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Abstract: Fresh dates have a limited shelf life and are susceptible to spoilage, which can lead to
economic losses for producers and suppliers. The problem of accurate shelf life estimation for fresh
dates is essential for various stakeholders involved in the production, supply, and consumption of
dates. Modified atmosphere packaging (MAP) is one of the essential methods that improves the
quality and increases the shelf life of fresh dates by reducing the rate of ripening. Therefore, this study
aims to apply fast and cost-effective non-destructive techniques based on machine learning (ML) to
predict and estimate the shelf life of stored fresh date fruits under different conditions. Predicting
and estimating the shelf life of stored date fruits is essential for scheduling them for consumption at
the right time in the supply chain to benefit from the nutritional advantages of fresh dates. The study
observed the physicochemical attributes of fresh date fruits, including moisture content, total soluble
solids, sugar content, tannin content, pH, and firmness, during storage in a vacuum and MAP at 5 and
24 ◦C every 7 days to determine the shelf life using a non-destructive approach. TinyML-compatible
regression models were employed to predict the stages of fruit development during the storage
period. The decrease in the shelf life of the fruits begins when they transition from the Khalal stage to
the Rutab stage, and the shelf life ends when they start to spoil or ripen to the Tamr stage. Low-cost
Visible–Near–Infrared (VisNIR) spectral sensors (AS7265x—multi-spectral) were used to capture the
internal physicochemical attributes of the fresh fruit. Regression models were employed for shelf
life estimation. The findings indicated that vacuum and modified atmosphere packaging with 20%
CO2 and N balance efficiently increased the shelf life of the stored fresh fruit to 53 days and 44 days,
respectively, when maintained at 5 ◦C. However, the shelf life decreased to 44 and 23 days when the
vacuum and modified atmosphere packaging with 20% CO2 and N balance were maintained at room
temperature (24 ◦C). Edge Impulse supports the training and deployment of models on low-cost
microcontrollers, which can be used to predict real-time estimations of the shelf life of fresh dates
using TinyML sensors.

Keywords: artificial intelligence (AI); TinyML; edge computing; modified atmosphere; prediction
models; Short-Wave Near-Infrared; food supply chain; regression models

1. Introduction

Substantial losses occur within the food product supply chain, especially in fruits and
vegetables, from when they are cultivated until they reach the consumer. A considerable
quantity of food is produced but is not consumed due to these losses in the supply chain.
This segment of postharvest losses is approximately 25–30% [1]. Roughly 14 percent of the
world’s food is lost between harvest and retail, and another 17 percent is wasted in retail
and at the consumption level. The 2030 Agenda for Sustainable Development, specifically
SDG 12, Target 12.3, aims to halve per capita global food waste at the retail and consumer
levels and reduce food losses along production and supply chains [1].
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The date palm (Phoenix dactylifera L.) is one of the oldest fruit trees that grows widely
in the Middle East and North Africa. Dates are a key source of income and a staple food
for locals in many regions where they are cultivated. They have also played an essential
role in those countries’ socioeconomic and environmental conditions [2]. Consequently,
the demand for date-importing countries like India, Germany, the United Kingdom, the
USA, the Netherlands, Canada, Spain, Italy, Belgium, and Switzerland has increased
significantly. Given the importance of the date palm trade on a local and global scale,
ensuring a continuous supply in the market is vital [3].

A total of 8.46 million tons of date fruit are produced annually worldwide. In 2022,
Saudi Arabia exported 1.54 million tonnes. Date fruit is renowned for its high nutritional
value, and clinical studies have proven that consuming two to three servings of date fruit
per day is beneficial for patients with Type-2 diabetes due to its low Glycemic Index (GI).
Consuming foods with a GI index of less than 50 is recommended. Date varieties such as
Khalas cv., Hilali, Sukkary, Sagai, and Shaqra have a GI of less than 50 and are considered
safe to consume when they reach the mature stage. Fresh dates are suggested as a healthy
and nutritious snack because they have a lower calorie and sugar content compared with
dried dates (Tamr). The GI of fresh fruits is 2–3 times lower than that of mature dates,
and they are also rich in calcium and other nutrients. However, all varieties of fresh dates
can be consumed without restrictions (regarding the number of servings per day that may
increase Glycemic levels) if consumed before reaching the mature stage. It is important
to note that the shelf life of fresh fruits is only 10–12 days before reaching maturity in an
uncontrolled environment [4–6].

