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Abstract: Existing fault prediction algorithms based on deep learning have achieved good prediction
performance. These algorithms treat all features fairly and assume that the progression of the
equipment faults is stationary throughout the entire lifecycle. In fact, each feature has a different
contribution to the accuracy of fault prediction, and the progress of equipment faults is non-stationary.
More specifically, capturing the time point at which a fault first appears is more important for
improving the accuracy of fault prediction. Moreover, the progress of the different faults of equipment
varies significantly. Therefore, taking feature differences and time information into consideration,
we propose a Causal-Factors-Aware Attention Network, CaFANet, for equipment fault prediction in
the Internet of Things. Experimental results and performance analysis confirm the superiority of the
proposed algorithm over traditional machine learning methods with prediction accuracy improved
by up to 15.3%.

Keywords: fault prediction; industrial Internet of Things; causal factors; attention mechanism

1. Introduction

Equipment fault prediction is extremely important for the maintenance of large equip-
ment in the Industrial Internet of Things. Compared with traditional signal-analysis-based
fault diagnosis methods [1–3], deep-learning-based prediction algorithms [4–6] can achieve
better performance in equipment fault prediction.

In the industrial Internet of Things, a large device is composed of multiple components,
each of which has different physical characteristics during machine operation. Sensors can
be deployed to collect measurements on the operation of specific components, e.g., we may
deploy vibration sensors at the bearings to monitor their operation and extract features
from these monitoring data, which reflect the physics of the detected component, as inputs
to the deep learning framework.

However, feature extraction and interaction are calculated in a black box in a deep
learning framework [7,8]. In fact, feature selection is crucial to the accuracy of equipment
fault prediction. Moreover, the features extracted from the monitoring data of the equip-
ment operational status can characterize the operational status of the equipment from
different perspectives. Essentially, the representation abilities of these extracted features are
different, and their contributions to equipment fault prediction are also different. Therefore,
we should treat the features extracted from monitoring data accordingly when designing
fault prediction algorithms.

Typically, equipment can operate normally for months or even years. Moreover,
the progress of equipment faults is often non-stationary. Compared with normal operation
mode, the data collected by sensors would undergo significant changes when the equipment
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malfunctions. What kind of data is more meaningful and how to capture these valuable
data are crucial for equipment fault prediction. Therefore, we should identify the most
influential parts of the monitoring data and infer the key data points closely related to
equipment faults.

In this paper, we propose a Causal-Factors-Aware Attention Networks (CaFANet)
for equipment fault prediction. Different from traditional deep learning, we first conduct
causal analysis of extracted signal features to quantify the impact of each feature on the
prediction accuracy, and embed the influence weight of the features on the prediction
performance into the feature representation for equipment fault diagnosis. Then, we
calculate local causal-factors-aware weights based on a single-layer transformer and global
attention weights via a time-aware key-query attention scheme. Finally, we integrate local
attention with global attention using a dynamic attention fusion strategy. Compared with
state-of-the-art fault prediction algorithms, our proposed algorithm not only considers the
impact of features on prediction performance but also deliberates the time information of
faults in both local and global levels.

Our contributions are summarized as follows.

• We quantify the influence of features on the prediction accuracy via causal analysis
and assign a causal influence weight to each feature according to its contributions to
equipment fault prediction performance.

• We investigate the influence of features and time information on equipment fault
prediction using a single-layer transformer, compute local weights and global weights
accordingly, and finally obtain an aggregated attention weight for each sequence to
achieve better equipment fault prediction performance.

• We evaluate the performance of CaFANet using a publicly available equipment fault
prediction dataset. Compared with eleven classical baselines, the experimental results
validate the effectiveness and efficiency of CaFANet.

The remainder of this paper is organized as follows. We survey the related works
in Section 2. We present the system model and the target problem in detail in Section 3.
The equipment fault prediction framework is described in Section 4. The experimental
results and performance analysis are presented in Section 5. Finally, we conclude this paper
in Section 6.

2. Related Work

Accurate equipment fault prediction can effectively reduce industrial accidents in the
Industrial Internet of Things. Both traditional and modern methods can be utilized for
predicting equipment faults.

