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Abstract: Anxiety, learning disabilities, and depression are the symptoms of attention deficit hyper-
activity disorder (ADHD), an isogenous pattern of hyperactivity, impulsivity, and inattention. For
the early diagnosis of ADHD, electroencephalogram (EEG) signals are widely used. However, the
direct analysis of an EEG is highly challenging as it is time-consuming, nonlinear, and nonstationary
in nature. Thus, in this paper, a novel approach (LSGP-USFNet) is developed based on the patterns
obtained from Ulam’s spiral and Sophia Germain’s prime numbers. The EEG signals are initially
filtered to remove the noise and segmented with a non-overlapping sliding window of a length
of 512 samples. Then, a time–frequency analysis approach, namely continuous wavelet transform,
is applied to each channel of the segmented EEG signal to interpret it in the time and frequency
domain. The obtained time–frequency representation is saved as a time–frequency image, and a
non-overlapping n × n sliding window is applied to this image for patch extraction. An n × n
Ulam’s spiral is localized on each patch, and the gray levels are acquired from this patch as features
where Sophie Germain’s primes are located in Ulam’s spiral. All gray tones from all patches are
concatenated to construct the features for ADHD and normal classes. A gray tone selection algorithm,
namely ReliefF, is employed on the representative features to acquire the final most important gray
tones. The support vector machine classifier is used with a 10-fold cross-validation criteria. Our
proposed approach, LSGP-USFNet, was developed using a publicly available dataset and obtained an
accuracy of 97.46% in detecting ADHD automatically. Our generated model is ready to be validated
using a bigger database and it can also be used to detect other children’s neurological disorders.

Keywords: ADHD detection; EEG signals; Ulam’s spiral; Sophie Germain’s primes; SVM

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a disease defined as a neurological
mental disorder [1]. This disease usually manifests itself in childhood in the form of
inattention, hyperactivity, forgetfulness, and uncontrolled or immediate and impulsive
reactions [2]. Because mental disorders are linked to brain function, researchers often use
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electroencephalogram (EEG) signals to diagnose mental disorders [3]. EEG signals are
complex and nonlinear continuous signals. Therefore, it is very difficult to diagnose by
visually examining the EEG signals of ADHD and healthy children [4]. In addition, if
the decision-making mechanism is operated using existing machine learning applications,
it does not provide precise information about the accuracy of the diagnosis [5]. Up to
now, there have been various machine-learning-based approaches employed for ADHD
detection using EEG signals [6–17]. Table 1 summarizes the works conducted on the
automated detection of ADHD using EEG signals.

Table 1. Summary of the works done automated ADHD detection using EEG signals.

Authors Method Dataset Class Accuracy (%) Limitations

Khare et al. [6]

Variational mode decomposition
(VMD) and Hilbert Transform

(HT)-based feature extraction and
machine-learning-based

classification

IEEE dataport 2 99.90 Highly complex and
missing data samples

Bakhtyari et al. [7] Convolutional long short-term
memory and attention mechanisms Own dataset 2 99.34

Highly complex and
intensive computational

load

Khare et al. [8] VMD-HT-based statistical features
and extreme learning machines IEEE dataport 2 99.95 Highly complex and

missing data samples

Cehn et al. [9] Channel selection and deep learning Own dataset 2 94.67 Highly complex and low
accuracy

Dubreuil-Vall et al. [10]
Time–frequency images and

convolutional neural network
(CNN)

Own dataset 2 88.00 Low accuracy

Moghaddari et al. [11] Rhythm extraction and CNN Own dataset 2 98.48
Highly complex and

intensive computational
load

Ghaderyan et al. [12] Dynamic frequency warping (DFW)
on rhythms of EEG signals and SVM Own dataset 2 99.17

Highly complex and
intensive computational

load

Maniruzzaman et al. [13]
Hybrid channel selection, fractal
and nonlinear statistical features,

and SVM
IEEE dataport 2 97.5

Highly complex and
intensive computational

load

Vahid et al. [14] Deep-learning-based EEGNet
model and LOOS validation method Own dataset 2 82.00 Low accuracy

Tor et al. [15]

Empirical mode decomposition
(EMD) and discrete wavelet

transform (DWT)-based features
and feature selection and K-nearest

neighborhood (KNN) classifier

Own dataset 3 97.88
Highly complex and

intensive computational
load

Alim et al. [16]
Statistical properties, time domain

and frequency domain features, and
SVM

IEEE dataport 2 94.2
Highly complex and

intensive computational
load

Güven et al. [17]