Dates fruit is known for its great nutritional value, and it has been proven in a clinical
study that two to three servings of dates fruit per day are beneficial for patients with
diabetes (Type-2) because of their low Glycemic Index (GI). A GI index of less than 50 is
recommended for consumption [4]. The dates varieties, Khalas cv., Hilali, Sukkary, Sagai,
and Shaqra, have a GI of less than 50 and are very safe to consume at the mature stage. Fresh
dates are recommended as a healthy and nutritious snack due to their low calorie and sugar
content compared with dried dates (Tamr). The GI of fresh fruits is 2–3 order times less
than that of mature fruits and is rich in calcium apart from its nutritional content. However,
if consumed before the mature stage, all the fresh date varieties can be consumed without
restrictions (number of servings in a day, which will not increase GL-Glycemic Level).

Nonetheless, fresh date fruits exhibit seasonality and are available from July to Novem-
ber. Consequently, storing these fruits under appropriate conditions is imperative to en-
sure food security. The key objectives of fruit storage encompass preserving fruits for
consumption beyond their regular season, maintaining the quality of the food, slowing
down the decaying process, ensuring a steady supply to the market, and obtaining better
pricing [7–9].

The dates’ freshness and shelf life depend on preserving their physicochemical prop-
erties, including moisture content (MC), total soluble solids (TSS), firmness, pH, and water
activity (AW). However, the conventional methods of analyzing these properties and other
quality indicators in the fruit are time-consuming, labor-intensive, and damaging. Conse-
quently, the need for rapid and non-destructive testing of fruit quality has emerged as a
crucial area of research. Non-destructive techniques, such as spectroscopic and imaging
methods, have proven highly effective in food control. These analytical techniques offer
numerous advantages, including preserving samples, producing swift results, and conduct-
ing checks during production processes. As a result, they have been extensively studied
and utilized in the agro-food sector for a considerable period of time [10].

The most commonly widespread non-destructive techniques in the food industry are
indeed visual/Near-Infrared (NIR) spectroscopy, NIR spectroscopy (NIRs), and image and
multi/hyperspectral analysis [11]. The hyperspectral imaging technique to detect fungal
contamination of edible date fruits using Latent Discriminant Analysis and Quadratic
Discriminant Analysis was investigated in [12]. This work evaluates the possibility of an
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objective, fast, and non-destructive method to identify healthy and fungal-infected date
fruits. Four wavelengths (1120, 1300, 1610, and 1650 nm) were used for this study [12].

Visible (Vis; 400–750 nm) and near-infrared red (NIR; 750–2500 nm) region spec-
troscopy have been employed to evaluate the quality and internal attributes of fruits and
vegetables. Focusing specifically on “point” spectroscopy rather than hyperspectral imag-
ing, various non-destructive testing applications have been successfully concluded using
this approach [13]. Several researchers have used spectral bands (Visible, Short-Wave
Near-Infrared (SWNIR), NIR, and IR) to observe the reflectance properties to estimate the
quality or shelf life of various fruits such as Kesar mango [14], grapes [15], persimmon [16],
muskmelon [17], kiwi fruit [18], strawberry [19], Royal Gala [20], and pineapple [21].