The traditional methods for equipment fault diagnosis include Bayesian theory, maxi-
mum likelihood estimation, expert systems, Kalman filtering, etc. Hmida et al. [9] inves-
tigated a robust equipment fault diagnosis scheme by using a third-order Kalman filter.
By taking a directed graph model into account, Jaise et al. [10] introduced a fault tree
diagnosis strategy for vehicle systems. Wang et al. [11] enhanced the equipment fault signal
by taking advantage of the time-frequency reduction and short-time Fourier transform
and improved the performance of bearing fault diagnosis. Chen et al. [12] improved the
accuracy of fault classification based on short-time Fourier transform. More importantly,
this model achieved a good fault classification performance with a smaller feature scale.
Shi et al. [13] designed an efficient diagnosis system by integrating an expert system and
a fuzzy neural network to establish a diagnosis rule library. Zhang et al. [14] studied the
stochastic resonance behavior of a coupled stochastic resonance system with time delay
under the fluctuation of mass and frequency. Yan et al. [15] proposed an auxiliary indicator-
based fault diagnosis system, which overcame the drawback of manually setting the modal
parameters in the original singular spectral decomposition. Ding et al. [16] combined an
expert system and an agent model framework to build a collaborative power grid fault
diagnosis system. Although these methods based on old-fashion patterns can assist in
equipment fault diagnosis, they highly rely on the professional knowledge and experience
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of designers. Moreover, these methods treat the extracted features equally and cannot
handle the nonstationary progression of equipment faults.

There are many new technologies available for equipment fault diagnosis and predic-
tion, such as multimodal learning, attention mechanisms, causal analysis, etc. Nan et al. [6]
introduced a multimodal learning framework to combine low-quality monitoring data
and high-quality monitoring data for better equipment fault prediction performance.
Zhang et al. [5] realized a multidimensional neural network fusion diagnosis system with
the help of a fuzzy inference system based on the data collected by multiple sensors.
Zhao et al. [17] proposed a blind source extraction (BSE) method for bearing fault diag-
nosis based on empirical mode decomposition (EMD) and time dependence. Li et al. [18]
proposed a document-level novelty detection algorithm based on attention mechanisms.
Ruikun et al. [4] built a quantum neural-based network to predict fault type. Wang et al. [19]
proposed an approach to discover causal structures from incomplete data by using a novel
encoder and reinforcement learning. Aviles-Cruz et al. [20] designed a novel framework
that used Granger-causality on a smartphone to classify and analyze human activities. In
this study, to improve the performance of prediction, we design a novel equipment fault
prediction framework inspired by causal analysis and an attention mechanism. We attempt
to explore the intrinsic differences of features and quantify their contribution to device fault
prediction performance through causal analysis. At the same time, based on an attention
mechanism, we attempt to handle the non-stationary fault progression and assign different
weights to serialized data points.

3. System Model

We consider an equipment fault prediction system mounted with I vibration sensors,
each of which gathers K serialized data points about the operating status of target equip-
ments. In longitudinal monitoring data, the monitoring data from each sensor correspond-
ing to a specific fault is a time-ordered monitoring sequence. We obtain the time-domain
characteristics of the initial sequences based on time-domain signal analysis. We extract
J features from every data point. In summary, we have K serialized data points with J
features from I sensors in the monitoring system.

Given the collected sequences throughout the entire lifecycle, the goal of equipment
fault prediction system is to predict if the target equipment would fail with one certain
fault in the near future. Taking a bearing as an example, as shown in Figure 1, it has
three operating states, i.e., the normal operation, the early fault, and the fault. Generally,
the bearing would operate in normal mode for a long period of time. Once a fault occurs,
there is a significant change in the vibration signal. However, what kind of data points
are more valuable for predicting equipment faults? More importantly, how should we
evaluate the contribution of these data points to the prediction performance? Due to
the inherent differences between causal and non-causal features, the features that affect
prediction accuracy should also be treated differently. Therefore, the objective of this
study is to achieve better prediction performance by taking advantage of features and
time information.
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Figure 1. The three stages of equipment running status.