Lempel–Ziv complexity and
fractal-dimension-based feature
extraction and Naive Bayes (NB)

classifier

Own dataset 2 79.54 Low accuracy

It can be seen from Table 1 that most of the methods have used their own datasets
and are complex methods. The degree of flexibility offered by the nonlinear feature
extraction approaches used directly on EEG data may not be sufficient for feature extraction
in multicomponent EEG signals. The Fourier transform-based techniques are unable to
localize an event precisely in the time–frequency domain, and labor-intensive filtering-
based procedures are needed for accurate filter coefficient adjustment for boundaries with
sharp edges. The techniques for automated feature extraction and classification like long
short-term memory (LSTM) and convolutional neural network (CNN) are complex and
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computationally intensive [18,19]. Choosing a wavelet type is necessary for wavelet-based
analysis, but mode mixing affects empirical mode decomposition (EMD). The shortcomings
of the earlier techniques lead to limited success in terms of assessment measures. Thus, in
this study, a novel strategy based on gray-level patterns discovered using Sophia Germain
primes and Ulam’s spiral is proposed for accurate ADHD detection. The EEG signals are
first filtered to remove noise, and then they are segmented using a non-overlapping sliding
window containing 512 samples of data. The segmented EEG signal is then subjected to
continuous wavelet transform as a time–frequency analysis technique to understand it
in the time and frequency domain. A non-overlapping n × n sliding window is used for
the time–frequency picture created from the acquired time–frequency representation to
extract a patch. On these patches, an n × n Ulam’s spiral is localized, and the gray tones
where the fitting Sophie Germain’s primes are found are obtained. For the creation of the
representative features for the ADHD and normal classes, all gray tones from all patches
are concatenated. Based on the representative characteristics, the ReliefF gray tone selection
method is used to obtain the final, most significant gray tones. The obtained final feature
vectors are classified with an SVM classifier to detect ADHD automatically.

The novelties of this study are as follows:
To the best of our knowledge, this is the first work to use gray-level patterns employing

Sophia Germain primes and Ulam’s spiral method for accurate automated ADHD detection.
The obtained results are robust and accurate as we have employed ten-fold cross-

validation.

2. Materials and Methods

In this section, the components of the proposed method, namely the dataset, devel-
oped LSGP-USFNet, details of Ulam’s spiral and Sophie Germain’s primes-based feature
extraction, and feature selection and classification techniques, are described. The step-wise
illustrations of the proposed methodology are given in Figures 1–4.

Figure 1. Sample EEG signals: (a) ADHD class and (b) normal class.
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2.1. Dataset

The dataset used in this study was taken from the IEEE dataport [20]. Subjects in
the dataset were aged from 7 to 12 years old. According to DSM-IV criteria, an expert
psychiatrist diagnosed ADHD in patients who used Ritalin for up to six months [21]. In the
normal group, there were no children with a history of drug misuse, epilepsy, high-risk
behaviors, or mental illnesses. The respondents were instructed to count the characters
from a collection of photographs as part of a visual attention assignment. Each large-sized
picture has between 5 and 16 characters, all of which must be legible and easy to count.
After the child responded to the continuous stimulation of EEG recording, each image was
shown to the subject without interruption. The child’s success throughout this cognitive
visual activity determines how long each EEG signal lasts. Using 10–20 EEG recording
devices, the signals were obtained from the occipital, central, parietal, and frontal brain
areas (Fz, Cz, P3, P4, T5, T6, Pz, F3, F4, C3, T3, C4, T4, F7, F8, O1, O2, Fp1, and Fp2). Two
electrodes were positioned above and below the right eye to −The normal and ADHD EEG
signals from the dataset are shown in Figure 1.

2.2. Proposed Model

Analyzing EEG signals in their original state is challenging because of their complex
nature. Research has revealed that dividing EEG signals into distinct frequency patterns
has yielded valuable information about differentiating ADHD subjects from normal ones.
However, the classification performance of such a system has been negatively affected
by drawbacks, such as limited precision in time–frequency localization, inadequate noise
reduction, difficulties in parameter adjustment, absence of mathematical modeling, and an
inability to rectify backward errors. Thus, in this paper, a novel workflow is introduced to
mitigate the weaknesses of the previous methods [1–17].

In the proposed LSGP-USFNet approach, the EEG recordings of each individual are
initially stratified into a 4 s epoch with 512 samples after filtering the EEG signals [8].
During filtering, a notch filter operating at a frequency of 50 Hz is employed to effectively
eliminate power line disturbances and undesirable noise components. Concurrently, a sixth-
order Butterworth filter with a passband ranging from 0 to 60 Hz is employed to mitigate
the presence of additional unwanted artifacts within the signal. From the entire dataset,
1843 segments of normal patients and 2330 segments of ADHD subjects were acquired.
For each channel of the EEG segments, the CWT is applied to convert them from a one-
dimensional (1D) signal to a time–frequency representation. The CWT is computed using
the analytic Morse wavelet characterized by specific parameters: a symmetry parameter
(gamma) set to 3 and a time–bandwidth product of 60. For this transformation, 10 voices
per octave are utilized to adequately capture the frequency content of the signal. Using
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the wavelet energy distribution in the frequency and time domain, the minimum and
maximum scales are carried out automatically. Figure 2 shows the EEG signal segmentation
and time–frequency representation of the EEG signal.