The researchers [17,22–29] have put forth a collection of deep learning (DL) and
machine learning (ML) techniques to classify and grade the quality of date fruits. However,
these approaches predominantly rely on cloud services for training and inference, making
them unsuitable for edge computing. In contrast, edge artificial intelligence (AI) primarily
processes data locally, reducing internet data transfer and conserving significant bandwidth.
Moreover, edge computing devices are designed for highly efficient power consumption,
resulting in lower power requirements than cloud data centers. To meet the demands of
edge AI computing, we propose adopting lightweight AI models that can be deployed
on microcontrollers, a new paradigm of Edge AI computing referred to as Tiny Machine
Learning (TinyML). This approach satisfies all the requirements for edge AI computing
and enables efficient processing and classification of date fruit quality without relying on
resource-intensive cloud services [30,31].

Understanding the shelf life of perishable food products is essential for ensuring food
safety and quality and reducing food waste. Fresh dates have a limited shelf life and are
susceptible to spoilage, which can lead to economic losses for producers and suppliers. The
problem of accurate shelf life estimation for fresh dates is essential for various stakeholders
involved in the production, supply, and consumption of dates [32,33]. By addressing this
problem, we can enhance food safety, reduce waste, and improve the overall efficiency and
sustainability of the food industry. By addressing this problem and developing a reliable
methodology for estimating the shelf life of fresh dates, we aim to provide a practical
solution to enhance the quality control processes throughout the supply chain. This can
benefit producers, suppliers, and consumers by reducing food waste, improving product
quality, and ensuring that dates reach consumers at their peak freshness. Accurately
estimating shelf life also has broader implications for the food industry. It can enable better
inventory management, reduce losses, and optimize production and distribution processes.
Additionally, it contributes to overall sustainability efforts by minimizing food waste and
resource utilization.

This study investigates the integration of non-destructive techniques, machine learning
(ML) regression models, and packaging methods to assess and predict the shelf life of fresh
date fruits. While previous studies have investigated shelf life estimation using various
methods, this research focuses explicitly on date fruits. It introduces low-cost VisNIR
spectral sensors for non-destructive assessment of internal quality attributes. Additionally,
ML regression models are developed to predict the stages of fruit development and estimate
shelf life based on observed quality attribute data. Furthermore, the study explores the
effects of different packaging conditions, including modified atmosphere packaging and
vacuum packaging. By combining these elements, the research provides a comprehensive
approach that goes beyond previous efforts in the literature and offers new insights into
accurate shelf life estimation and preservation techniques for fresh date fruits.

The main contribution of the current study lies in applying non-destructive tech-
niques, machine learning (ML) regression models, and modified atmosphere packaging
(MAP) to estimate and predict the shelf life of fresh date fruits. In addition, the study
demonstrates the effectiveness of low-cost VisNIR spectral sensors for the non-destructive
assessment of internal quality attributes, enabling continuous monitoring of fruit quality
without sample destruction. The development of ML regression models enhances the
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accuracy of shelf life estimation by utilizing observed quality attribute data. Addition-
ally, the research highlights the benefits of MAP in extending the shelf life of date fruits.
These contributions provide valuable insights into optimizing fruit quality management
and decision-making for optimal freshness and nutritional benefits of fresh date fruits
throughout the supply chain.

TinyML delivers intelligence to low-memory and low-power tiny devices by enabling
machine learning. This research proposes a new lightweight model for fresh date fruit
shelf life estimation based on a low-cost, handy VIS/NIR range spectral sensor and CNN
architecture deployable on any Microcontroller supported by the Edge Impulse Platform.
The proposed model is trained and validated using the Edge Impulse cloud platform using
an in-house dataset.

The main objectives of the current study are the following:

1. Assess the physicochemical attributes of date fruits throughout their storage period in
various modified atmospheres and determine the shelf life for each storage condition.

2. Develop a low-cost, fast inference, and portable shelf life estimator using a TinyML-
assisted 18-channel spectrometer.

3. Develop real-time predictive regression models trained from Edge Impulse utilizing
the reflectance property to predict the shelf life of fresh dates.