4. The Proposed Prediction Framework

Our prediction framework, CaFANet (Causal-Factors-Aware Attention Networks for
equipment fault prediction), as shown in Figure 2, includes four components: (1) Resam-
pling. For longitudinal monitoring data, we first preprocess the classified equipment fault
samples via time-domain analysis and encode the time-domain characteristics to obtain a
time-ordered monitoring sequence N, N = [n1, n2, . . . , nK]. (2) Causal analysis. We perform
causal analysis on the extracted signal features to quantify the impact of each feature on
the prediction accuracy. More specifically, we evaluate the model accuracy error by remov-
ing any feature and then obtain the corresponding causal contribution weight for each
feature WF, WF = [W11, W12, . . . , WI J−1, WI J ]. (3) Time attention analysis. We recalculate
the feature embedding to obtain a new embedding sequence C, C = [c1, c2, . . . , cK, cT ] by
taking causal weights and the time information into account, where C contains the time
information and causal weights, and cT is the feature information under failure conditions.
We use transformer to obtain the hidden layer representation H = [h1, h2, . . . , hk, hT ] of
the embedded sequence C and then calculate the local attention score Wl . To simulate
equipment faults over time, we first embed hT into a query vector and then embed the time
difference between the occurrence of the failure and the specific data point into a key vector.
We use an attention mechanism with time information to obtain the global attention score
Wg for each embedded sequence. (4) Time-aware dynamic attention fusion. We fuse the
local attention score Wl and the temporal attention score Wg to generate the aggregated
attention score ϕ̄k.
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Figure 2. Overview of our proposed prediction framework.
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4.1. Preprocessing

Based on the equipment state monitoring information throughout the lifecycle, which
includes device failure data collected by multiple deployed sensors, we extract features and
predict the device operation status. The data of each device are firstly organized, classified
into different fault categories, and manually annotated to form a dataset.

We resample the labeled equipment fault data and stamp each sampling point with a
timestamp. The collected signal samples are organized according to the device they come
from. Using the signal time-domain analysis (here, we consider the variance, root mean
square difference, and mean, etc.), we obtain the time-domain characteristics of the sorted
samples and make corresponding time-domain feature samples. We then standardize the
extracted time-domain feature samples to generate a unified feature code as:

sijk =
fijk −Min( fijk)

Max( fijk)−Min( fijk)
× γ× (i× J)× j, (1)

where sijk is the feature code of the kth serialized point of the jth feature gathered by sensor i,
i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2, . . . , K, Max( fijk) and Min( fijk) are the corresponding
maximum and minimum values, respectively, and γ is a coefficient related to the size of the
feature space. Note that I is the total number of deployed sensors, J is the number of time
domain features extracted from monitoring data, and K is the total number of monitoring
sample sequences for each device.

We discretize the continuous values of feature codes obtained by Equation (1), each
feature code sijk can be converted into a corresponding bijk in a binary form represented by
{0, 1}o, o = γ× I × J, and all sijk are rounded down. Let N denote the sequence of samples,
and we have

N = [n1, n2, · · · , nk, · · · , nK], (2)

where nk = [b11k, b12k, · · · , bI Jk], and nk is the k-th sequence.

4.2. Causal Analysis

Traditional fault prediction methods for large-scale equipment treat all features equally [6]. In
fact, each feature actually makes different contribution to the prediction accuracy because of
its unique representation ability. More specifically, the performance of prediction depends
on the selection of features. Therefore, we use causal analysis to quantify the influence
of characteristics on prediction performance. The function to quantify the contribution of
each feature to the accuracy of equipment fault prediction is expressed as follows:

∆ε, fij
= εF\{ fij} − εF, (3)

where ∆ε, fij
is the effect of feature fij on fault prediction, εF is the error in fault prediction,

and εF\{ fij} is the error in fault prediction without feature fij. We use M to denote the

embedding sequence of the model and M \
{

fij
}

to denote the embedding sequence
without feature fij. M = [m1, m2, · · · , mk], M \

{
fij
}
= [m∗1 , m∗2 , and · · · , m∗K], mk can be

calculated as follows:
mk = Wmnk + bm, (4)

where mk is the embedding data of the kth sequence of the embedded sequence M, nk is
the binary input of the feature code fijk of the kth sequence, Wm is the initialization weight
matrix, Wm ∈ Rv, bm is the bias vector, bm ∈ Rv, and v is the dimension of wm and bm.

