Wearable and Noninvasive Device for Integral Congestive Heart Failure Management in the IoMT Paradigm
Abstract
:1. Introduction
Scope and Purpose of the Presented Work
2. Electrical Bioimpedance Technology
3. Materials and Methods
3.1. Multi-Modal and Wearable Bioimpedance-Based Sensing Device
3.2. Bioimpedance Sensor (AFE)
3.3. Wireless Bioimpedance Device
4. Results
4.1. AFE Experimental Performance
4.2. Wireless Bioimpedance Device Experimental Performance
4.3. Hemodynamic Assessment: A Monitor Patch for Cardiac Output
5. Discussion
5.1. Device Upgrades
5.2. Study Limitations
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhaou, I.B.; Ebrahimi, M.; Ammar, M.B.; Bouattour, G.; Kanoun, O. Edge devices for internet of medical things: Technologies, techniques, and implementation. Electronics 2021, 10, 2104. [Google Scholar] [CrossRef]
- Nasr, M.; Islam, M.M.; Shehata, S.; Karray, F.; Quintana, Y. Smart healthcare in the age of AI: Recent advances, challenges, and future prospects. IEEE Access 2021, 9, 145248–145270. [Google Scholar] [CrossRef]
- Fouad, H.; Hassanein, A.S.; Soliman, A.M.; Al-Feel, H. Analyzing patient health information based on IoT sensor with AI for improving patient assistance in the future direction. Measurement 2020, 159, 107757:1–107757:11. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- An EU Action Plan for Better Cardiovascular Health. Available online: https://www.medtecheurope.org/resource-library/an-eu-action-plan-for-better-cardiovascular-health (accessed on 7 November 2022).
- Ning, W.; Li, S.; Wei, D.; Guo, L.Z.; Chen, H. Automatic detection of congestive heart failure based on a hybrid deep learning algorithm in the internet of medical things. IEEE Internet Things J. 2021, 8, 12550–12558. [Google Scholar] [CrossRef]
- Nguyen, L.S.; Squara, P. Non-invasive monitoring of cardiac output in critical care medicine. Front. Med. 2017, 4, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimnes, S.; Martinsen, Ø.G. Bioimpedance and Bioelectricity Basics, 3rd ed.; Academic Press: London, UK, 2015; ISBN 978-0124114708. [Google Scholar]
- Naranjo-Hernández, D.; Reina-Tosina, J.; Min, M. Fundamentals, Recent Advances, and Future Challenges in Bioimpedance Devices for Healthcare Applications. J. Sens. 2019, 2019, 9210258. [Google Scholar] [CrossRef] [Green Version]
- Kassanos, P. Bioimpedance Sensors: A Tutorial. IEEE Sens. J. 2021, 21, 22190–22219. [Google Scholar] [CrossRef]
- Miklavčič, D.; Pavšelj, N.; Hart, F.X. Electric Properties of Tissues. In Wiley Encyclopedia of Biomedical Engineering; Akay, M., Ed.; Wiley: Hoboken, NJ, USA, 2006; ISBN 9780471740360. [Google Scholar]
- Seoane, F.; Ferreira, J.; Buendia, R.; Lindecrantz, K. Adaptive frequency distribution for electrical bioimpedance spectroscopy measurements. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 562–565. [Google Scholar] [CrossRef]
- Cybulski, G.; Strasz, A.; Niewiadomski, W.; Gąsiorowska, A. Impedance cardiography: Recent advancements. Cardiol. J. 2012, 19, 550–556. [Google Scholar] [CrossRef] [Green Version]
- Anand, G.; Yu, Y.; Lowe, A.; Kalra, A. Bioimpedance analysis as a tool for hemodynamic monitoring: overview, methods and challenges. Physiol. Meas. 2021, 42, 03TR01. [Google Scholar] [CrossRef]
- Bernstein, D.P.; Lemmens, H.J.M. Stroke volume equation for impedance cardiography. Med. Biol. Eng. Comput. 2005, 43, 443–450. [Google Scholar] [CrossRef]
- Weyer, S.; Zink, M.D.; Wartzek, T.; Leicht, L.; Mischke, K.; Vollmer, T.; Leonhardt, S. Bioelectrical impedance spectroscopy as a fluid management system in heart failure. Physiol. Meas. 2014, 35, 917–930. [Google Scholar] [CrossRef] [PubMed]
- Groenendaal, W.; Lee, S.; van Hoof, C. Wearable Bioimpedance Monitoring: Viewpoint for Application in Chronic Conditions. JMIR Biomed. Eng. 2021, 6, e22911. [Google Scholar] [CrossRef]
- Vela, L.M.; Kwon, H.; Rutkove, S.B.; Sanchez, B. Standalone IoT Bioimpedance Device Supporting Real-Time Online Data Access. IEEE Internet Things J. 2019, 6, 9545–9554. [Google Scholar] [CrossRef]
- Singh, N.G.; Bhavya, G.; Nagaraja, P.; Ragavendran, S.; Sathish, N.; Manjunath, N.; Kumar, K.A.; Nayak, V.B. Comparison of continuous cardiac output monitoring derived from regional impedance cardiography with continuous thermodilution technique in cardiac surgical patients. Ann. Card. Anaesth. 2020, 23, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, G.; Moscucci, F.; Corrao, A.; Carnovale, M.; Di Diego, I.; Lospinuso, I.; Caltabiano, C.; Mezzadri, M.; Rossi, P.; Magrì, D. Noninvasive Hemodynamic Monitoring in Advanced Heart Failure Patients: New Approach for Target Treatments. Biomedicines 2022, 10, 2407. [Google Scholar] [CrossRef] [PubMed]
- Singhal, A.; Cowie, M.R. The Role of Wearables in Heart Failure. Curr. Hear. Fail. Rep. 2020, 17, 125–132. [Google Scholar] [CrossRef]
- ToSense Home Page. Available online: https://healthtecsol.com/tosense-cova2/ (accessed on 1 March 2023).