4. Validate the results obtained using the developed predictive models against the
observed laboratory results.

The rest of the paper is structured as follows: First, we introduce the Materials and
Methods used in Section 2; Section 3 details the results and discussion. Section 4 concludes
the work and Section 5 suggests future work.

2. Materials and Methods
2.1. Sample Collection and Preparation

The date samples at the Khalal stage (Khalas cv.) were harvested from the Date Palm
Research Center of Excellence experimental farm, King Faisal University, Saudi Arabia
(25.26809 N, 49.70847 E).

The harvested fruit samples were cleaned, sorted, and washed immediately after
harvesting. Afterward, the samples were precooled at 24 ◦C in cold storage to be randomly
moved to storage treatments. Once the selected fruits were precooled, the samples of
approximately 250 g were placed into vacuum-sealed bags (150 × 200 mm) and in trays
with a single layer of modified atmosphere packaging (MAP) (35 × 135 × 185 mm). The
vacuum sealer (SH-6691, Swiss Home) was used to vacuum and seal the vacuum sealer
bags after packing with fresh date samples. The trays were obtained from VC999 MAP
Systems, CH–9100, Melonenstrasse 2, Herisau, Switzerland. The sealing machine model
VC999 TS300, Bernhard Inauen, Herisau, Switzerland, was used to process the MAP trays
by adding the gas mixtures to the samples and then sealing the MAP trays. The fresh date
samples to be packaged were put manually in the trays. The MAP trays with the fresh
date samples were evacuated, filled with modified gas before sealing, and sealed with
non-permeable film (320 mm PA/PP 65 my).

The MAP treatments were unsealed trays (Control), vacuum-sealed bags (VSB), MAP
with 20% CO2 and N balance (MAP1), and MAP with 10% O2, 20% CO2, and N balance
(MAP2). The modified atmospheric concentrations of the gases were supplied from pre-
mixed gas cylinders. All treatments were stored in the cold storage room at 5 ◦C and room
temperature (24 ◦C) for quality assessment. The study focused specifically on predicting
shelf life for fresh dates based on the data from every week in the early stage of maturity
within the suitable storage period for each storage temperature and method. For example,
measurements are taken every week when dates have a longer shelf life. In the later stages,
when the dates were closer to expiration, measures were taken more frequently, over shorter
intervals, to capture any rapid changes in the attributes. Three replicates from each packing
treatment were randomly evaluated before and after each storage period.
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2.2. Physicochemical Attributes Measurements

The physicochemical attributes (moisture content, water activity, total soluble solids,
total sugar, pH, and tannin) of the date fruit were evaluated before and after each storage
period. These properties were analyzed in the Date Palm Research Center of Excellence
fruit quality laboratories at King Faisal University, Saudi Arabia. The fruit moisture content
(MC) was measured using a vacuum-drying oven (LVO-2041P, Daihan Labtech Co., Ltd.,
Namyangju-si, Gyeonggi-do, Republic of Korea) by drying a sample of 50 g of fruits under
vacuum at 70 ◦C. The fruit sample weight was determined after 48 h to calculate the date
fruit MC according to the Association of Official Analytical Chemists (AOAC) [34]. The total
soluble solids (TSS) of the date fruits were measured using a digital laboratory refractometer
(RFM 840, Richmond Scientific Ltd., Unit 9, Lancashire, UK) [33]. The fruit’s total sugar
(TS) was measured using the anthrone–sulfuric acid colorimetry method. The absorbance
was determined at 630 nm wavelength using a spectrophotometer (Genesys 20, Thermo
Scientific, Waltham, MA, USA). The amount of TS in the sample was quantified using a
standard graph constructed by plotting standard concentration on the x-axis vs. absorbance
on the y-axis [35]. The pH of the fruit was measured using a pH meter (S400, Mettler-Toledo
LLC, Columbus, OH, USA). The TC of the fruits was measured using a spectrophotometer
(Genesys 20, Thermo Scientific, Waltham, MA, USA) at 750 nm wavelength based on the
method described in [36]. The TC was determined by establishing a calibration curve by
measuring absorbance at different known gallic acid concentrations [35].