The traditional transformer-based schemes are mainly applied to solve natural lan-
guage processing problems but are rarely used in the Internet of Things. There are two
advantages to applying transformer to the fault prediction of large equipment. Firstly,
the transformer allows the vector to use the self-attention mechanism every time to learn
its relationship with other samples from other sensors deployed in the same equipment.
Secondly, the structure of the transformer provides the ability to calculate multiple samples
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in parallel. Thus, we use an attention-mechanism-based single-layer transformer as a model
for causal analysis, denoted by TF(∗), and the label of the prediction result denoted by ê,
and we have:

êεF = TF(M), (5)

êε
F\{ fij}

= TF(M \
{

fij
}
), (6)

where êεF and êε
F\{ fij}

denote the model prediction labels with and without feature

fij, respectively.
Let e denote the true label and the cross-entropy loss function L denote the predicted

error. The fault prediction error of Equation (3) can be expressed as:

εF = L(e, êεF ), (7)

εF\{ fij} = L(e, êε
F\{ fij}

). (8)

We can measure the contribution of each feature to the prediction accuracy via
Equations (3)–(8). Then, each feature is assigned a weight according to its influence on
prediction performance as follows:

W fij
=

∆ε, fij

|∑ ∆ε, fij
| . (9)

Then, we obtain the causal weight WF = [W f11 , W f12 , · · · , W fij
].

4.3. Time Attention Analysis

We recalculate the feature code using the causal influence weights obtained in
Section 4.2 as follows:

sW
ijk = W fij

fijk −min fijk

max fijk −min fijk
× γ× (i× J)× j, (10)

where sW
ijk is the updated feature code of the k-th serialized point of the j-th feature from

sensor i, i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2, . . . , K.
Similarly, we can obtain the sample sequence NW = [NW

1 , NW
2 , · · · , NW

K−1, NW
K , NW

T ]

that combines the causal influence weights, where NW
K is the binary input of the updated

feature code sW
ijk, and NW

T is the feature representation of the specific fault of the equipment

in the failure state. Note that the NW
T is the same for all samples when predicting a particular

type of fault.
The moment when the operating state of the equipment transitions from normal

to abnormal is crucial. To improve the performance of equipment fault prediction, it is
necessary to capture this moment. The closer the sampling point is to the fault point,
the more attention it deserves and the greater the weight it should be given. Therefore, we
should take time information into account. More specifically, we embed time information
and then use the updated vectors also as inputs. Firstly, since the time information and the
feature vector are not in the same latent space, to characterize the importance of features
associated with the time information, we need to embed the time information into the
feature vector space as follows:

zk = Wz(1− tanh(( 2pk

T
)2)) + bz, (11)

where zk is the embedded time vector, tanh is the hyperbolic tangent function, T is the
sampling time of the last serialized point in the sequence, pk is the time difference between
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the current sampling point and the last sampling point, pk = T − t ∗ k, Wz and bz are the
initialization weight matrix and bias vector, respectively, wz ∈ Rv, and bz ∈ Rv.

The sequence can be generated by embedding with time information and causal
influence weights as follows:

ck = zk + (WcNW
k + bc), (12)

where ck is the embedded conterpart of the kth sequence. The sequence C = [c1, c2, · · · , cK, cT ]
can be obtained by Equation (12). Note that the cT is the same for all samples.

We use a single-layer transformer (denoted by TF()) to learn the relationship between
the embedding sequences and the equipment faults as follows:

[h1, h2, · · · , hK, hT ] = TF([c1, c2, · · · , cK, cT ]), (13)

where hk is the hidden representation of ck via the transformer, k = 1, 2, · · · , K, and hT is
the representation of cT , which is the embedding sequence of a specific device fault.

