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Abstract: Forests are traditionally characterized by stand-level descriptors, such as basal area, mean
diameter, and stem density. In recent years, there has been a growing interest in enhancing the
resolution of forest inventory to examine the spatial structure and patterns of trees across landscapes.
The spatial arrangement of individual trees is closely linked to various non-monetary forest aspects,
including water quality, wildlife habitat, and aesthetics. Additionally, associating individual tree
positions with dendrometric variables like diameter, taper, and species can provide data for highly
optimized, site-specific silvicultural prescriptions designed to achieve diverse management objectives.
Aerial photogrammetry has proven effective for mapping individual trees; however, its utility is
limited due to the inability to directly estimate many dendrometric variables. In contrast, terrestrial
mapping methods can directly observe essential individual tree characteristics, such as diameter,
but their mapping accuracy is governed by the accuracy of the global satellite navigation system
(GNSS) receiver and the density of the canopy obstructions between the receiver and the satellite
constellation. In this paper, we introduce an integrated approach that combines a camera-based
motion and tree detection system with GNSS positioning, yielding a stem map with twice the accuracy
of using a consumer-grade GNSS receiver alone. We demonstrate that large-scale stem maps can be
generated in real time, achieving a root mean squared position error of 2.16 m. We offer an in-depth
explanation of a visual egomotion estimation algorithm designed to enhance the local consistency
of GNSS-based positioning. Additionally, we present a least squares minimization technique for
concurrently optimizing the pose track and the positions of individual tree stem[s].

Keywords: direct visual odometry; simultaneous localization and mapping; non-linear least squares;
computer vision; GNSS/GPS

1. Introduction

The widespread adoption of sustainable forestry practices in much of the developed
world has given rise to increasingly complex forest management objectives catering to a
diverse array of interests. Consequently, silvicultural prescriptions often take into account
numerous non-monetary factors, including forest resiliency and adaptability, wildlife con-
servation, aesthetic preservation, hydrological values, and other ecological functions that
are dependent on stand structure [1]. In general, the incorporation of non-timber values
into management objectives has served as the primary driver for transitioning silvicul-
tural practices from homogeneous, even-aged systems to heterogeneous, uneven-aged
systems. This paradigm shift directly affects forest operations; implementing complex
silvicultural prescriptions becomes more costly in terms of layout, harvesting, and ad-
ministration [2]. This challenge has spurred the demand for advanced precision forestry
tools that offer accurate, real-time machine positioning, as well as forest measurement
and mapping capabilities. Such tools have the potential to eliminate certain layout tasks,
such as individual tree and boundary marking, thereby reducing operational costs and
enhancing the economic feasibility of alternative silvicultural systems.
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Real-time machine positioning and forest mapping are essential components of sustain-
able forest harvesting [3]. However, practical low-cost technologies for precise localization
and large-scale mapping in forested environments during harvesting remain underde-
veloped. Unlike the substantial advancements in automation introduced in agricultural
systems [4], forest harvesting has not experienced groundbreaking technological progress
in terms of automation and robotics. This lag can be attributed, in part, to the challeng-
ing environments in which forest machines operate, as well as potential cultural factors,
resistance to change, or inadequate research and development efforts.

In this paper, we introduce visual-processing algorithms that facilitate precise real-
time machine positioning and forest mapping. We employ visual egomotion estimation
from a stereo camera to maintain the position of a forestry machine during instances of
degraded or failed reception from a global navigation satellite system (GNSS). Furthermore,
we demonstrate how precise position maintenance can be utilized to generate tree maps
when combined with a tree-detection algorithm. Below, we itemize the main contributions
of this work:

• A novel camera-based system that integrates GNSS, visual odometry, and a tree-
detection system and egomotion estimation.

• A low-cost system using an off-the-shelf stereo camera and a consumer-grade
GNSS receiver.

• An efficient pixel-selection method with predictable inter-frame runtime for direct
image alignment.

• A global orientation parameter in the optimization framework for preliminary align-
ment between the GNSS and visual odometry pose track.

• A system that provides the tree position and dendrometric information to the user in
real time.

In the remainder of this introduction, we will discuss the crucial role of GNSS in
forest operations, along with the associated challenges and limitations. Additionally, we
will introduce the concepts of visual odometry (VO) and simultaneous localization and
mapping (SLAM).

1.1. Global Positioning

Global navigation satellite systems (GNSSs) have played a significant role in forest re-
source management. These systems have been employed for inventory plot localization [5],
forest traverse surveys [6], mapping forest disturbances [7], machine tracking [8,9], au-
tomated time studies [10,11], and general operational monitoring [12]. Recently, GNSS
technology has been applied to enhance occupational safety in logging operations by
providing virtual geofences around workers on the job site [13–15]. Most modern for-
est machines come equipped with a GNSS receiver from the factory, enabling real-time
positioning of the machine during operation.

While highly accurate GNSS positioning may not be essential for many forestry
applications, it becomes crucial when constraining machines with a virtual boundary,
particularly when boundaries coincide with ownership demarcations or delineate high-
value, sensitive, or hazardous areas. High-precision localization is also necessary for
mapping individual trees. Challenges with GNSS accuracy have impeded the widespread
adoption of GNSS technology in the virtual boundary and mapping domains.

GNSS accuracy depends on various factors, one of which is the number and geometry
of visible satellites. This is characterized by an index called position dilution of precision
(PDOP), which is a multiplicative term that scales the expected accuracy of the receiver.
PDOP values less than 1 provide the highest possible accuracy, while PDOP values greater
than 20 generally render coordinate readings futile, e.g., a PDOP value of 20 with a GNSS
receiver capable of 3 m accuracy results in an actual accuracy of 60 m. The forest canopy
can block signals from reaching the receiver, an effect known as the canopy effect [6].
Another important factor—primarily responsible for degraded GNSS accuracy under forest
canopy—is signal diffraction and reflection, known as multipath errors [16]. Lastly, GNSS
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accuracy also depends on the class of receiver, such as survey-grade or consumer-grade
receivers. Research on GNSS accuracy in forested environments has shown consumer-
grade receivers to have an accuracy range between 4 and 12 m [17–21]. In this work, we
utilize a specific GNSS called the global positioning system (GPS), operated by the United
States Air Force. The GPS satellite constellation comprises 33 satellites, 31 of which are
currently operational.

1.2. Visual Odometry

Estimating the egocentric motion of a camera is a fundamental task in computer
vision. Egomotion estimation aims to determine a 3D geometric transformation that
describes the incremental translational and rotational change of a camera in motion relative
to the observed environment. Motion estimation occurs in discrete time steps, where
a new estimate at time t reveals the camera’s motion relative to its pose at time t − 1.
Each new estimate can be incrementally composed with the previous to produce a pose
graph, i.e., a track of position and orientation over time. Visual odometry (VO), coined
by Nistér et al. [22], is the term often used to describe time-integrated motion estimates and
is analogous to other variants of odometry, e.g., wheeled odometry, where wheel encoders
are used to estimate the traveled distance in ground vehicles. Odometric navigation
is subject to errors that accumulate over time, eventually leading to positional drift, a
well-known property of dead reckoning navigation systems.

Early research on the problem of recovering relative camera poses tackled the problem
of structure-from-motion [23,24]. Structure-from-motion is the problem of recovering
both 3D structure and camera poses from a set of unordered images. VO is a special
case of structure-from-motion, where images are sequenced and pose recovery is the sole
objective. To date, most algorithms for VO are based on a feature extraction and matching
pipeline [25–28]. These algorithms are known in the vision community as feature-based
methods. In general, feature-based methods involve three steps: (1) feature extraction
and description using one of many available approaches (e.g., FAST detector [29,30], SIFT
detector/descriptor [31] Harris detector [32], Shi and Tomasi detector [33], and SURF
detector/descriptor [34]); (2) temporal feature matching, e.g., using mutual consistency or
constrained matching [35]; and (3) pose recovery by minimizing the 3D-2D reprojection
error using a perspective from n point (PnP) algorithm, e.g., EPnP [36], which is typically
embedded in a random sample consensus (RANSAC) scheme [37]. See [38] for an overview
of VO fundamentals in the context of feature-based methods.