Ulam’s spiral constitutes a visual representation portraying the natural numbers ar-
ranged in a spiral configuration, commencing from the center and extending outward
in a counter-clockwise manner. Upon plotting the natural numbers onto Ulam’s spiral,
intriguing patterns manifest, particularly pertaining to prime numbers. Notably, an observ-
able pattern is that prime numbers align along distinct diagonal alignments on the spiral.
The presence of these distinctive diagonal prime patterns on Ulam’s spiral represents a
visual phenomenon, evoking considerable interest among mathematicians and clinicians.
Nevertheless, the precise mathematical explanation underlying the emergence of these
patterns constitutes an active and ongoing area of research among clinicians. These patterns
are able to capture subtle changes in the EEG signals of ADHD and normal classes and
yield high classification performances like molecular patterns used [22].

2.3. Continuous Wavelet Transform

The continuous wavelet transform (CWT) is a mathematical technique used for an-
alyzing signals in both time and frequency domains [23]. It provides a powerful tool
for detecting localized features or patterns within a signal that may vary in scale. The
CWT is particularly useful in applications such as signal processing, image analysis, and
time–frequency analysis. The CWT uses wavelet functions that are oscillatory in nature and
possess localized characteristics in both time and frequency domains. These wavelets are
derived from a fundamental function known as the mother wavelet, denoted by ψ(t). The
CWT involves convolving the input signal, f(t), with a set of wavelets, which are dilated
and translated versions of the mother wavelet. Mathematically, the CWT can be expressed
as

X(a, b) =
∫

f (t)∗Ψ∗
(

t− b
a

)
∂t (1)

In this equation, a and b represent the scale and translation parameters, respectively.
The asterisk (*) denotes the complex conjugate of the wavelet function. The integral (

∫
) is

taken over the entire time domain, integrating the product of the signal and the wavelet
function over time. This process is performed for different values of a and b, which
represent different scales and translations. While the scale parameter, a, controls the width
of the wavelet function, the translation parameter, b, shifts the wavelet along the time axis.
The CWT coefficients provide information about the presence and strength of different
frequency components at different scales in the input signal [24,25]. The result of the
convolution operation is a representation of the input signal in the time–frequency plane,
providing information about both the temporal and spectral characteristics of the signal at
different scales. The time–frequency representations are saved as color images, as shown in
Figure 2.

2.4. Feature Extraction Based on the Locations of Sophie Germain’s Primes on Ulam’s Spiral

After time–frequency images of the segmented EEG channels are constructed, a
patch division operation is employed on time–frequency images to divide them into non-
overlapping square regions. Patch dividing plays a crucial role in image classification
by allowing for localized analysis, enhancing feature extraction, providing translation
invariance, mitigating memory and computational constraints, and handling scale vari-
ations [26]. It enables machine learning models to capture detailed information from
different regions of an image and improves the overall performance of the classification
task. The non-overlapping patch division is illustrated in Figure 3. In Figure 3, the input
time–frequency image, which is 225 × 225 in size, is divided into 15 × 15 image patches
using a non-overlapping 15 × 15 sliding window. Thus, a total of 225 patch images are
obtained for the subsequent feature extraction process.
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2.4.1. Ulam’s Spiral

As shown in Figure 3, a 15 × 15 Ulam’s spiral is constructed and aligned on an image
patch. Ulam’s spiral, named after the mathematician Stanislaw Ulam, is a visualization
technique that displays prime numbers in a unique and visually appealing way [27]. It
involves plotting the natural numbers in a spiral pattern and highlighting the prime
numbers within the spiral. To construct Ulam’s spiral, the natural numbers are arranged
in a square grid, starting from the center and spiraling outward in a counter-clockwise
direction. The numbers are placed in a spiral pattern, with each subsequent number being
placed adjacent to the previous number.

Once the spiral is constructed, the prime numbers within the spiral are typically
highlighted by shading or coloring them differently from the composite numbers. Prime
numbers, which are only divisible by one and themselves, appear as isolated points within
the spiral, forming intriguing patterns and clusters. Ulam’s spiral provides a visual rep-
resentation of the distribution and patterns of prime numbers. It reveals fascinating
characteristics such as diagonal lines of primes and the apparent absence of a predictable
pattern or structure. The visualization can help researchers and enthusiasts explore and
study the properties of prime numbers, as well as inspire curiosity and interest in number
theory.

