
Kaur et al. [36] | ADHD: 30 Normal: 30 | Yule–Walker, covariance, and Burg techniques | k-NN | - | 85.0 |
Mohammadi et al. [37] | ADHD: 30 Normal: 30 | Fractal dimension, entropy, and Lyapunov exponent | NN | - | 93.7 |
Moghaddari et al. [11] | ADHD: 31 Normal: 30 | Deep features | CNN | Cross-validation 5-fold | 98.5 |
Chang et al. [38] | ADHD: 30 Normal: 30 | Rhythm features | LSTM | Cross-validation 5-fold | 85.5 |
Maniruzzaman et al. [13] | ADHD: 61 Normal: 60 | Hybrid features | Gaussian Process | Cross-validation 5-fold | 97.5 |
Alim et al. [16] | ADHD: 61 Normal: 60 | Statistical and time–frequency features | SVM | Cross-validation 5-fold | 94.2 |
Güven et al. [17] | ADHD: 61 Normal: 60 | Lempel–Ziv complexity and fractal-dimension | Naive Bayes | LOSO | 93.2 |
Khare et al. [8] | ADHD: 61 Normal: 60 | VHERS | ELM | Cross-validation 10-fold | 99.7 |
Proposed method | ADHD: 30 Normal: 30 | 15 × 15 Ulam’s spiral and Sophia Germain’s primes-based features | SVM | Cross-validation 10-fold | 98.9 |
Proposed method | ADHD: 31 Normal: 30 | 9 × 9 Ulam’s spiral and Sophia Germain’s primes-based features | SVM | Cross-validation 10-fold | 98.5 |
Proposed method | ADHD: 61 Normal: 60 | 15 × 15 Ulam’s spiral and Sophia Germain’s primes-based features | SVM | Cross-validation 10-fold | 97.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atila, O.; Deniz, E.; Ari, A.; Sengur, A.; Chakraborty, S.; Barua, P.D.; Acharya, U.R. LSGP-USFNet: Automated Attention Deficit Hyperactivity Disorder Detection Using Locations of Sophie Germain’s Primes on Ulam’s Spiral-Based Features with Electroencephalogram Signals. Sensors 2023, 23, 7032. https://doi.org/10.3390/s23167032
Atila O, Deniz E, Ari A, Sengur A, Chakraborty S, Barua PD, Acharya UR. LSGP-USFNet: Automated Attention Deficit Hyperactivity Disorder Detection Using Locations of Sophie Germain’s Primes on Ulam’s Spiral-Based Features with Electroencephalogram Signals. Sensors. 2023; 23(16):7032. https://doi.org/10.3390/s23167032
Chicago/Turabian StyleAtila, Orhan, Erkan Deniz, Ali Ari, Abdulkadir Sengur, Subrata Chakraborty, Prabal Datta Barua, and U. Rajendra Acharya. 2023. "LSGP-USFNet: Automated Attention Deficit Hyperactivity Disorder Detection Using Locations of Sophie Germain’s Primes on Ulam’s Spiral-Based Features with Electroencephalogram Signals" Sensors 23, no. 16: 7032. https://doi.org/10.3390/s23167032
APA StyleAtila, O., Deniz, E., Ari, A., Sengur, A., Chakraborty, S., Barua, P. D., & Acharya, U. R. (2023). LSGP-USFNet: Automated Attention Deficit Hyperactivity Disorder Detection Using Locations of Sophie Germain’s Primes on Ulam’s Spiral-Based Features with Electroencephalogram Signals. Sensors, 23(16), 7032. https://doi.org/10.3390/s23167032