Recent approaches to VO have migrated away from feature-based approaches due
to complexity and the plethora of configurations in feature-based pipelines. Recent ap-
proaches use image intensities directly rather than extracting and matching features [39–44].
These methods are called direct methods and are founded on the work by Lucas and
Kanade [45] introducing parametric image alignment. In contrast to feature-based methods,
which recover relative camera motion by minimizing reprojection error, direct methods
minimize the photometric error, the sum of squared differences in image intensities between
two consecutive frames.

In this work, we employ a direct method to solve for the incremental 6-DoF motion
parameters. We provide a detailed description of image warping and pixel selection tech-
niques, as well as the optimization procedure. Our method is somewhat simplified in
contrast to state-of-the-art methods, e.g., [40,43], which involve keyframe selection and win-
dowed bundle adjustment optimization to mitigate trajectory drift. As we will show in the
localization and mapping section, we align the odometry track with global coordinates from
a GNSS, and therefore, maintaining global consistency within our VO framework is unnec-
essary. Instead, in this work, we focus on local consistency and computational efficiency.

1.3. Simultaneous Localization and Mapping

SLAM is a critical problem in robotics, which involves constructing a map of an
unknown environment while concurrently determining the robot’s location within it. If the
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robot’s position and orientation are known at any given time, mapping its surroundings
using sensor data becomes a straightforward task. Conversely, if the map is already known,
the problem is reduced to localization, where the robot’s observations are utilized to
determine its position and orientation within the map. When neither the pose nor the map
is known, both the map and path must be estimated simultaneously. SLAM can be broadly
classified into online and full SLAM problems. Online SLAM incrementally estimates the
current pose along with the map, while full SLAM estimates the entire path and map using
data from all poses and observations [46]. There has been research in forest harvesting
related to the localization problem [47,48]; however, a stem map is required in order to
localize the machine, which we consider to be a major limitation of such an approach since
stem maps, in general, are not readily available.

Visual odometry (VO) and vision-based SLAM are closely related, as VO provides
an estimate of the robot’s path. The key difference is that SLAM mandates maintaining
a map—even if it is not ultimately needed—so that the robot can recognize previously
explored areas. When the robot revisits an area on the map, it provides additional con-
straints to optimize the trajectory and map, ensuring global consistency. This process is
known as loop closure. Generally, VO is focused on local consistency, while SLAM aims
for global consistency. It is worth noting that if VO is free from drift, the SLAM problem is
reduced to merely mapping observations. However, error-free VO has never been achieved
in practice, making loop closures essential for maintaining global consistency. To recognize
loop closures, robots need to operate in environments containing distinct features that can
be reidentified upon returning to a previously mapped location.

Detecting loop closures in forested environments can be challenging, as the spatial
configurations of features, such as trees, may not be unique enough to provide robust
information for redetection. Integrating GNSS positioning with SLAM can assist in identi-
fying loop closures by maintaining a globally consistent position path. In this paper, we
demonstrate how intermittent and degraded GPS reception can be fused with VO to pro-
vide a globally consistent position estimate. Additionally, we present a graph-based SLAM
algorithm for refining the estimated path and map simultaneously. For an introductory
tutorial on graph-based SLAM, readers can refer to [49].

1.4. Notation

In our method description below, we denote vectors as bold lowercase letters, e.g., v,
matrices as bold capital letters, e.g., M, and scalars as lowercase italic letters, e.g., s. We use
the notation ‖·‖ as a shorthand for ‖·‖2, i.e., the Euclidean norm. We represent images as
functions, I : Ω → R3 for 3-channel color images, and I : Ω → R for gray-scale images
where Ω ⊂ R2 is the image domain. Sets are denoted by capital script letters, e.g., A, and
the number of elements in a set is given by |A|. See Appendix A for an overview of Lie
groups and rigid transformations used in this paper.

2. Direct Visual Odometry

Given a reference image It−1 : Ω → R acquired at time t− 1 and an input image
It : Ω→ R acquired at time t, we seek to estimate the 3D egomotion of the camera between
the frames. Estimating the camera’s motion is performed by solving for the parameters
of a warp, ξt−1:t, which relates the pixels in It−1 to the pixels in It. For brevity, we drop
the time subscript on the warping parameters and denote it by ξ, and denote the reference
image by I and the input image by I ′. The intensity of a pixel in the reference image is
given by I(p), where p = (u, v)T ∈ Ω. Similarly, the intensity of a pixel in the input image
is given by I ′(p′), where the position vector p′ is the result after warping p according to
the parameters ξ,

p′ =W(p; ξ). (1)
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Leaving the warping function undefined for the moment, the images are registered, or
aligned, by minimizing the photometric error according to the following objective:

min
ξ

∑
p∈Φ

∥∥∥ I(p)− I ′(W(p; ξ)
)∥∥∥2

, (2)

where Φ ⊂ Ω is a set of selected pixels from the image domain. Solving this expression
is non-linear regardless of the warping function, as pixel intensities are unrelated to their
coordinates. A common method for minimizing the objective is the Gauss–Newton (GN)
algorithm. In general, the expression

∑
p∈Φ

∥∥∥ I(p)− I ′(W(p; ξ + ∆ξ)
)∥∥∥2

, (3)

is linearized w.r.t. some small change in the parameters, ∆ξ, and then the parameters are
updated by

ξκ+1 = ξκ + ∆ξ , (4)

until ξ and ∆ξ converge.
This formulation, as well as a solution procedure, was first given by Lucas and Kanade [45]

in their seminal work, on which parametric image alignment, and subsequently direct
VO, is founded. For a detailed presentation of optimization algorithms and alternative
formulations, see Baker and Matthews [50]. We will discuss our optimization technique in
a latter section after introducing the warping function.

2.1. Image Warping

The egomotion of a camera with no assumed holonomic constraints has 6 degrees of
freedom; rotation about the x, y and z axes and translation along the x, y and z axes. The
motion according to these degrees of freedom is represented by a transformation matrix in
the special Euclidean Lie group:

T =

(
R t
0T 1

)
∈ SE(3) , (5)

where R ∈ SO(3) is a 3D rotation matrix and t ∈ R3 is a 3D displacement or translation vec-
tor. This is a rigid-body transformation that encodes the change in rotation and translation
of a non-deformable object in motion between two discrete points in time. Although the
matrix T has 6 degrees of freedom, there are 12 values that make up the non-homogeneous
portion of the matrix: 9 values in the rotation matrix and 3 values for translation. This im-
poses unnecessary computational demands in an optimization setting. For this reason, we
use the Lie algebra se(3) to parameterize the transformation. We denote the transformation
matrix as a function of the parameters ξ ∈ se(3),

T(ξ) = exp(ξ̂) ∈ SE(3) . (6)

The exponential map of se(3) can be computed in closed form, as can the logarithm map
that takes SE(3) back to the algebra se(3),

ξ = ln(T(ξ)) ∈ se(3) . (7)

Using the Lie algebra parameterization of the transformation, we define a warping function
W : (R3 ×R6)→ R2 that takes a homogeneous pixel coordinate as an input, back projects
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it to R3, transforms the back projection according to the warping parameters, and then
projects it back to R2,