2.3. Characteristics of Low-Cost Multiband Sensor

This section describes the features of an 18-channel multi-spectral sensor and the
mapping of wavelengths to significant fruit attributes, which in turn were used to predict
shelf life. The AS7265x chipset from AMS OSRAM, Austria, used for this experiment
consists of an 18-channel Visible (VIS) to Short Wave Near Infra-Red (SWNIR) multi-spectral
sensor used for detecting the physicochemical properties of fresh dates. This chipset has
onboard optical filters whose spectral response is defined by on-device Gaussian Band
Pass filters with 20 nm Full Width at Half Maximum (FWHM) value and with three optical
sensors and 6 wavelengths for each optical sensor, totaling 18 wavelengths. The device
wavelengths for each optical sensor are listed in Table 1. The sensors also have integrated
programmable constant current-led drivers, through which light intensity can vary. The
reflected light from the target is used to find the internal characteristics of the fruit.

Table 1. Multiband spectral sensor wavelengths.

Sensors Wavelengths

AS72653 410 435 460 485 510 535

AS72652 560 585 645 705 900 940

AS72651 610 680 730 760 810 860

The normalized responsivity for the entire spectrum of the Triad AS7265x chipset is
reproduced from the manufacturer’s Datasheet in Figure 1. The normalized responsivity
peaking occurs for various wavelengths and is coded with Alphabets “A, B---K, and L” [37].

The wavelengths used in the AS7265x optical sensors correspond to a particular ab-
sorption peak of particular interest in this fresh date fruit maturity analysis (Khalal to Tamr).
As reported by Giovenzana et al. [10] and Beghi et al. [11], 630 and 690 nanometers are
near the characteristic peak of chlorophyll, 730 nanometers are near the third overtone of
the -OH bond, and lastly, 810 and 860 nanometers are near the combination band of the
-OH groups of sugars. Major attributes determining the shelf life of dates are pH, total
soluble solids (TSS), sugar, MC, water activity (AW), tannin, and firmness. Water activity
and moisture content in the fruit maturity stages were analyzed in different modified
atmospheric conditions [36] and verified that the ratio (MC/aw) is 0.33. The non-invasive
assessment of fruit firmness remains a “holy grail” in postharvest research [13]. According
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to Walsh et al. [13], a change in firmness is associated with minor changes in chemical com-
position, such as pectin levels. It is unlikely that NIRS can be used to detect these chemical
changes in intact fruit. Thus, there is no consensus that firmness can be robustly (and
directly) assessed using Vis-SWNIR. Finally, the major attributes considered for predicting
the shelf life and analyzing the freshness of date fruits are pH, TSS, sugar, moisture, and
tannin. Figure 2 shows the methodology flow for the proposed shelf life estimation. The
date fruit samples at various modified atmospheres are subjected to both conventional
testing for major attributes (pH, TSS, tannin, moisture content, and sugar) and the AS7265x
sensors. The mapped data are used for AI model development through Edge Impulse flow.
The final model is deployed on the Arduino Nano sense microcontroller for inferencing
shelf life estimation.
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2.4. Need for ML Models in Enhancing Food Sustainability

Broadly, the agriculture tasks are categorized into preharvest, harvest, and postharvest [38].
Machine learning evolved as a subdomain of Artificial Intelligence (AI) that comprises

algorithms capable of deriving niche information from data and utilizing the same in
self-learning to make good predictions or classifications. Machine learning and Artificial
Intelligence can improve food sustainability by optimizing agricultural practices, such
as precision farming, to reduce the resources used while maximizing yields. AI can also
monitor crop growth and make more accurate predictions about yield, allowing farmers to
plan better and reduce waste. Additionally, AI can be used in the supply chain to track food
quality and reduce food waste by predicting customer demand and optimizing logistics for
more efficient delivery.
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The prime activities in each agriculture task and AI models used are listed below in
Table 2.