2.4.2. Sophie Germain’s Prime Numbers

As Ulam’s spiral is aligned on the image patch, Sophie Germain’s primes, which are
located on Ulam’s spiral, are used to fuse the gray levels of the time–frequency patch
images. Sophie Germain’s primes, named after the French mathematician Sophie Germain,
are a special class of prime numbers that have important applications in number theory
and cryptography [28]. They are closely related to the concept of safe primes and provide
a foundation for various mathematical algorithms and encryption protocols. A prime
number, p, is considered a Sophie Germain’s prime if 2p + 1 is also a prime number. In
other words, if p is a Sophie Germain’s prime, then 2p + 1 is a prime as well. Sophie
Germain’s primes have significant applications in cryptography, specifically in the field of
public-key encryption. They serve as the foundation for protocols like the Diffie–Hellman
key exchange and the Rivest–Shamir–Adleman (RSA) algorithm. These algorithms rely on
the difficulty of factoring large numbers, which is enhanced by the use of Sophie Germain’s
primes.

2.5. Feature Selection and Classification

In this subsection, the feature reduction and feature classification are carried out.
Figure 4 gives an illustration of these procedures. After the feature extraction, which is
introduced in the previous sections, for a sample input image, a 64,125-dimensional feature
vector is obtained, making the classification stage time-consuming. To reduce the number
of features while keeping their discriminating property, a feature selection mechanism is
employed. The efficient relief feature selection algorithm is considered for feature selection,
and the SVM method is used for classification. In the next subsections, they are briefly
explained.

2.5.1. Relief Feature Selection

ReliefF (relief feature selection) is a feature selection algorithm that aims to identify
relevant features from a given dataset [29]. It is particularly useful for classification prob-
lems and has been widely applied in machine learning and data mining tasks. The main
idea behind ReliefF is to estimate the quality or importance of features based on how well
they discriminate between instances of different classes. It takes into account both the local
and global characteristics of the data.

The ReliefF algorithm is briefly presented below:

1. Initialization: initialize the weight vectors for each feature to zero.
2. For each instance in the dataset:
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2.1. Randomly select another instance from the same class (nearest hit).
2.2. Randomly select an instance from a different class (nearest miss).

3. Update the weight vectors:

3.1 Increase the weight of features that are similar for the instance and its nearest
miss.

3.2. Decrease the weight of features that are similar for the instance and its nearest
hit.

4. Repeat steps 2 and 3 for a fixed number of iterations or until convergence.
5. Calculate the final feature scores based on the accumulated weights.
6. Select the top-k features with the highest scores as the relevant features.

ReliefF considers the differences in feature values between instances and their nearest
hits and misses. Updating the weights based on these differences focuses on features that
have a higher impact in distinguishing between different classes. The feature scores ob-
tained from ReliefF indicate the relevance or importance of each feature in the classification
task. Features with higher scores are considered more informative and are selected for
further analysis or model building. ReliefF offers several advantages, such as its ability
to handle both categorical and continuous features, as well as its robustness to noise and
irrelevant features. It also has a low computational complexity compared to some other
feature selection methods.

2.5.2. SVM Classifier

The support vector machine (SVM) algorithm is a supervised machine learning algo-
rithm used for classification and regression tasks [30]. In classification, SVM aims to find
an optimal hyperplane that separates data points of different classes, while in regression,
it finds a hyperplane that best fits the data [31]. Given a training dataset with labeled
examples (xi, yi), where xi represents the input features and yi represents the corresponding
class labels (+1 or −1), the goal is to find a hyperplane defined by the following equation:

wTx + b = 0 (2)

where w is the normal vector to the hyperplane and b is the bias term. The hyperplane
divides the feature space into two regions, each representing one class. The objective of
SVM is to maximize the margin, which is the distance between the hyperplane and the
closest points from each class. These closest points, known as support vectors, determine
the position and orientation of the hyperplane. SVM aims to find the hyperplane that maxi-
mizes this margin, thus achieving the best separation between the classes. Mathematically,
the optimization problem for SVM can be formulated as

minimize
1
2
‖w‖2 + C∑ ξi (3)

subject to yi

(
wT + b

)
≥ 1− ξi and ξi ≥ 0 (4)

where ||w|| represents the Euclidean norm of the weight vector w, C is a hyperparameter
controlling the trade-off between margin maximization and training error minimization,
and ξi are slack variables that allow for soft-margin classification, allowing some misclas-
sification. To handle nonlinearly separable data, SVM employs the kernel trick, which
implicitly maps the input features into a higher-dimensional feature space. This allows the
SVM to find a linear hyperplane in the transformed feature space, which corresponds to a
nonlinear decision boundary in the original feature space.