W(p̃; ξ) = π
(

T(ξ)π−1(p̃, z)
)

, (8)

where the notation p̃ = (u, v, 1)T ∈ P2 denotes a pixel position vector in homogeneous
coordinates. The function π−1(·) performs the back-projection and is defined as

π−1(p̃, z) =
((

zK−1p̃
)T

, 1
)T

∈ R4 , (9)

where z is a depth measurement for the pixel and K−1 is the inverse of the projection matrix.
Note that we homogenized, i.e., appended a fictitious coordinate, to the back-projected
vector so that it is compatible with the transformation matrix. The transformation matrix
is not homogeneous, i.e., the last row of the matrix shown in Equation (5) is omitted, so
the resulting vector following the transformation has three dimensions. The function that
performs the forward projection is defined as

π(x) = ñ(Kx) ∈ R2 , (10)

where x = (x, y, z)T ∈ R3, K is the camera projection matrix, and ñ : R3 → R2 normalizes
the homogeneous coordinates, i.e., ñ

(
(x, y, w)T

)
= (x/w, y/w)T. Finally, the projection

matrix and its inverse are defined as

K =

 f 0 cu
0 f cv
0 0 1

 , K−1 =


1
f 0 − cu

f
0 1

f − cv
f

0 0 1

 , (11)

where f is the focal length, assuming unit aspect ratio pixels, and (cu, cv) is the principal point.
The only variable that still needs attention is the depth measurement z used in the

back-projection function. We estimate the depth of each pixel by first computing the stereo
correspondence via semi-global matching [51]. We use a real-time GPU implementation
presented in [52]. Due to the smoothness constraints imposed by the semi-global matching
scheme, occlusions are filled by some non-zero value. We handle occlusions by right–left
consistency check: The disparity map D`,r is computed first, then the second disparity map
Dr,` by reflecting the left and right images along the v-axis and using the right image in
place of the left, and the left in place of the right. The final disparity map D is equal to D`,r

when the absolute difference between D`,r and Dr,`, evaluated at a position vector p, does
not exceed some threshold δ. Otherwise, D(p) takes zero,

D(p) =
{
D`,r(p) if |D`,r(p)−Dr,`(p)| ≤ δ

0 otherwise
, ∀p ∈ Ω . (12)

In this work, we use δ = 1. We do not perform sub-pixel refinement to interpolate disparity
values. We simply use positive integers to represent the disparity map, D : Ω → N. The
depth estimate, z, for the pixel p is given via triangulation,

z(p) =
f b
D(p) , (13)

where f is the focal length and b is the baseline distance of the stereo rig in centimeters.
This assumes that the stereo camera is calibrated and row-aligned. We follow methods
presented in [53] for camera calibration.
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2.2. Optimization

We will now extend our discussion regarding the minimization of photometric error.
As noted earlier, minimizing the expression defined in Equation (2) is a non-linear opti-
mization task. This formulation requires a linearization step during each GN iteration.
Namely, the Jacobian of the warp and the Hessian need to be computed during each it-
eration, which can lead to significant computational demands depending on the size of
the Jacobian. Following from Baker and Matthews [50], we redefine the objective under
the inverse compositional (IC) formulation by interchanging the roles of the reference and
input image and solving for incremental warp parameters instead of additive updates as in
the Lucas–Kanade formulation. Given some initial guess of the parameters, ξ, the objective
is to minimize the following expression w.r.t the incremental warp parameters,

∆ξ? = argmin
∆ξ

∑
p∈Φ

∥∥∥ I(W(p̃; ∆ξ)
)
− I ′(W(p̃; ξ))

∥∥∥2
. (14)

The parameters are updated by inverting the incremental warp parameters and com-
posing with the current estimate, ξ ← ξ ◦ ∆ξ−1, where the notation ◦ denotes composition.
The incremental warp parameters need to be inverted at each GN iteration as the lineariza-
tion, which we will discuss next, is performed on the reference image. The update rule can
be explicitly written as

ξκ+1 = ξκ ◦ ∆ξ−1

= ln
(

exp(ξ̂κ) exp(−∆ξ̂)
)

= ln
(

Rκ∆RT Rκ(−∆RT∆t) + tκ

0T 1

)
. (15)

According to the GN algorithm, the incremental warp parameters ∆ξ are given by the
normal equations,

JTJ∆ξ = −JTr =⇒ ∆ξ = −
(

JTJ
)−1

JTr , (16)

where J is a m× 6 Jacobian matrix, JTJ is the Gauss–Newton approximation of the Hessian
matrix, and r is the vector of residuals given by

r = I ′
(
W(p̃; ξ)

)
− I(p) . (17)

The Jacobian encodes the partial derivatives of the reference image at each pixel p{i}m
1

with
respect to the six warping parameters,

J =



∂I(p1)
∂ξ

T

∂I(p2)
∂ξ

T

...

I(pm)
∂ξ

T


=



∂I(p1)
∂ξ1

∂I(p1)
∂ξ2

. . . ∂I(p1)
∂ξ6

∂I(p2)
∂ξ1

∂I(p2)
∂ξ2

. . . ∂I(p2)
∂ξ6

...
...

. . .
...

∂I(pm)
∂ξ1

∂I(pm)
∂ξ2

. . . ∂I(pm)
∂ξ6


. (18)

The linearization of Equation (14) can be achieved by performing a first-order Taylor
expansion about the current estimate of the parameters. Denoting the ith row in the
Jacobian as ∂I(p)/∂ξ, corresponding to some pixel p ∈ Φ and applying the chain rule,
we obtain

∂I(p)
∂ξ

T

=
∂I(p)

∂p
∂p
∂x

∂x
∂ξ

. (19)
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The partial derivative of the reference image w.r.t. some pixel position p is simply the
gradient vector of the image along the u and v axes,

∂I(p)
∂p

= ∇I(p) = (Iu(p), Iv(p)) . (20)

We purposefully denoted the gradient vector as a row vector. Taking p to be equal to a
reduced form of the forward projection function π(·) such that p = ( f x/z + cu, f y/z + cv)

T,
and x = (x, y, z)T to be a back projection of the pixel, the partial derivative can be written as

∂p
∂x

=

(
f
z 0 − f x

z2

0 f
z − f y

z2

)
. (21)

Finally, the partial derivative of the back-projected pixel x w.r.t. the warping parameters
evaluated at the identity warp ξ = 0 takes the form,

∂x
∂ξ

∣∣∣∣
ξ=0

=
(
[x]×I3

)
=

 0 −z y 1 0 0
z 0 −x 0 1 0
−y x 0 0 0 1

 . (22)

This result follows from the skew–symmetric matrix operator used when computing the
SE(3) exponential map of the warp parameters. Multiplying out the last two partials gives

∂I(p)
∂ξ

T

= ∇I(p)∂p
∂x

∂x
∂ξ

=
(
Iu(p), Iv(p)

) f xy
z2 f x2−z2

z2
xy
z

f
z 0 − f x

z2

f y2+z2

z2 − f xy
z2 − f x

z 0 f
z − f y

z2

 . (23)

For convenience, we also show a row in the Jacobian corresponding to some pixel p written
out explicitly,

∂I(p)
∂ξ

=



Iu(p) f xy+Iv(p)( f y2+ f z2)
z2

Iu(p)(− f x2− f z2)−Iv(p) f xy
z2

Iu(p) f y−Iv(p) f x
z

Iu(p) f
z

Iv(p) f
z

−Iu(p) f x−Iv(p) f y
z2



T

∈ R6 . (24)

The row vector stated above is computed for each pixel p ∈ Φ and stacked into the m× 6
Jacobian matrix, again where m is the number of pixels in Φ. The columns of the Jacobian
can be visualized as the steepest descent images shown in Figure 1.