Due to non-stationary fault progression, we should review all sample points, rather
than only focusing on the current sample point, when we analyze equipment faults
and identify the turning point of the equipment’s operating status, i.e., the key point
when it transitions from the normal operating state to the abnormal state. To carry out this
fault diagnosis, we calculate a local attention score for each sample point as follows:

uk = W>u hk + bu, (14)

where Wu and bu are the weight matrix and bias vector, respectively, Wu ∈ Rl , and bu ∈ R.
We use a softmax layer to generate local attention weights based on the local attention score
U = [u1, u2, · · · , uK]. We have

Wl = So f tmax([u1, u2, · · · , uK]) = [l1, l2, · · · , lK]. (15)

We learn a local attention weight, which reflects the importance of sample points
on the accuracy of equipment fault prediction, for each sample via the aforementioned
time-aware transformer. Not only does a single sample point need to be focused on,
but attention to the progress of the equipment operation status is more important for
equipment fault prediction. Compared to existing samples, if the gathered data show only
slight changes over a long period of time, it is not necessary to collect and analyze the data
at regular intervals. Only when there are significant fluctuations in the monitoring data
do more samples need to be collected, which helps to predict equipment failures more
accurately. Therefore, the time interval between samples is crucial for fault prediction. We
introduce a key-query attention model to simulate the process. Firstly, we convert the
hidden representation hT obtained by Equation (13) into a query vector q as follows:

x = ReLU(WxhT + bx), (16)

where Wx ∈ Rl×q and bx ∈ Rq are the weights and bias matrix, respectively, l is the
dimension of hk, q is the dimension of bx, and ReLU is an activation function that only
maintains positive values.

To capture the importance of the time information itself during the equipment opera-
tion process, we use the time difference pk between the fault point and the sample as the
key vector ek for the attention mechanism as follows:

ek = tanh(We(1− tanh(( 2pk

T
)2)) + be), (17)

where We ∈ Rl×q and be ∈ Rq are parameters to be learned, ek is the key vector of the kth
sequence, l is the dimension of hk, q is the dimension of be, and E = [e1, e2, · · · , eK] is the
set of key vectors.
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Combined with the query vector x derived from Equation (16), we can obtain the
global attention score rk as follows:

rk =
x>ek√

r
. (18)

We can obtain global attention weights Wg based on the global attention score rk via a
softmax layer as follows:

Wg = So f tmax([r1, r2, · · · , rK]) = [g1, g2, · · · , gK], (19)

where gK is the global time-aware attention weight of the Kth sequence.

4.4. Attention Fusion Strategy

The two attention vectors obtained earlier pay attention to different perspectives for
equipment fault prediction. Wl focuses on the characteristics of each embedded sequence,
while Wg concentrates on the time information of all samples. To obtain more accurate
prediction results, we should take feature and time information into account. Therefore,
we introduce a dynamic attention fusion strategy that integrates local attention with global
attention. More specifically, we embed hT into a new space and normalize it as follow:

v = So f tmax(WvhT + bv) =
[
al , ag

]
, (20)

where Wv ∈ R2×l , bv ∈ R2, l is the dimension of hK. We then obtain an aggregated attention
weight for each sequence based on local weights and global weights as follows:

ϕk = lk ∗ al + gk ∗ ag. (21)

Finally, we can obtain the final attention score γ′ by normalizing the aggregated
attention weights for each vector as follows:

γ′ =
ϕk

∑k ϕk
. (22)

The final attention score combines the influence of the features and time information
on the device fault prediction. The feature analysis focuses on the signal values of the
dataset throughout the entire lifecycle, while the time information analysis pays attention
to the changes in the time interval between samples over a long period. Integrating
signal features and time information can better capture the contribution of features to the
prediction results.

We obtain the representation of a sample based on the hidden layer representation
obtained by Equation (13) and the final attention score obtained by Equation (22) as follows:

h′ = ∑ γ′hk. (23)

We perform a binary prediction of equipment faults based on the the representation
obtained by Equation (23) via a softmax layer as follows:

d′ = So f tmax(Wdh′ + bd), (24)

where Wd and bd are parameters to be learned, Wd ∈ R2×l , bd ∈ R2.
We define a loss function to learn all parameters, let θ denote all the parameters and d

denote the ground truth, and use the cross entropy between the predicted probabilities d′

and the actual value d as the loss function as follows:

L(θ) = − 1
|N|

|N|

∑
n=1

(d>log(d′) + (1− d)>log(1− d′)), (25)
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where |N| is the total number of samples.

5. Experimental Evaluation

In this section, we describe the experiments we conducted and compare the perfor-
mance of the proposed prediction model and baselines on a publicly available equipment
failure prediction dataset.