3. Experimental Results

The proposed LSGP-USFNet approach used a 512-sample length sliding window to
segment the input EEG signals. Thus, a total of 1843 segments of normal subjects and
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2330 segments of ADHD subjects were acquired. A 10-fold cross-validation data division
technique was used in the experiments. Performance measures, namely classification
accuracy, sensitivity, precision, and F1 score evaluation metrics, were used. The SVM
parameters were adjusted using a hyperparameter search algorithm [32]. And the number
of nearest neighbors and the number of selected features using the ReliefF algorithm were
set to 5 and 7000. These values were determined during the experiment. The dataset
consists of two parts, where in the first one (Part 1), there are 30 ADHD and 30 normal
subjects, and in the second part (Part 2), there are 31 ADHD and 30 normal subjects. After
the segmentation of the EEG signals, in the first part, there are 1198 ADHD samples and
848 normal samples. And in the second part, there are 1132 samples for ADHD and
995 samples for the normal subjects. Tables 2–6 show the average classification evaluation
metrics for various sizes of Ulam’s spirals, such as 9 × 9, 15 × 15, 25 × 25, 45 × 45, and
75 × 75.

Table 2. Performance measures obtained for a patch size of 9× 9 for Part 1, Part 2, and Part 1 + Part 2.

Accuracy (%) Sensitivity (%) Precision (%) F1 Score (%)

Part 1 98.78 ± 0.0070 98.82 ± 0.0137 98.24 ± 0.0081 98.53 ± 0.0085
Part 2 98.52 ± 0.0063 98.28 ± 0.0151 98.57 ± 0.0096 98.41 ± 0.0069

Part 1 + Part 2 97.20 ± 0.0058 97.78 ± 0.0093 95.97 ± 0.0120 96.86 ± 0.0064

Table 3. Performance measures obtained for a patch size of 15 × 15 for Part 1, Part 2, and
Part 1 + Part 2.

Accuracy (%) Sensitivity (%) Precision (%) F1 Score (%)

Part 1 98.97 ± 0.0084 99.06 ± 0.0122 98.49 ± 0.0088 98.77 ± 0.0101
Part 2 98.19 ± 0.0040 97.53 ± 0.0141 98.11 ± 0.0079 97.87 ± 0.0050

Part 1 + Part 2 97.46 ± 0.0104 96.98 ± 0.0164 97.58 ± 0.0117 97.28 ± 0.0112

Table 4. Performance measures obtained for a patch size of 25 × 25 for Part 1, Part 2, and
Part 1 + Part 2.

Accuracy (%) Sensitivity (%) Precision (%) F1 Score (%)

Part 1 98.25 ± 0.0025 98.71 ± 0.0067 98.16 ± 0.0043 98.44 ± 0.0027
Part 2 97.37 ± 0.0158 96.79 ± 0.0220 97.59 ± 0.0184 97.17 ± 0.0170

Part 1 + Part 2 96.09 ± 0.0110 95.55 ± 0.0095 95.63 ± 0.0185 95.58 ± 0.0121

Table 5. Performance measures obtained for a patch size of 45 × 45 for Part 1, Part 2, and
Part 1 + Part 2.

Accuracy (%) Sensitivity (%) Precision (%) F1 Score (%)

Part 1 96.14 ± 0.0153 95.27 ± 0.0278 96.23 ± 0.0160 95.84 ± 0.0168
Part 2 97.90 ± 0.0113 96.82 ± 0.0167 98.10 ± 0.0158 97.45 ± 0.0136

Part 1 + Part 2 93.51 ± 0.0125 91.59 ± 0.0259 93.60 ± 0.0163 92.56 ± 0.0149

Table 6. Performance measures obtained for a patch size of 75 × 75 for Part 1, Part 2, and
Part 1 + Part 2.

Accuracy (%) Sensitivity (%) Precision (%) F1 Score (%)

Part 1 95.70 ± 0.0134 92.32 ± 0.0339 97.18 ± 0.0161 94.65 ± 0.0179
Part 2 94.08 ± 0.0268 92.78 ± 0.0398 94.52 ± 0.0297 93.60 ± 0.0294

Part 1 + Part 2 91.52 ± 0.0183 88.66 ± 0.0273 91.89 ± 0.0239 90.22 ± 0.0211
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In Table 2, the results for a patch size of 9 × 9 are given. The rows of Table 2 indicate
the data for Part 1, Part 2, and Part 1 + Part 2, and the columns show the average evaluation
metrics of accuracy, sensitivity, precision, and F1 scores. As seen in Table 2, the best average
classification accuracy score with a 10-fold cross-validation technique of 98.78 ± 0.0070%
was obtained for the Part 1 dataset. Similarly, the best average sensitivity (98.24 ± 0.0081%)
and F1 score (98.53± 0.0085%) values were obtained for the Part 1 dataset. The best average
precision score of 98.57 ± 0.0096% was obtained for the Part 2 dataset. The lowest average
evaluation metrics were obtained for the combination of Part 1 and Part 2 datasets, as
shown in the fourth row of Table 2.