Since the linearization is performed on the coordinate frame of the reference image, the
Jacobian J and the GN approximation of the Hessian H = JTJ, as well as its inverse H−1 only
need to be computed once. These are the computational savings of the IC formulation [50]
over the original Lucas–Kanade algorithm [45].
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Iu(p) f xy+Iv(p)( f y2+ f z2)
z2

Iu(p)(− f x2− f z2)−Iv(p) f xy
z2

Iu(p) f y−Iv(p) f x
z

Iu(p) f
z

Iv(p) f
z

−Iu(p) f x−Iv(p) f y
z2

Figure 1. Steepest descent images; each image corresponds to a column in the Jacobian matrix.

2.2.1. Pixel Selection

Since minimizing photometric error is based on image gradients, only pixels with a
non-zero gradient contribute to optimization. Therefore, including pixels with zero gradient
in the Jacobian introduces unnecessary computations. In feature-rich environments, such
as forests, selecting pixels with a non-zero gradient might not significantly reduce the
number of pixels used in optimization. As shown in Figure 2a, selecting all non-zero
gradient pixels results in using approximately 85% of the image. We can further reduce the
number of pixels, thus decreasing computation, by thresholding pixels based on gradient
magnitude. This approach, however, results in a Jacobian matrix that is subject to change in
dimension between frames since the distribution of gradient magnitude is not guaranteed
to be consistent; we must allocate enough memory to store the expected maximum number
of non-zero gradient pixels across all frames, which cannot be determined in advance, or
dynamically allocate memory prior to optimizing each frame. This issue can be resolved
by selecting a percentage of the total number of pixels in the image either by performing
binary search for a gradient magnitude threshold that results in the desired number of
pixels or sorting the gradients in descending order and selecting the first N p

100 pixels, where
p is the desired percentage and N is the number of pixels in the image. In Figure 2b–d, we
show the selected pixels resulting from desired percentages ranging from 25% to 75%.

Prior to selecting pixels based on the gradient magnitude, we discard all pixels with a
disparity value of zero since these pixels are projected to infinity during image warping.
Zero disparity pixels are apparent in Figure 2 as areas in the images that obviously have
non-zero gradients but are too distant to have a non-zero disparity value.

2.2.2. Robustness

GN optimization assumes Gaussian distributed errors. It is often the case in real-world
data, however, that non-Gaussian errors arise due to inaccurate pixel correspondences
during disparity computation, motion-induced occlusions, illumination changes and auto-
exposure adjustments. A cost function for minimizing photometric error that is insensitive
to non-Gaussian distributed noise is said to be robust. In the GN framework, this can be
achieved with iterative re-weighted least squares (IRLS) using a robust cost function. The
decision of the cost function is somewhat arbitrary, typically selected through empirical
evaluation or by means of some prior knowledge regarding the structure of outliers in
the data. In this work, we choose to use Tukey’s biweight cost function [54,55] since it
suppresses large residuals in contrast to Huber’s cost function [56] which simply down
weights their influence.
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(a) (b)

(c) (d)
Figure 2. Gradient magnitude-based pixel selection; selected pixels shown in red. Subfigure captions
indicate the number of selected pixels for 240 × 320 resolution images. (a) Dense (≈65,000 px);
(b) 75% (≈57,600 px); (c) 50% (≈38,400 px); (d) 25% (≈19,200 px).

Tukey’s biweight cost function takes the form

ρ(ri) =


(

1−
( ri

c
)2
)2

if |ri| ≤ c

0 otherwise
, (25)

where the constant c is usually chosen to be 4.6851 to achieve 95% asymptotic efficiency
with the normal distribution and ri is the ith residual from the error vector given by
Equation (17). The cost function assumes that the residuals have unit variance. A common
choice to estimate the scale parameter to standardize the residuals is to compute the
median absolute deviation (MAD) and multiply by the expected MAD for a standard
normal distribution,

ŝ = k ·mediani |ri| , (26)

where k = 1.4826. To incorporate robustness in the GN minimization routine, we construct
a weight vector w, where each weight wi = ρ(ri/ŝ) and set the diagonal entries of a weight
matrix equal to the weight vector, i.e., W = diag(w). It follows that the solution to the
incremental update of the linearized system under the IRLS framework takes the form

∆ξ = −
(

JTWJ
)−1

JTWr , (27)

which is used in place of the normal equations shown in Equation (16).

3. Localization and Mapping

In this section, we present a graph-based algorithm for maintaining a globally and lo-
cally consistent pose track using the estimated frame-to-frame egomotion parameters from
the previous section and a consumer-grade GPS receiver. We also show how the optimized
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pose graph can be refined to generate a map of detected tree stems. Our algorithm consists
of two phases: global alignment, in which we minimize errors between the odometry-based
pose graph and global positions provided by the GPS receiver, and local refinement, where
we relate poses by multiple observations of tree stems and simultaneously optimize the
configuration of the pose graph and tree stem positions.

In order to increase the efficiency of computations, we use the se(2) Lie algebra of rigid
transformations to represent the graph, and ultimately the map, as opposed to the se(3)
parameters we optimized for in the odometry section. We do this by simply extracting
the translation parameters corresponding to the x and z axes in se(3) to represent the
translation along the x and y saxes on a planar pose graph, and the rotation component
about the y axis from the se(3) parameters to represent the heading. Using se(2) parameters
produces a meaningful map that can easily be presented on a 2D display monitor.

3.1. Global Alignment

Given a set of frame-to-frame odometry observations, {∆ξ1, ∆ξ2, . . . , ∆ξm}, where
each ∆ξ i = (x, y, θ)T ∈ se(2), we seek to align a pose graph constructed from the odometry
observations with a set of global position readings from a GPS receiver. We assume odome-
try observations to be locally consistent but subject to drift and assume GPS coordinates to
be locally bounded by a Gaussian distribution specified by an arbitrarily large covariance
matrix that captures the expected errors due to multi-pass signals and geometric dillution
of precision. We denote a GPS coordinate as g = (x, y)T ∈ R2, where x and y represent the
global position estimate in meters within the Universal Transverse Mercator (UTM) coordi-
nate system. We also convert the translation component of the odometry observations to
meters for compatibility with the UTM coordinate frame.

3.1.1. Graph Construction

A pose graph is used to represent the camera poses and the motion constraints between
the poses. A node, or vertex, in the graph denotes a pose, i.e., a position and orientation,
and an edge denotes the relative motion constraint given by the odometry observation. We
use vi to denote the ith node in the graph and ∆ξ i to denote the relative motion between
vi and vi+1. We construct the initial pose graph by sequentially transforming poses with
the odometry observations. First, we fix the first node in the graph to the zero vector,
then each subsequent pose is computed by right multiplying the previous pose with a
homogeneous transformation matrix T(∆ξ) ∈ SE(2), representing the exponential map of
the odometry observation,

v1 = (0, 0, 0)T , (28a)

vi+1 = T(ξ i)vi , ∀i = {1, 2, . . . , n} . (28b)

To simplify the notation, we use ξ ij to denote the motion constraint between the poses vi

and vj where vj
def
= vi+1. We also take n to be equal to the number of poses, which is the

number of odometry constraints plus one, i.e., n def
= m + 1. Associated with each motion

constraint is a 3× 3 covariance matrix Σij that represents the uncertainty of the motion.
As we describe in the optimization section that follows, we use the information matrix
Qij = Σ−1

ij to represent the strength of the edge, or constraint, in the graph.
Let C be an ordered set of 2-tuples representing the correspondences between poses

and GPS readings. Thus, the tuple (i, k) ∈ C specifies that pose vi corresponds to the
GPS reading gk. We insert GPS coordinates as nodes in the graph and add an edge to the
corresponding camera pose. We also translate all GPS coordinates according to the first
correspondence in C. We do this by storing the translation, g0 ← gk∈C1 , where C1 is the first
GPS-odometry correspondence, and subtracting g0 from all coordinates in the track,

gk ← gk − g0 ∀k = {1, 2, . . . , |C|} . (29)
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We store the translation so that we can invert the pose graph back to the original UTM
coordinates after optimization. Associated with each GPS coordinate is a 2× 2 covariance
matrix representing the expected accuracy of the receiver. We invert to covariance matrix,
as we did with the odometry covariance, to obtain an information matrix Qk. The values
in this matrix depend on the expected accuracy of the GPS receiver and the environment
in which the receiver is operating. For example, a consumer-grade GPS device operating
under a dense forest canopy will have a relatively large uncertainty and thus small values
in the information matrix.