5.1. Dataset and Data Preprocessing

We performed experiments on the XJTU-SY bearing dataset [21], which measures the
operating conditions of bearings and is widely applied to the fault prediction and remaining
life estimation of the bearings. The data are collected by vibration sensors deployed on the
adjustable speed generator shaft, supporting the transmission bearings, the hydraulic drive
load control system, and the testing transmission bearings, etc. The monitored data can be
used to evaluate if the equipment has malfunctioned.

This dataset, XJTU-SY, contains information on five bearings, each with three operating
modes, and a total of 15 sets of samples throughout the entire lifecycle, each of which serves
as a sub-dataset. More specifically, the first bearing has three sub-datasets, denoted as
Bearing 1_1, Bearing 1_2 and Bearing 1_3. Meanwhile, we set the sampling frequency
as 25.6 kHz, the average sampling interval as 1 min, and each sampling time as 1.28 s.
Therefore, we obtained 32,769 signals from each sensor per minute.

Given the limited number of operating modes in the XJTU-SY bearing dataset, we
enhanced the dataset by resampling because of the periodicity of the original samples.
The information about each operating mode of each bearing can be divided into a normal
operation stage, an early fault stage, and a fault stage. Due to the limited value of the
equipment fault data for fault prediction, signals at the fault stage should not be considered.
At the same time, the information entropy contained in the signal during the normal
operation stage is very small; so, the information at this stage should be considered as little
as possible. On the other hand, the signals corresponding to the period near the occurrence
of the fault are extremely important for fault prediction and require more attention. Taking
the samples at a speed of 2100 r/min and a radial force of 12 kN as an example, starting
from the time when the equipment is turned on, every 2000 signals were treated as one
data point and then labeled. The characteristics of these data points were obtained through
numerical analysis, and thus the sequential points of each operating mode for each bearing
during the whole life cycle were obtained. We sampled 20 random data points during
the normal operation stage and 40 data points during the early fault stage to create a
sequence, as shown in Figure 3. One thousand sequences for each operating mode of each
bearing were generated as a dataset, 60% of which were used as the training set, 20% as the
validation set, and 20% as the testing set.

Obviously, each sub-dataset contained the vibration signal of a bearing under one
certain operating mode throughout the entire lifecycle. To verify the validity of the pro-
posed model, we merged the sub-datasets belonging to different fault types to obtain four
combined datasets. We created Dataset 1 by merging the sub-datasets Bearing 2_1 and
Bearing 2_3, with inner race wear as the prediction target. We created Dataset 2 by merging
the sub-datasets Bearing 2_3 and Bearing 2_5, with cage fracture as the prediction target.
We created Dataset 3 by merging the sub-datasets Bearing 1_1, Bearing 2_3, and Bearing
2_5 datasets, with outer race wear as the prediction target. We created Dataset 4 by merging
all the sub-datasets, with outer race fracture as the prediction target.
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60 collection points

7 time-domain features

Figure 3. The resampling of the signal sequences.

5.2. Time-Domain Signal Features

We selected seven time-domain features for equipment fault prediction and conduct
causal analysis to measure the influence of these features on the model. The features are
described as follows:

• Variance (VAR). The VAR is used to measure the statistical dispersion of the signal.
The larger the variance, the greater the signal variation. The smaller the variance,
the smaller the signal fluctuation.

• Root Mean Square (RMS). The RMS is not sensitive to early vibration signals but has
good stability.

• Average Value (AV). The AV can be used to measure the stability of signals and reflect
the static properties of signal fluctuations.

• Kurtosis (KU). KU can be used to measure the probability distribution of random
variables. KU has good performance for faults with pulse signals. However, KU fails
and have poor stability when a fault occurs.

• Skewness (SK). SK can be used to measure the degree and direction of data distribu-
tion deviation and can characterize the degree of numerical asymmetry distribution.
SK has good performance in the early fault stage but fails after a fault occurs.

• Crest Factor (CF). The CF is defined as the ratio of the peak to the rectified average
value and can be used to judge whether there are pulses in the signal.

• Margin Factor (MF). The MF is defined as the ratio of the signal peak to the root square
amplitude and is more sensitive to changes in the signal.