In Table 3, the evaluation results with a 15 × 15 patch size are given. It can be
noted from Table 3 that the best average accuracy, sensitivity, precision, and F1 score of
98.97 ± 0.0084%, 99.06 ± 0.0122%, 98.49 ± 0.0088%, and 98.77 ± 0.0101%, respectively,
were obtained. The second-best average evaluation scores were also obtained for the Part 2
dataset, and the lowest scores were obtained for the Part 1 + Part 2 dataset.

In Table 4, a comparably larger patch size of 25 × 25 was used to study its effect
on the performance of the proposed method. As seen in Table 4, the obtained results for
the Part 1 dataset were better than those for the Part 2 and Part 1 + Part 2 datasets. A
98.25 ± 0.0025% average accuracy score, 98.71 ± 0.0067% average sensitivity,
98.16 ± 0.0043% precision, and a 98.44 ± 0.0027% F1 score were obtained for the
Part 1 dataset. Similar to the previous patch sizes, for a patch size of 25 × 25, the achieve-
ments for Part 2 were better than those for the Part 1 + Part 2 dataset and lower than those
for the Part 1 dataset.

In Tables 5 and 6, larger patch sizes, such as 45 × 45 and 75 × 75, were used to
study the effect of the larger patch sizes on ADHD detection. It can be noted from these
tables (Tables 5 and 6) that increasing the patch size did not increase the performance of
the proposed method. Conversely, the performance of the proposed method decreased
dramatically when larger patch sizes were considered. But it is worth mentioning that for a
patch size of 45 × 45, the performance metrics for the Part 2 dataset were better than those
for the Part 1 and Part 1 + Part 2 datasets. It can be noted from Tables 2–6 that, only for the
45 × 45 patch size, the obtained evaluation metrics for the Part 2 dataset were better than
those for the Part 1 dataset.

We did not apply patch extraction to the input images. In other words, the input
time–frequency images were used to acquire the features to study the effect of patch
extraction on the performance of the proposed method. As seen in Table 7, the obtained
evaluation metrics were low, and when these evaluation results were compared with the
results given in Tables 2–6, it was observed that patch extraction increased the performance
of the proposed method positively.

Table 7. Performance measures obtained for the whole image for Part 1, Part 2, and Part 1 + Part 2.

Accuracy (%) Sensitivity (%) Precision (%) F1 Score (%)

Part 1 93.26 ± 0.0114 88.21 ± 0.0254 95.26 ± 0.0272 91.55 ± 0.0142
Part 2 92.81 ± 0.0190 90.36 ± 0.0320 94.08 ± 0.0239 92.15 ± 0.0213

Part 1 + Part 2 88.40 ± 0.0185 83.45 ± 0.0388 89.61 ± 0.0199 86.37 ± 0.0236

In Table 8, besides the results obtained using the ReliefF technique for the Part 1 dataset,
the performances of the other feature selection methods such as neighborhood component
analysis (NCA) [33], Pearson correlation coefficient (PCC) [34], and term variance feature
selection (TVFS) [35] are also given. It may be noted from the table that average accuracies
of 95.46 ± 0.0175%, 94.63 ± 0.0232%, and 94.38 ± 0.0103% were obtained for the NCA,
PCC, and TVFS techniques, respectively. NCA obtained better achievement than the PCC
and TVFS techniques. And ReliefF yielded the best average evaluation metrics for this
experiment.
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Table 8. Comparison of performance measures obtained using our proposed method with state-of-
the-art feature selection algorithms for a patch size of 15 × 15 in Part 1.