Although we anchor the GPS track to a camera pose in the graph, their global orienta-
tion will likely differ. Thus, we introduce a global orientation parameter φ as another node
in the graph that imposes a constraint on each node representing a camera pose that has a
corresponding GPS reading. See Figure 3 for an illustration of the graph.

v1

v2

v3

T(Δ
)ξ

1

T(Δ )ξ2

g1

g2

vn

ϕ

Figure 3. Graphical model of global alignment. Circles denote nodes (vertices) and lines denotes
edges (constraints).

3.1.2. Optimization

Given the graph structure outline above, we seek to find the optimal configuration of
the state vector,

s =
(

φ, vT1 , vT2 , . . . , vTn
)T

, (30)

that minimizes the sum of squared errors. The state is simply a vector consisting of the
global orientation parameter followed by the camera poses, where each pose is parame-
terized as vi = (x, y, θ)T. Thus, the size of this vector is 1 + dn, where d is the number of
dimensions used to describe a camera pose, in this case 3, and n is the number of camera
poses. The errors associated with the state configuration are given by two functions: one
corresponding to the relative motion constraints given by the odometry observations and
one corresponding to the constraints imposed by the observations from the GPS. The
odometry error function, which is equivalent to the error function used in [49], is given by

rij(vi, vj) = T(ξ ij)
−1
(

T(vi)
−1T(vj)

)
,

=

(
R(θij)

T
(

R(θi)
T(tj − ti)− tij

)
θj − θi − θij

)
. (31)

where the notation R(θ) represents a 2D rotation matrix of the form

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (32)

and θi, θj and θij are the rotation angles corresponding to vi, vj and ξ ij, respectively. The
notations ti, tj and tij represent the translation vectors from vi, vj and ξ ij, respectively. The
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error function defined in Equation (31) gives the translational and rotational errors by
first transforming pose vj into the coordinate frame of vi, then computing the differences
according to the odometry observation. Thus, this function returns zero when the state
vector is configured according to Equations (28a) and (28b).

The second error function calculates the position difference between a pose and its
corresponding GPS coordinate according to the global orientation parameter,

rik(vi, φ) = R(φ)ti − gk . (33)

This function rotates the translation vector of pose vi about the origin of the coordinate
frame according to a rotation matrix constructed from the global orientation parameter φ
and returns the offset to the corresponding GPS coordinate.

Given the two error functions, we can write the sum of squared errors of the state
configuration s as

ε(s) = ∑
ij

rTij Qijrij + ∑
(i,k)∈C

rTikQkrik . (34)

where the error vectors rij and rik are weighted by the information matrices to incorporate
the degree of belief given to the observations. This leads to the following objective function:

s? = argmin
s

ε(s) . (35)

This is a non-linear least-squares optimization problem that can be solved with the GN
algorithm. Specifically, the error function is linearized about a current estimate of the state
configuration and we iteratively solve the linear system and incrementally update the state
vector. Since our initial estimate of the state vector might be far from a minimum solution,
we use a dampened version of the GN algorithm called the Levenberg–Marquardt (LM)
algorithm [57,58]. The linear system that is solved during each LM iteration takes the form

(H + λI)∆s = −b , (36)

where ∆s is the solution to the linear system that provides incremental improvements to the
state vector in the non-linear solution space by s̄← s̄ + ∆s, where s̄ is the current estimate
of the state configuration. The variable λ is a non-negative damping factor that, when large,
forces the update to behave as the steepest descent and, when small, brings the algorithm
closer to GN. We initialize λ = trace(H) and divide by two if the objective value decreases
and multiply by two if the objective value increases.

To construct the Hessian H and the gradient vector b, we first take the derivatives of
the error functions with respect to the state parameters evaluated at the current estimated
of the state. We initialize the poses in the state vector according to Equations (28a) and
(28b), and set the global orientation parameter to φ = 0. The partial derivatives of the
odometry error function can be written as

Aij =
∂rij

∂vi

∣∣∣∣
s=s̄

=

(
−R(θij)

TR(θi)
T R(θij)

T ∂R(θi)
T

∂θi
(tj − ti)

0T −1

)
, (37a)

Bij =
∂rij

∂vj

∣∣∣∣∣
s=s̄

=

(
R(θij)

TR(θi)
T 0

0T 1

)
, (37b)

where ∂R(θi)
T/∂θi in Aij is given by

∂R(θ)T

∂θ
=

( − sin θ − cos θ
cos θ − sin θ

)
. (38)



Sensors 2023, 23, 7043 14 of 30

The derivatives for the second error function rik(vi, φ) are defined as

Cik =
∂rik
∂φ

∣∣∣∣
s=s̄

=
∂R(φ)T

∂φ
ti , (39a)

Dik =
∂rik
∂vi

∣∣∣∣
s=s̄

=
(

R(φ) 0
)

. (39b)

The partial derivate of the rotation matrix w.r.t. the rotation angle in Cik takes the same
form as presented in Equation (38). Note that we have not taken any derivatives w.r.t. the
GPS coordinates, as we do not wish to reconfigure them, and thus they do not appear in
the state vector. For clarity, we specify the dimensions of these matrices: both A and B are
3× 3 matrices, C is a 2× 1 matrix, and D is a 2× 3 matrix. These derivatives lead to sparse
Jacobian matrices for each of the error functions,

Jij =
(

. . . . . . Aij Bij . . .
)

3×1+3n , (40a)

Jik =
(

Cik . . . Dik . . . . . .
)

2×1+3n . (40b)

We use ellipses to indicate that unspecified values in the matrix are zeros. Since the
odometry part of the pose graph only has constraints between consecutive nodes, the
Jacobian Jij will always have a contiguous 3× 6 block of non-zero values corresponding
to the odometry constraints between nodes i and j. Furthermore, the Jacobian Jik will
always have non-zero values in the first 2× 1 block corresponding to the global orientation
parameter and a 2× 3 non-zero block at the ith node representing the constraint between
the GPS-odometry correspondences. Now that the Jacobians are specified, we obtain the
Gauss–Netwon approximation to the Hessian matrices by

Hij = JTij QijJij , (41a)

Hik = JTikQkJik , (41b)

and the gradient vectors by

bij = JTij Qijrij , (42a)

bik = JTikQkrik . (42b)

From an implementation standpoint, it is easier to construct the Hessian directly using
our definitions for the non-zeros blocks in the Jacobians. The Hessian matrix for the ith
pose in graph, assuming there is a corresponding GPS coordinate with the node, takes
the form

Hij + Hik =



CT
ikQkCik . . . CT

ikQkDik . . .
...

. . .
...

DT
ikQkCik . . . AT

ij QijAij + DT
ikQkDik AT

ij QijBij . . .
... BTQijAij BT

ij QijBij
...

. . .