- Zoll Medical Home Page. Available online: https://cardiacdiagnostics.zoll.com/products/heart-failure-arrhythmia-management-system (accessed on 1 March 2023).
- PhysioFlow Home Page. Available online: https://www.physioflow.com/products_physioflow.php (accessed on 2 March 2023).
- Pallás-Areny, R.; Webster, J.G. Bioelectric impedance measurements using synchronous sampling. IEEE Trans. Biomed. Eng. 1993, 40, 824–829. [Google Scholar] [CrossRef]
- Shin, S.; Jung, Y.; Kweon, S.-J.; Lee, E.; Park, J.-H.; Kim, J.; Yoo, H.-J.; Je, M. Design of Reconfigurable Time-to-Digital Converter Based on Cascaded Time Interpolators for Electrical Impedance Spectroscopy. Sensors 2020, 20, 1889. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Jiang, D.; Habibollahi, M.; Almarri, N.; Demosthenous, A. Time Stamp—A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 997–1007. [Google Scholar] [CrossRef]
- Hedayatipour, A.; Aslanzadeh, S.; Hesari, S.H.; Haque, M.A.; McFarlane, N. A Wearable CMOS Impedance to Frequency Sensing System for Non-Invasive Impedance Measurements. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1108–1121. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, J.; Yu, G.; Niu, F.; He, P. Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy. Physiol. Meas. 2006, 27, 1293–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Atitallah, B.; Kallel, A.Y.; Bouchaala, D.; Derbel, N.; Kanoun, O. Comparative Study of Measurement Methods for Embedded Bioimpedance Spectroscopy Systems. Sensors 2022, 22, 5801. [Google Scholar] [CrossRef] [PubMed]
- Kassanos, P.; Triantis, I.F.; Demosthenous, A. A CMOS Magnitude/Phase Measurement Chip for Impedance Spectroscopy. IEEE Sens. J. 2013, 13, 2229–2236. [Google Scholar] [CrossRef]
- Kweon, S.-J.; Shin, S.; Park, J.-H.; Suh, J.-H.; Yoo, H.-J. A CMOS Low-Power Polar Demodulator for Electrical Bioimpedance Spectroscopy Using Adaptive Self-Sampling Schemes. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS 2016), Shanghai, China, 17–19 October 2016; pp. 284–287. [Google Scholar]
- Cheon, S.-I.; Kweon, S.-J.; Kim, Y.; Koo, J.; Ha, S.; Je, M. A Polar-Demodulation-Based Impedance-Measurement IC Using Frequency-Shift Technique with Low Power Consumption and Wide Frequency Range. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 1210–1220. [Google Scholar] [CrossRef]
- Ramos, J.; Ausín, J.L.; Duque-Carrillo, J.F.; Torelli, G. A 1-MHz Analog Front-End for a Wireless Bioelectrical Impedance Sensor. In Proceedings of the 6th Conference on Ph.D. Research in Microelectronics & Electronics (PRIME 2010), Berlin, Germany, 18–21 July 2010; pp. 1–4. [Google Scholar]
- Ramos, J.; Ausín, J.; Torelli, G.; Duque-Carrillo, J. Design tradeoffs for sub-mW CMOS biomedical limiting amplifiers. Microelectron. J. 2013, 44, 904–911. [Google Scholar] [CrossRef]
- Shaterian, M.; Abrishamifar, A.; Shamsi, H. Analysis and design of the true piecewise approximation logarithmic amplifiers. Analog. Integr. Circuits Signal Process. 2012, 72, 193–203. [Google Scholar] [CrossRef]
- CC13x0, CC26x0 SimpleLinkTM Wireless MCU; Texas Instruments: Dallas, TX, USA, 2020.