Table 2. Agricultural activity and AI model chart.

Task Activities Models

Preharvest
(Health of Crop)

Soil, seed quality, fertilizer/pesticide application,
pruning, cultivar selection, genetic and

environmental conditions, irrigation, crop load,
weed detection, and disease detection.

Artificial Neural Network (ANN), Fuzzy
logic, decision trees, Naïve Bayes, k-means
clustering, support vector machines (SVM),

random forest (RF), k-Nearest Neighbor (k-NN),
and XGBoost, Ensemble technique [35,39–46].

Harvesting
Fruit/crop size, skin color, firmness, taste,

quality, maturity stage, market window, fruit
detection, and classification.

Convolutional neural network (CNN), Resnet,
Mobilenet, Densenet, long-short-term memory

(LSTM), Recurrent Neural Network (RNN),
Alexnet, LeNet, Linear Discriminant Analysis

(LDA), and Principal Component Analysis (PCA)
[12,16,22,23,25,27,36,39,47–49]

Post Harvesting

Factors affecting the fruit shelf-life include
temperature, humidity, moisture conditions,

gasses used in fruit containers, usage of
chemicals in postharvest and fruit handling

processes to retain quality, and fruit grading as
per quality.

Linear Regression (LR), RNN, LSTM.
Reinforcement Learning Models [47,50–55].

The shelf life of food products mainly depends on environmental factors in the food
supply chain. Environmental factors play an essential role in the dynamic change in the
quality pattern of food products over time. Hence, the potential of incremental learning
or lifelong machine learning approach may be utilized for building models with high
classification or prediction accuracy. Lifelong learning (LL) involves a reinforcement
learning approach and using the accumulated knowledge over time for future learning and
solving problems [56].

To apply any machine learning approach, datasets, training, and Inference are the
three pillars to improving food sustainability and reducing food waste.

Figure 3 shows the process of bringing food (fresh dates) from farmers to consumers.
Throughout the process, various stakeholders, such as farmers, packaging companies,
logistics providers, and retailers, work together to ensure the dates are safely transported
and delivered to consumers. Similarly, various Internet of Things Sensors, actuators,
and ML models are used to preserve the freshness of date fruit. However, the choice of
Model development and deployment is decided by two approaches: Cloud computing and
Edge computing.
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2.5. Computing Choices for ML Model

Cloud computing is a model for delivering computing services over the internet. It
allows users to access virtual resources such as computing power, storage, software, and
services on demand without managing their own physical hardware.
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Edge computing is an emerging computing paradigm that refers to a range of net-
works and devices at or near the user. Edge computing is about processing data closer to
where it is being generated, enabling processing at greater speeds and volumes, leading to
greater real-time action-led results.

The following parameters have the same choice of computing as in Table 3: We define
the “ITSBLERP” parameters.

Table 3. Computing Decision Parameters.

Parameters Cloud AI Computing Edge AI Computing

Inference time -- ++

Training time ++ --

Scalability ++ +

Bandwidth -- ++

Latency -- +++

Economics - ++

Reliability - ++

Privacy --- +++
+/- represent the favorable or not-so-favorable choice. Most of the Food and Agriculture chain activities favor
Edge AI computing except for training.

2.6. Need for Tiny Machine Learning

TinyML brings machine learning to microcontrollers and Internet of Things (IoT) de-
vices to perform on-device analytics by leveraging the massive amounts of data they collect.