5.3. Experiments Settings

All our experiments were based on PyTorch, implemented on the Windows 10 operat-
ing system, run on 32 GB of RAM and GeForce RTX 3070 Ti GPU. The batch size was set as
50, the learning rate was set as 0.01, the space coefficient γ was set as 1400, the dropout
was set as 0.5, the dimension of the hidden space I for prediction was 256, and Adam [22]
was chosen as the optimizer. We rnm each prediction algorithm 10 times on each dataset
and obtained the average of these 10 results as the final result.
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5.4. Metrics

To evaluate the effectiveness and efficiency of the prediction model, we used accuracy
(Acc), precision (Pre), and recall (Recall) as metrics as follows:

Acc =
N

∑
i=0

Pi,i

∑N
i=0,j=0 Pi,j

, (26)

Pre =
N

∑
i=0

Pi,i

∑N
j=0 Pj,i

, (27)

Recall =
N

∑
i=0

Pi,i

∑N
j=0 Pi,j

, (28)

where N is the total number of samples, and Pi,j indicates that the predicted label is i and
the actual label is j. More specifically, the prediction is correct only when i equals j.

5.5. Baselines

To demonstrate the superiority of the proposed prediction algorithm, we chose three
types of algorithms as baselines.

• The first category of baselines was classical machine learning algorithms, including
SVM (Support Vector Machine) [23], LR (Linear Regression) [24] and RF (Random
Forest) [25].

• The second category of baselines was RNN-based algorithms, including LSTM (Long
Short-Term Memory) [26], GRU (Gated Recurrent Unit) [27], and DA-RNN (Dual-
stage Attention-based Recurrent Neural Network) [28]. These algorithms are the basic
framework of most prediction algorithms.

• The third category of baselines was algorithms that have achieved good performance
in bearing fault prediction in recent years. CNN (Convolutional Neural Network) [29]
is the classical and effective classification algorithm. DFC-CNN (Deep Fully Con-
volutional Neural Network) [30] is based on CNN and spectrogram transform for
prediction. CNN-LSTM (multiscale CNN and LSTM) [31] can learn the original signal
and encode it directly. GRU-HA (Gate Recurrent Unit and Hybrid Autoencoder) [32]
can automatically learn the features of sequences. DA-AE (Deep Wavelet Autoen-
coder) [33] is an unsupervised learning algorithm and uses the original vibration
signal for training.

5.6. Performance Analysis

Prediction Accuracy Comparison. As shown in Table 1, compared with the 11 bench-
mark algorithms, our proposed algorithm achieved the highest fault prediction accuracy.
Compared with LR, our algorithm had an accuracy improvement of 15.3% on Dataset 4.
Our algorithm assigned different weights to features that had different contributions to the
prediction results and considered the impact of the time information on fault prediction.
Therefore, our algorithm achieved optimal prediction performance on Dataset 4.
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Table 1. Accuracy comparison of Dataset 4.

Methods Dataset 1 Dataset 2 Dataset 3 Dataset 4

SVM 0.901 0.893 0.861 0.855
RF 0.883 0.876 0.856 0.847
LR 0.896 0.847 0.768 0.749

LSTM 0.887 0.910 0.858 0.839
GRU 0.870 0.902 0.847 0.826
CNN 0.885 0.882 0.887 0.829

DFC-CNN 0.897 0.896 0.892 0.852
DA-RNN 0.892 0.885 0.889 0.876

CNN-LSTM 0.899 0.894 0.899 0.868
GRU-HA 0.916 0.911 0.900 0.892
DW-AE 0.922 0.915 0.904 0.896

CaFANet 0.930 0.924 0.913 0.902

Prediction Performance Comparison. A comparison of 12 algorithms on Dataset 2,
as shown in Table 2. Our method outperformed all the benchmarks on dataset 2 in terms of
accuracy, precision, and recall. Compared with LR, our algorithm improved the accuracy
by 7%, the accuracy ratio by 8%, and the recall rate by 6% on Dataset 2.

Table 2. Performance comparison on Dataset 2 .