. (43)

Since the Jacobians are sparse, the resulting Hessian matrix is also sparse. Therefore, in
practice, it is advantageous to use a memory-efficient sparse storage scheme for these
matrices, e.g., compressed sparse column or row matrices.
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The gradient vector for the ith pose can be constructed directly with

bij + bik =



CT
ikQkrik

...
AT

ij Qijrij + DT
ikQkrik

BT
ij Qijrij

...


. (44)

The final Hessian matrix and gradient vector for the linear system are obtained by summing
over all the constraint-wise Hessians and descent vectors,

H = ∑
ij

Hij + ∑
(i,k)∈C

Hik , (45a)

b = ∑
ij

bij + ∑
(i,k)∈C

bik . (45b)

This linearization is performed during each iteration of the LM algorithm. We take advan-
tage of the sparse structure of the Hessian and solve the system using sparse Cholesky
factorization. We terminate the algorithm when the Euclidean norm of the linear increment
to the state vector ‖∆s‖ is less than some small threshold, e.g., 0.001, and take the optimal
configuration as s? = s̄ + ∆s. Finally, we rotate each pose in the optimal state vector ac-
cording the global orientation parameter and translate back to the UTM coordinate system
and update the rotation component of each pose,

v̂i =

(
R(φ?)t?i + g0

θ?i + φ?

)
, ∀{i}n

1 . (46)

Hereinafter, we omit the global orientation parameter and denote the globally aligned state
vector as

ŝ =
(

v̂T1 , v̂T2 , . . . , v̂Tn
)T

. (47)

In order to resolve the global orientation parameter, it is required that we have a minimum
of two GPS observations. We also add robustness to non-Gaussian distributed GPS errors
using the same approach as in Section 2.2.2. We compute weights for the residuals corre-
sponding to the global position coordinates using Tukey’s biweight cost function, and the
weights are used to scale the information matrix Qk.

We conclude this section by providing a note on the values in the information matrices.
In general, the information matrix for the odometry observations consists of large values
relative to the values in the information matrix for the global position observations. This is
consistent with the fact that global position measurements are typically degraded under
the canopy of a forest. Furthermore, VO is expected to perform well in feature-rich
environments, such as a forest. We also note that we provide a substantially larger value to
the position in the odometry information matrix corresponding to the heading. This makes
the translation component of the nodes in the pose graph more elastic in order to conform
to the GPS track while keeping the heading stiff to help maintain an accurate reconstruction
of tree stem observations, which we address in the next section.

3.2. Local Refinement

Given the globally aligned state vector ŝ, we will now optimize for a refined state
vector by taking into account observations of tree stems. There are three main steps in
local refinement: (1) We transform each tree stem observation to the world coordinate
frame according to the globally aligned state vector we optimized in the previous section.
(2) We associate the observations corresponding to an individual tree stem position in the
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global map. (3) We optimize for a new configuration of the state that minimizes both the
error functions from the previous section and an additional error function representing the
discrepancy between observations of tree stems and their associated global position.

3.2.1. Graph Augmentation

Tree stems are detected in each frame using the convolutional neural network (CNN)
object detector outlined in [59]. The input image to the network is resized to a resolution of
128 columns and 352 rows for real-time performance. We also detect the ground plane and
breast height using the RANSAC-based algorithm presented in [60]. For each bounding
box predicted by the CNN object detector, we extract the image coordinate, where the
center-line of the bounding box along the u-axis of the image intersects the ground plane
positioned at breast height. A disparity value is assigned to this image coordinate using
Equation (5) in [59]. Using the inverse projection matrix and the disparity assignment, we
project the image coordinate to R3. We represent a tree stem observation in the camera
coordinate frame of the ith camera pose as ziq = (x, y)T, where x and y correspond to the
back-projected image coordinate along the x and z axes of the camera coordinate frame.
The index q ∈ Zi where Zi is a set of indices denoting the observations of stems from
the ith camera. Thus, |Zi| is the number of tree stem observations in camera i and |Z| is
the number of camera poses in the graph. We use the notation (i, q) ∈ Z to index the qth

observation in camera i.
Recalling that a camera pose in the globally aligned state vector is represented as

v̂i =
(
x̂, ŷ, θ̂

)T
, we can transform the observations from the camera coordinate frame to the

world frame with

ẑiq = R(θ̂i)ziq + t̂i , ∀(i, q) ∈ Z . (48)

Given all tree stem observations in the global coordinate frame, we perform data association
by clustering spatially similar observations. We use the density-based spatial clustering of
applications with the noise (DBSCAN) algorithm [61] to cluster the observations. DBSCAN
takes two parameters and a distance function. For the distance function, we simply use the
Euclidean distance. The two parameters correspond to the search radius and the minimum
number of points required for a cluster. We use a search radius of 1 m and 10 as the
minimum number of points in a cluster. The algorithm yields a label for each observation
that specifies to which cluster observation ẑiq belongs. A label equal to zero denotes an
outlier, i.e., an observation that does not belong to any cluster. We denote the set of unique
labels as L and use the correspondence setM to specify that observation ẑiq is assigned to
label ` ∈ L. The notation ((i, q), `) ∈ M is used to denote that observation ẑiq is assigned
to cluster `.

For each cluster of tree stem observations, we compute the center of the clusters by

m` =
1

∑ 1`
∑

(i,q)∈Z
1`ẑiq , ∀` ∈ L , (49)

where m` = (x, y)T is the center of the cluster in the global coordinate frame, and the
notation 1` takes 1 when the observation ẑiq is assigned to cluster ` and zero otherwise.
Given the cluster centers we extend our state vector as

ŝ =
(

v̂Ti , v̂T2 , . . . , v̂Tn , mT
1 , mT

2 , . . . , mT
`

)
. (50)

Note that we omitted the global orientation parameter. We can reconcile this in the Hessian
matrix and gradient vector by removing the first row and column in the Hessian and the
first row in the gradient vector, and redefining Dik as (I2, 0). See Figure 4 for a graphical
illustration of the augmented graph.
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Figure 4. Graphical model of local refinement. Circles denote nodes (vertices) and lines denote edges
(constraints). Odometry nodes are represented as v, GPS nodes as g, and tree stem positions as m.

3.2.2. Refinement

In order to find an optimal configuration of the new state vector, we must define
an error function corresponding to the expected tree stem location that we initialized by
computing the cluster centers. The error is simply the difference between the expected
position of the stem m` and the observation ẑiq. Since the observations in the global
coordinate frame are subject to change during optimization, we will define the error
functions on the observations from the coordinate frame of the corresponding camera,
i.e., ziq, as we did with the error functions defined in the previous section. Thus, the error
function is defined as

ri`(v̂i, m`) = R(θ̂i)
T(m` − t̂i

)
− ziq , (51)

which leads to an additional term in the objective function,

ε(ŝ) = ∑
ij

rTij Qijrij + ∑
(i,k)∈C

rTikQkrik + ∑
((i,q),`)∈M

rTi`Qiqri` . (52)

The matrix Qiq is the information matrix for the qth observation in camera i. Since the
information matrix in the inverse of the covariance matrix, we can define Qiq in terms of the
expected measurement noise of the sensor. As we back projected the detected stem to the
camera coordinate frame using parameters from the stereo camera, the information matrix
will, in general, have relatively small values for stems detected far from the camera rig.

We proceed in the same manner as we did in the previous section by linearizing the
error function and constructing the Jacobian to compute the Hessian matrix and gradient
vector. The partial derivatives of the new error function can be written as

Ei` =
∂ri`
∂v̂i

∣∣∣∣
s=ŝ

=
(
−R(θ̂i)

∂R(θ̂i)
T

∂θ̂i
(m` − t̂i)

)
, (53a)

Fi` =
∂ri`
∂m`

∣∣∣∣
s=ŝ

= R(θ̂i) . (53b)

Ei` is a 2× 3 matrix and Fi` is a 2× 2 matrix. These definitions can be used directly to
compute the blocks with the sparse Hessian matrix,

Hi` =



. . .
ET

i`QiqEi` . . . ET
i`QiqFi`

...
. . .