Accuracy (%) Sensitivity (%) Precision (%) F1 Score (%)

ReliefF 98.97 ± 0.0084 99.06 ± 0.0122 98.49 ± 0.0088 98.77 ± 0.0101
NCA 95.46 ± 0.0175 93.39 ± 0.0381 95.61 ± 0.0242 94.43 ± 0.0224
PCC 94.63 ± 0.0232 96.11 ± 0.0232 91.45 ± 0.0282 93.70 ± 0.0266
TVFS 94.38 ± 0.0103 90.57 ± 0.0207 95.67 ± 0.0164 93.03 ± 0.0130

An experiment was also carried out with ReliefF feature selection using the
Part 1 + Part 2 dataset to determine the number of features obtained using the ReliefF
technique. To this end, the number of features was initiated at 1000 and increased to 14,000
with increments of 1000. The graph of average accuracy (%) versus the number of features
obtained is given in Figure 5. As seen in Figure 5, the best average accuracy of 97.46% was
obtained with 7000 features using the ReliefF technique.
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Ablation Study

In the proposed approach, there are two independent parts, namely the feature ex-
traction part and the feature selection and classification part. In the first part, various
sizes of patch division windows were used, such as 9 × 9, 15 × 15, 25 × 25, 45 × 45,
and 75 × 75. And for the second part, ReliefF-based feature selection and SVM-based
feature classification were carried out. In Table 9, the running times in seconds for various
window-size-based feature extraction are given for the datasets.

Table 9. Running times obtained for feature extraction with various dimensions of the patch window.

9 × 9 15 × 15 25 × 25 45 × 45 75 × 75

Part 1 1431 s 1095 s 1041 s 1000 s 940 s

Part 2 1260 s 1117 s 1102 s 1049 s 984 s

It can be noted from Table 9 that the running times obtained for various window sizes
of the patches during feature extraction are different. For the 9 × 9 size of the window, the
running times were 1431 and 1260 s for the Part 1 and Part 2 datasets, respectively, and for
the 75 × 75 size of the window, the running times were 940 and 984 s for the Part 1 and
Part 2 datasets, respectively.
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4. Discussions

In this paper, a novel approach, namely LSGP-USFNet, is developed for the efficient de-
tection of ADHD from EEG signals. The proposed method comprised signal segmentation,
time–frequency image construction, patch division, Ulam’s spiral and Sophie Germain’s
primes-based feature extraction, feature saliency, and classification. A publicly available
dataset was used to develop the proposed LSGP-USFNet model. Various patch sizes
were used to obtain the highest performance. As given in Table 3, the best average ac-
curacy scores for Part 1 data, Part 2 data, and Part 1 + Part 2 data were 98.97 ± 0.0084%,
98.19 ± 0.0040%, and 97.46 ± 0.0104%, respectively. The obtained results were compared
with the recent state-of-the-art methods proposed using the same dataset. For example, the
auto-regressive model coefficients were assessed by Kaur et al. [36] using the Yule–Walker,
covariance, and Burg techniques. They employed spectral power and classified with an
accuracy of 85% using a k-NN classifier. Several nonlinear characteristics, such as Petrosian,
Katz, Higuchi fractal dimension, entropy, and Lyapunov exponent, were extracted from
EEG signals by Mohammadi et al. [37]. They reported accuracies of 93.65% and 92.28% for
relevant features chosen using minimal redundancy maximum relevance and double input
symmetrical relevance approaches, respectively, with the neural network (NN) classifier.
Moghaddari et al. [11] used a 13-layered convolutional neural network (CNN) model to
detect ADHD from EEG signals. The authors initially extracted the rhythms from the EEG
signals and converted them into time–frequency images, and these images were used as
input to the developed 13-layered convolutional neural network model. The developed
model produced an accuracy of 98.48%. Chang et al. [38] extracted deep features from a
pre-trained CNN model and classified them with a LSTM classifier for EEG-based ADHD
detection. The authors obtained an 85.5% accuracy score. Maniruzzaman et al. [13] used
hybrid features from the time and frequency domains. They used a feature selection
algorithm to detect the more efficient features. Their method detected ADHD with an
accuracy of 97.5% using a Gaussian process-based classifier. Alim et al. [16] extracted time
and frequency domain features and feature saliency with the PCA method. Their method
obtained an accuracy of 94.2% using the SVM classifier. Güven et al. [17] used Lempel–Ziv
complexity and fractal-dimension functions for feature extraction from EEG signals. Their
method reported an accuracy of 93.2% in detecting ADHD using a Naïve Bayesian classifier.
In Table 10, a comparison of the proposed method with some of the recent works on the
same dataset is given.

Table 10. Performance comparison of the proposed method with the state-of-the-art techniques using
the same dataset.

Study Data Features Classifier Validation
Method Accuracy (%)

Kaur et al. [36] ADHD: 30
Normal: 30

Yule–Walker, covariance,
and Burg techniques k-NN - 85.0

Mohammadi et al.
[37]

ADHD: 30
Normal: 30

Fractal dimension, entropy,
and Lyapunov exponent NN - 93.7

Moghaddari et al.
[11]

ADHD: 31
Normal: 30 Deep features CNN Cross-validation

5-fold 98.5

Chang et al. [38] ADHD: 30
Normal: 30 Rhythm features LSTM Cross-validation

5-fold 85.5

Maniruzzaman et al.
[13]

ADHD: 61
Normal: 60 Hybrid features Gaussian Process Cross-validation

5-fold 97.5

Alim et al. [16] ADHD: 61
Normal: 60

Statistical and
time–frequency features SVM Cross-validation

5-fold 94.2

Güven et al. [17] ADHD: 61
Normal: 60

Lempel–Ziv complexity
and fractal-dimension Naive Bayes LOSO 93.2
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Table 10. Cont.