Methods Acc Pre Reacll

SVM 0.893 0.884 0.899
RF 0.876 0.895 0.864
LR 0.847 0.861 0.839

LSTM 0.910 0.924 0.898
GRU 0.902 0.935 0.877
CNN 0.882 0.901 0.869

DFC-CNN 0.896 0.906 0.892
DA-RNN 0.885 0.896 0.872

CNN-LSTM 0.894 0.899 0.886
GRU-HA 0.911 0.934 0.890
DW-AE 0.915 0.941 0.895

CaFANet 0.924 0.949 0.905

Effect of the Time-domain Features. Table 3 lists the impact of each time-domain
feature on the accuracy of fault prediction under different fault types. CaFANet explores
features that have the higher correlation with the predicted target. As expected, KU, CF
and MF were more sensitive to the early numerical changes in bearing faults, thus having
a greater impact on fault prediction tasks.

Table 3. Causal analysis comparison of the time-domain features.

Feature Dataset 1 Dataset 2 Dataset 3 Dataset 4 Overall

Var 0.0413 0.0398 0.0421 0.0402 0.0409
RMS 0.0279 0.0283 0.0265 0.0288 0.0279
AV 0.0379 0.0369 0.0357 0.0370 0.0369
KU 0.0957 0.0968 0.0912 0.0899 0.0934
SK 0.0284 0.0237 0.0256 0.0274 0.0263
CF 0.0715 0.0768 0.0742 0.0739 0.0741
MF 0.0734 0.0796 0.0722 0.0785 0.0759

Effect of the Space Coefficients. The results shown in Figure 4 confirmed the impact
of the space coefficient sizes on the fault prediction accuracy, which increased with the
increase in the space coefficients. The larger the space coefficients, the higher the complexity
of the encoding process and the higher the accuracy of the fault prediction. The running
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time increases linearly accordingly, as shown in Figure 5. However, if we chose smaller
spatial coefficients, it is difficult to effectively express the relationship between features,
resulting in low fault prediction accuracy.

Effect of the Sequence Length. Figure 6 illustrates the impact of the sequence length
on the accuracy of fault prediction. Overall, the prediction accuracy increased with the in-
crease in the sequence length. Actually, the impact of the sequence length on the prediction
accuracy depended on the number of data points in the early fault stage.
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Figure 4. The effect of the space coefficient on accuracy.
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Figure 5. Running time comparison of the different space coefficients.

Ablation Study. An ablation study on the impact of different components of the
prediction model on accuracy was conducted by removing the causal analysis, global
time attention, and time information embedding, respectively. As shown in Table 4, the
prediction accuracy variation denoted the gap between the performance with and without
the specific component. From Table 4, we observe that time embedding had the strongest
impact on the prediction accuracy.
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Figure 6. The effect of the sequence length on the accuracy.

Table 4. Influence of components of the prediction model on accuracy.

Models Acc

No causal analysis 0.883
No global time attention 0.866

No embedding time information 0.806
Full model 0.924

6. Conclusions

In this paper, we designed a causal-factors-aware attention network for predicting the
fault types of bearings in the Internet of Things. Firstly, we measured the contribution of
the time-domain features to the prediction model using causal analysis. Focusing on time-
domain features with larger contributions, we then introduced a local attention mechanism
to assign weights to the embedding sequence. After embedding time information, the fea-
tures of the key stages were amplified, and the transformer with time-aware information
was used to find the data points closely related to the faults. Finally, we reassigned weights
to each signal sequence to predict the equipment faults effectively and efficiently. In this
paper, we confirmed the importance of time information to prediction accuracy. Moreover,
the proposed algorithm can provide guidance on the feature selection of equipment failure
prediction in the industrial Internet of Things. Good prediction performance depends on
high-quality data. However, it is usually difficult to obtain the monitoring data of the
large equipment due to its confidential nature in the industrial Internet of Things. Even
though device monitoring data is available, obtaining device fault information is still very
challenging. Provided with samples and corresponding monitoring sequences, CaFaNet is
able to perform interpretable equipment fault prediction and has potentials for practical
use in production settings.
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Abbreviations
In this study, we used the following abbreviations:

CaFANet Causal-Factor-Aware Attention Networks for Equipment Fault Prediction
SVM Support Vector Machine
LR Linear Regression
RF Random Forest
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
DA-RNN Dual-stage Attention-based Recurrent Neural Network
CNN Convolutional Neural Network
DEF-CNN Deep Fully Convolutional Neural Network
CNN-LSTM Multiscale CNN and LSTM
GRU-HA Gate Recurrent Unit and Hybrid Autoencoder
DA-AE Deep Wavelet Autoencoder
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