...
FTi`QiqFi`

. . .


, (54)
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where the Hessian matrix is now a (1 + 3n + 2|L|)× (1 + 3n + 2|L|) matrix. Similarly, the
entries to the gradient vector are

bi` =



...
ET

i`Qiqri`
...

FTi`Qiqri`
...


(55)

The complete linear system is constructed by summing the Hessian matrices and gradient
vectors for all the tree stem observations and adding them to the other Hessians and
gradient vectors defined in Equation (45). Again, the first row and column of the Hessian,
as well as the first row in the gradient vector, are removed to account for the omission
of the global orientation parameter. We solve the linear system, (H + λI)∆s = −b, using
sparse Cholesky factorization and update the state vector by ŝ ← ∆s. As we did for
global alignment, we terminate the algorithm when ∆s is less than some predetermined
convergence threshold.

4. Analysis and Discussion

To test VO and the localization and mapping algorithms outlined above, we acquired a
video sequence of a 1115 m path through a sparse ponderosa pine (Pinus ponderosa Douglas
ex Lawson) forest in Western Montana. The video was captured by walking a hand-held
12 cm baseline ZED stereo camera [62] through the forest. The camera was operated at
10 frames per second and VGA resolution (480 × 640). Mounted on top of the camera field
monitor was an antenna connected to a GlobalTop FGPMMOPA6H GPS module [63] that
was queried for a GPS coordinate reading and a PDOP value after each video frame capture.
The GPS coordinates and video frames were stored on an embedded backpack computer.
Figure 5a shows the GPS coordinate readings projected on the UTM coordinate system after
translating the position track by subtracting the first GPS coordinate from all coordinates.
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Figure 5. GPS position track projected on a UTM coordinate system (a). VO position track (b). The
blue square denotes the starting position and the red triangle denotes the end position.

We estimated camera egomotion using the direct VO algorithm presented in Section 2.
We used a camera resolution of 240 × 320 to estimate egomotion and a 25% gradient
magnitude threshold during pixel selection. Frame-to-frame egomotion parameters were
composed to construct an odometry track using Equation (28). Figure 5b shows the visual
odometry position track after converting the translation components of the egomotion
parameters to meters. Figure 6 shows the GPS track (black line) and the optimized VO track
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after global alignment and local refinement (red line). The blue dashed line in Figure 6
shows the VO track after only applying the optimized global orientation parameter. As the
figure suggests, the VO position track, although locally consistent, is subject to drift after
approximately 300 m.
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Figure 6. GPS position track denoted by the black solid line. Optimized position track denoted by the
red solid line. VO track rotated by the global orientation parameter denoted by the blue dashed line.

4.1. Localization

In this section, we demonstrate the performance of GPS and VO integrated localization
under various scenarios of degraded and intermittent GPS reception. We refer to the
optimized position track shown in Figure 6 (red line) as the ground truth position track.
We acknowledge that this track has not actually been ground truthed with survey grade
equipment; however, this track is deemed optimal, given the available data.

4.1.1. Degraded GPS Reception

We simulated degraded GPS reception by adding zero mean Gaussian noise with a
standard deviation of 5 m to each observed GPS coordinate. The incremental update to the
state vector and the current estimate of the state converged after 15 LM iterations. Figure 7
shows six snapshots during optimization. The global orientation parameter converged
after the 6th iteration. Figure 8 shows the converged path after global alignment and
local refinement with a root mean squared error (RMSE) of less than 0.1 m compared to
the ground truth position track. This suggests that, as long as GPS errors are Gaussian
distributed, we can expect accurate position tracking.

We also tested robustness to non-Gaussian distributed noise in GPS readings. We ran-
domly selected 5% of the coordinates from the GPS track and added uniformly distributed
noise with a range of 0 to 200 m. Figure 9 shows the converged path after global alignment
and local refinement with non-Gaussian distributed noise in GPS coordinates plotted over
the ground truth path (RMSE < 0.1 m). According to this result, the algorithm is insensitive
to GPS coordinate outliers.
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Figure 7. Global alignment with degraded GPS reception. Each subfigure shows a snapshot
during optimization.
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Figure 8. Converged globally aligned path with degraded GPS reception.
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Figure 9. Converged globally aligned path with non-Gaussian GPS errors.

4.1.2. Intermittent GPS Reception

When GPS is used under an extremely dense forest canopy, reception might only be
intermittently reliable when the receiver is stationary for long periods of time or when
the receiver crosses openings in the canopy. We simulated this scenario by extracting
12 coordinates from the GPS track; we extracted the starting position, ending position and
randomly selected 10 coordinates along 100 m intervals from the track. Figure 10 shows
six snapshots during optimization with 12 intermittent GPS coordinate readings. The
algorithm converged after 21 iterations. Following local refinement, the optimized path
had a RMSE of 2.7 m compared to the ground truth position track in Figure 11. This is an
important application of the proposed algorithm in situations where GPS reception is only
available intermittently.
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Figure 10. Global alignment with intermittent GPS reception. Each subfigure is a snapshot
during optimization.
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Figure 11. Converged globally aligned path with intermittent GPS reception.

4.2. Mapping

In order to generate a stem map, we performed global alignment using all the co-
ordinates from the GPS track and the VO path shown in Figure 5a,b. Figure 12 shows
the result after clustering the observed tree stem position. The black dots in the figure
denote the cluster centers, and the ellipses around each center show the covariance matrix
of the clusters at four standard deviations. There was a total of 6205 tree stem observations
and 140 clusters, i.e., individual tree stems. Figure 13 shows the optimized cluster centers,
i.e., tree stem positions, and the covariance structure of the observations at four standard
deviations. Local refinement converged after nine iterations. Note that the ellipses repre-
senting the covariances of the clusters are smaller after local refinement. This is a result of
simultaneously optimizing the position track and the cluster centers.

To test the accuracy of the stem map generated from the local refinement step, we
collected a ground truth stem map of the 12 acre forest, from which we acquired the video
and GPS track. We obtained global coordinates for each individual tree in the stand using
a TruePulse 360B laser range finder and a 13-bit BEI industrial rotary encoder mounted
on a tripod. We installed a reflector target near the center of the stand, at which a GPS
coordinate was acquired using a mapping grade receiver. We mapped subsections of the
stand by first aligning the laser and encoder to north, using the appropriate declination
for the area, then recorded the distance and angle to the target to globally localize the plot
center. We recorded the distance and angle to each individual tree within view from the
plot center. We repeated this process moving clockwise around the reflector target mapping
small subsections of the stand until the entire stand was mapped.

Figure 14 shows the ground truth stem map (green triangles), the predicted tree
stem position from the camera (red circles), and the optimized position track (yellow
line) superimposed on an aerial photograph of the stand. We manually associated each
observed tree stem position from the camera with its corresponding ground truth tree
stem. Among the 140 predicted tree stem positions, we classified 2 observations as false
positives, i.e., predicted tree stems that correspond to a tree in the aerial photograph that
were not recorded during the collection of the ground truth stem map, and 7 tree stems
as duplicate observations, i.e., observed tree stems that belong to the same ground truth
stem. For all predicted and ground truth stem correspondences (n = 140), we calculated
a RMSE of 2.16 m. This is a 46% improvement over the best-case expected accuracy of a
consumer-grade GPS device under forest canopy (4 m).
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Figure 12. Tree stem position averages (black dots), tree stem position covariances (black ellipses),
and pose track (red line) before local refinement
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Figure 13. Tree stem position averages (black dots), tree stem position covariances (black ellipses),
and pose track (red line) after local refinement.