Study Data Features Classifier Validation
Method Accuracy (%)

Khare et al. [8] ADHD: 61
Normal: 60 VHERS ELM Cross-validation

10-fold 99.7

Proposed method ADHD: 30
Normal: 30

15 × 15 Ulam’s spiral and
Sophia Germain’s

primes-based features
SVM Cross-validation

10-fold 98.9

Proposed method ADHD: 31
Normal: 30

9 × 9 Ulam’s spiral and
Sophia Germain’s

primes-based features
SVM Cross-validation

10-fold 98.5

Proposed method ADHD: 61
Normal: 60

15 × 15 Ulam’s spiral and
Sophia Germain’s

primes-based features
SVM Cross-validation

10-fold 97.5

It can be noted from Table 10 that Kaur et al. [36], Chang et al. [38], and Mohammadi
et al. [37] obtained 85.0%, 85.5%, and 93.7% accuracy scores, respectively, using 30 ADHD
and 30 normal children. And our proposed method obtained 98.9% accuracy using the same
dataset. Moghaddari et al. [11] obtained an accuracy of 98.48% using the proposed method
and reported an improved accuracy score of 98.5% with 31 ADHD and 30 normal children.
Alim et al. [16] and Güven et al. [17] reported 94.2% and 93.2% accuracy scores, respectively,
using 61 ADHD and 60 normal children. Our proposed method and the Maniruzzaman
et al. [13] method reported an accuracy of 97.5% using the same dataset. Khare et al. [8]
used a variational mode decomposition and Hilbert transform-based approach for ADHD
classification. The authors reported an accuracy of 99.75% using extreme learning machines
(ELMs) in the classification stage of the proposed work. But they did not use all the samples
obtained from the subject in their experimental study.

The advantages of the proposed method are given below:

1. Using a variable window size in patch extraction enabled the proposed approach to
be applicable to various input image sizes.

2. All channels of the EEG signals were used in this study.
3. The location of Sophie Germain’s primes on Ulam’s spiral produced a unique pattern

for the images.
4. Feature selection reduced the number of gray tones, significantly reducing the run

time of classifiers within acceptable limits.
5. By using the patch extraction on the whole time–frequency input image, the need for

rhythm extraction was eliminated. The rhythm-based features were also acquired
with the patch extraction procedure.

The disadvantages of the proposed method are as follows:

1. The ReliefF feature selection method is time-consuming.
2. The rotational invariance property of the proposed method was not fully investigated.
3. We have used only 61 ADHD and 60 normal children in this work.

In the future, we plan to validate our developed model using a huge dataset obtained
from many centers from various countries to make the model more generalizable. Also,
to develop trust in our generated model, we propose to employ explainable artificial
intelligence (XAI) by visualizing the locations of those responsible for high classification
performance [39,40]. These developed models are prone to noise when employed in real-
world scenarios. To evaluate the influence of noise on the developed model or due to data,
uncertainty quantification (UQ) can be used [41]. Bayesian networks, Monte Carlo dropout,
and Fuzzy methods can be employed to make accurate decisions [42].

Also, in the future, we plan to use electrocardiogram (ECG) signals for the automated
detection of ADHD [43] and also explore the possibility of using multi-modal signals for
the automated detection of children’s mental health [44].
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5. Conclusions

In this paper, a novel model, LSGP-USFNet, has been developed for the accurate
detection of ADHD using EEG signals. In the proposed method, all EEG channels and
rhythms are used based on the time–frequency image representation. The unique patterns
based on patch extraction and the location of Sophie Germain’s primes on the Ulam’s
spiral are acquired, and then a feature saliency procedure is employed to obtain the most
efficient gray tones from the time–frequency image. The SVM classifier with a ten-fold
cross-validation was used to detect ADHD accurately (97.46%). The limitation of this work
is that we have used only one public dataset to develop the proposed model. In the future,
we plan to validate our automated system with (i) a huge database with children from
different races, (ii) polar Ulam’s spiral to improve the performance, and (iii) a model to
detect other neurological disorders of the children. In the future, we intend to use a large
diverse database encompassing different races. Additionally, we aim to explore other
spiral patterns to complement our current findings. Also, our model can be used to detect
other neurological disorders, thereby demonstrating the effectiveness and efficiency of the
proposed methodology.
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