- Couture, E.J.; Laferrière-Langlois, P.; Denault, A. New Developments in Continuous Hemodynamic Monitoring of the Critically Ill Patient. Can. J. Cardiol. 2023, 39, 432–443. [Google Scholar] [CrossRef]
- Tronstad, C.; Høgetveit, J.O.; Elvebakk, O.; Kalvøy, H. Age-related differences in the morphology of the impedance cardiography signal. J. Electr. Bioimpedance 2019, 10, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Passing, H.; Bablok, W. A New Biometrical Procedure for Testing the Equality of Measurements from Two Different Analytical Methods. Application of linear regression procedures for method comparison studies in Clinical Chemistry, Part I. J. Clin. Chem. Clin. Biochem. 1983, 21, 709–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passing, H.; Bablok, W. Comparison of Several Regression Procedures for Method Comparison Studies and Determination of Sample Sizes Application of linear regression procedures for method comparison studies in Clinical Chemistry, Part II. Clin. Chem. Lab. Med. 1984, 22, 431–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, M.; Klum, M.; Pielmus, A.-G.; Liebrenz, F.; Mann, S.; Tigges, T.; Orglmeister, R. GRU Neural Network Improved Bioimpedance Based Stroke Volume Estimation during Ergometry Stress Test. Sensors 2022, 22, 7883. [Google Scholar] [CrossRef] [PubMed]
Parameters | [31] | [32] * | [33] | This Work |
---|---|---|---|---|
Measurement Method | Simplified MRPDD | Polar demodulation | Polar demodulation | MRPDD |
CMOS process (μm) | 0.35 | 0.25 | 0.18 | 0.35 |
Supply Voltage (V) | ±2.5 | 2.5 | 1.8 | 2 |
Current Consumption | 4 mA (1) | N/A | N/A | 0.75 mA (1) |
Power consumption | 21 mW | <10.3 mW | 0.756 mW | 1.5 mW |
Frequency Range (Hz) | 100–100 k | 1 k–2 M | 100–10 M | 1 k–1 M |
Measurement Range | ≤5 kΩ, ≤70° | N/A | ≤7 kΩ, ≤70° | ≤1.2 kΩ (2), ≤80° |
Accuracy Error | Mag.: <3.5% Phase: <3.6° | Mag.: <1% Phase: <1.3° | Mag.: <1.1% Phase: <1.9° | Mag.: <1.2% Phase: <1.5% |
Active area (mm2) | 0.4 | 0.48 | 1.95 | 0.3 |
FoM (kHz/mW/area) | 11.9 | 404 | 6783 | 2222 |
Measuring technique | Tetra-polar/MRPDD | |
Bioimpedance analysis types | Time domain [ZX(t)] | |
Spectroscopy [ZX(ω)] | ||
Excitation current (Sinusoidal) | Amplitude | 5 µA–1 mA |
Frequency | 1 kHz–1 MHz | |
Measurement ranges | Magnitude | 1 Ω–1.2 kΩ |
Phase angle | 5°–80° | |
Resolution | 12 b (10-bit ENOB) | |
Communication protocol | Bluetooth Low Energy 4.0 | |
Power supply | 3-V single supply | |
Power consumption | 1.65 mW (idle mode) | |
27 mW (transmit/receive mode) |
Noninvasive Method | HR (beat/min) | SV (mL/beat) | CO (mL/min) |
---|---|---|---|
Doppler Echocardiography | 79 | 52.5 | 4.15 |
Proposed Bioimpedance Device | 76.5 | 52.9 | 4.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausín, J.L.; Ramos, J.; Lorido, A.; Molina, P.; Duque-Carrillo, J.F. Wearable and Noninvasive Device for Integral Congestive Heart Failure Management in the IoMT Paradigm. Sensors 2023, 23, 7055. https://doi.org/10.3390/s23167055
Ausín JL, Ramos J, Lorido A, Molina P, Duque-Carrillo JF. Wearable and Noninvasive Device for Integral Congestive Heart Failure Management in the IoMT Paradigm. Sensors. 2023; 23(16):7055. https://doi.org/10.3390/s23167055
Chicago/Turabian StyleAusín, José L., Javier Ramos, Antonio Lorido, Pedro Molina, and J. Francisco Duque-Carrillo. 2023. "Wearable and Noninvasive Device for Integral Congestive Heart Failure Management in the IoMT Paradigm" Sensors 23, no. 16: 7055. https://doi.org/10.3390/s23167055
APA StyleAusín, J. L., Ramos, J., Lorido, A., Molina, P., & Duque-Carrillo, J. F. (2023). Wearable and Noninvasive Device for Integral Congestive Heart Failure Management in the IoMT Paradigm. Sensors, 23(16), 7055. https://doi.org/10.3390/s23167055