VO+GPS track
GT map
VO+GPS map

Figure 14. Ground truth tree stem positions and estimated tree stems positions superimposed on
an aerial photograph of the 12 ac forest stand. Green triangles denote ground truth stem positions,
red circles show the estimated stem position from the camera, the yellow line denotes the optimized
position track, and the blue lines show association between observed and estimated tree positions.



Sensors 2023, 23, 7043 25 of 30

5. Conclusions

In this paper, we presented a real-time algorithm for VO estimation and a novel
method for integrating VO and a vision-based tree stem detection system with GNSS
positioning to generate accurate stem maps. Our approach is based on existing and widely
applied optimization techniques, i.e., GN and LM non-linear least squares, which provide
efficient solution procedures to the optimization problems formulated in this paper.

Although GNSS positioning is used to maintain a globally consistent position track,
the heading of the camera is subject to drift; global positioning cannot be used to infer
the heading of the camera. This issue did not appear to be significant in our dataset;
however, we expect that camera heading will eventually drift since it is unconstrained
and only estimated from visual egomotion. This issue can be resolved by incorporating a
global direction sensor, i.e., magnetometer, to maintain a globally consistent heading. The
inclusion of directional data in the global alignment optimization step requires minimal
modifications to the presented algorithm. Since electronic direction sensors are relatively
inexpensive, we recommend using such a sensor for large-scale mapping applications.

The successful integration of real-time localization and mapping into forestry prac-
tices presents new opportunities for enhancing decision-making processes and imple-
menting complex silvicultural prescriptions. This research provides a practical, low-cost
solution that addresses the need for accurate and efficient positioning and mapping in
forested environments.
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Appendix A

In this appendix, we provide an overview of the mathematical foundations for special
orthogonal and special Euclidean Lie groups. We discuss the closed-form exponential
maps and logarithm maps for these groups, as well as their corresponding Lie algebras.
This section aims to offer a convenient reference for the reader, summarizing essential
concepts and formulas related to these topics, even though these derivations might exist
in textbooks.

The special orthogonal Lie groups SO(2) and SO(3) represent rotations in 2 and
3 dimensions, respectively. In SO(2), we represent a transformation by a 2× 2 matrix,
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R ∈ SO(2), and its Lie algebra by θ ∈ so(2). The closed-form exponential map that converts
the Lie algebra, so(2), to the Lie group, SO(2), is given by

R = exp(θ×) =
(

cos θ − sin θ
sin θ cos θ

)
∈ SO(2) , (A1)

where θ× denotes a skew symmetric matrix generated from θ. The inverse of the exponential
map is given by the logarithm map that brings the transformation matrix back to the algebra,

θ = ln(R) = tan−1 r21

r11
∈ so(2) , (A2)

where r21 and r11 are entries in R. In practice the tan−1 function is replaced by the two-
argument inverse tangent function arctan2(y, x) for appropriate quadrant checking.

In the case of 3-dimensional rotations, we represent the transformation as a 3× 3
matrix R ∈ SO(3), and its algebra as ω ∈ so(3), where ω = (α, β, γ)T is a vector encoding
the rotation angles about the x, y and z-axes. The closed-form exponential is given by

R = exp(ω×) = I +
(

sin ϑ

ϑ

)
ω× +

(
1− cos ϑ

ϑ2

)
ω2
× ∈ SO(3) , (A3)

where ϑ =
√

ωTω and ω× is defined as

ω× =

 0 −γ β
γ 0 −α
−β α 0

 . (A4)

Equation (A3) is Rodrigues’ formula for rotating a vector in space, given an axis and a
rotation angle. The logarithm map that brings the transformation matrix back to the algebra
is given by

ϑ = cos−1 Tr(R)− 1
2

, (A5a)

ω× = ln(R) =
ϑ

2 sin ϑ

(
R−RT

)
∈ so(3) . (A5b)

The algebra is taken from the off-diagonal components of ω×, i.e., skew symmetric matrix
to vector. The notation Tr(·) is the trace function of a square matrix, which returns the sum
of the elements along the diagonal.

In both the 2D and 3D cases, the column vectors of the matrices representing the
transformations are orthogonal. Thus, the inverse is equivalent to the matrix transpose,

R−1 = RT ∈ SO(2) , (A6a)

R−1 = RT ∈ SO(3) . (A6b)

Rigid transformations in 2 and 3 dimensions are represented by the special Euclidean
Lie groups SE(2) and SE(3). By definition, these groups include rotations from the special
orthogonal group described in the previous section,

SE(2) def
= SO(2)×R2 , (A7a)

SE(3) def
= SO(3)×R3 . (A7b)

A rigid transformation in 2D takes the form

T =

(
R ∈ SO(2) t ∈ R2

0T 1

)
∈ SE(2) . (A8)
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This matrix is homogeneous for compatibility with inversion and composition operations.
We represent the parameter space, i.e., the Lie algebra, as ξ = (θ, x, y)T = (θ, u)T ∈ se(2).
The exponential map is given in closed form as

T = exp(ξ̂) =
(

exp(θ×) Vu
0T 1

)
=

(
R t
0T 1

)
∈ SE(2) (A9)

where exp(θ×) is defined in Equation (A1) and

V =
1
θ

(
sin θ −(1− cos θ)

1− cos θ sin θ

)
. (A10)

The logarithm map that brings the transformation matrix back to the algebra is given by

ξ =

(
θ

V−1t

)
∈ se(2) , (A11)

where θ = ln(R) is defined in Equation (A2) and V−1 is defined as

ϑ =
sin θ

θ
, (A12a)

φ =
1− cos θ

θ
, (A12b)

V−1 =
1

ϑ2 + φ2

(
ϑ φ
−φ ϑ

)
. (A12c)

Rigid transformations in 3-dimensional space are written similarly to our definition
for SE(2) but with 3D rotation matrices and 3-vector translations,

T =

(
R ∈ SO(3) t ∈ R3

0T 1

)
∈ SE(3) . (A13)

We use the variable ξ to represent the algebra, ξ = (ω, u)T ∈ se(3), where ω = (α, β, γ)T

and u = (x, y, z)T . The exponential map again can be computed in closed form,

exp(ξ̂) = exp
(

ω×
u

)
=

(
R Vu
0T 1

)
∈ SE(3) , (A14)

where R, defined in Equation (A3) is restated below for convenience, and V are given by

θ =
√

ωTω , (A15a)

ϑ =
sin θ

θ
, (A15b)

φ =
1− cos θ

θ2 , (A15c)

ψ =
1− ϑ

θ2 , (A15d)

R = I + ϑω× + φω2
× , (A15e)

V = I + φω× + ψω2
× . (A15f)

Finally, the logarithm map is written as

ξ = ln(T) =
(

ln(R)
V−1t

)
∈ se(3) . (A16)
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The logarithm map of the rotation part is given by Equation (A5), and the inverse of V is
defined as

V−1 = I +
1
2

ω× +
1
θ2

(
1− ϑ

2φ

)
ω2
× . (A17)

Composition of two transformation is equivalent for SE(2) and SE(3),

T1 ◦ T2 =

(
R1R2 R1t2 + t1

0T 1

)
, (A18)

and inverting a transformation is given by

T−1 =

(
RT −RTt
0T 1

)
. (A19)

As a result, composition and inversion in a single operation is written as

T1 ◦ T−12 =

(
R1RT

2 R1(−RT
2 t2) + t1

0T 1

)
. (A20)
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