Tiny Machine Learning (TinyML), a rapidly growing subfield of applied ML, is a
prime candidate for enabling computation and inference on edge devices. This budding
area focuses on deploying simple yet powerful models on extremely low-power, low-cost
microcontrollers at the network edge. TinyML models require relatively small amounts
of data, and their training can employ simple procedures. Furthermore, as TinyML can
run on microcontroller development boards with extensive hardware abstraction, such as
Arduino products, deploying an application onto hardware is easy. TinyML enables diverse
always-on applications ideal for battery-powered devices, particularly in Food supply
chain verticals. Additionally, the cost-effectiveness and efficiency advantages of TinyML
make it possible to deploy distributed TinyML systems that collaborate at the “edge” of the
cloud computing network, making it a perfect fit for our proposed work [30,31].

2.7. How to Implement TinyML?

There are a couple of machine learning frameworks that support TinyML applications,
as follows:

1. TensorFlow Lite for mobile-based applications
2. PyTorch Mobile
3. Tensor Flow Lite for Microcontrollers (TFLM)

Building ML models for mobile devices (using TensorFlow Lite) or the web (using
TensorFlow.js) is possible using high-level programming languages such as Python and
JavaScript. These languages are easy to learn and far more accessible to beginners than
C/C++, which are microcontroller-friendly. However, the cost of mobile devices is higher
than that of microcontroller devices. Also, optimizing and compressing Neural networks
on mobile devices is not straightforward. On the other hand, popular frameworks such
as TensorFlow Lite for Microcontrollers (TFLM) [30] help address optimization and com-
pression of neural networks for embedded devices, but adoption has been slow due to
challenges (data collection, data processing, development, deployment, and monitoring)
that are unique to the embedded machine learning ecosystem. Edge Impulse, an online
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platform designed to simplify the process of collecting data, training deep learning models,
and deploying them to embedded and edge computing devices, allows us to address
these issues.

Due to the above-mentioned fact, we plan to develop our prediction models for shelf
life estimation using Tiny Machine Learning supported by Edge Impulse Cloud MLOPs.

2.8. TinyML Development Using Spectral Sensor and Edge Impulse Platform

This research work proposes a low-cost portable exploiting TinyML models deploy-
able on Arduino Nano 33 BLE Sense microcontroller for real-time prediction of shelf life in
fresh date fruits, also known as “SSLED”. Visible- Short Wave Near Infrared range Spectro-
metric TinyML model; “SSLED”—Spectral Shelf Life Estimator for Dates. The developed
models are targeted at the Arduino Nano33 BLEsense–Cortex M4 microcontroller that can
run neural network models using TensorFlow Lite for microcontrollers (TFLM). Nano33
BLE sense board hosts numerous sensors (microphone, temperature, humidity, pressure,
vibration, orientation, color, brightness, proximity, gesture, etc.) that enable a wide range of
TinyML applications.

The end-to-end model development and deployment were carried out with the help
of the Edge Impulse platform. The self-explanatory five stages used in TinyML model
development are represented by flow diagram as in Figure 4.
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2.9. Architecture of SSLED

The schematic diagram displaying the complete architecture is presented in Figure 5.
The 18-band spectral vis-SWNIR sensor captures the features (attributes) in reflectance
values, indicating the amount of light reflected from the collected samples. These samples
are transmitted to the Edge Impulse cloud platform through Arduino CLI on the Nano 33
BLE Sense (Edge Device).
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The Edge Impulse cloud training platform performs the necessary training and deploys
the model to the Edge device. The Nano 33 BLE then conducts real-time inference to
estimate the shelf life, also called the “Freshness Index”.

The reflectance ratio is calculated using the measurement of incident light and the
reflected light values obtained from the AS7265x—18-channel optical sensor. To measure
incident light, we utilize a calibration process where we expose the sensor to a known
light source. This allows us to establish a baseline value for incident light. The calibration
ensures that we have a consistent reference point for measuring the reflectance of the dates.

Regarding the measurement of reflected light, the AS7265x sensor provides photonic
values rather than direct reflectance values. However, these photonic values are propor-
tional to the light the dates reflect. The sensor detects and quantifies light intensity across
different channels, or spectral bands. By analyzing the photonic values for each channel, we
can determine the reflectance characteristics of the dates and calculate the reflectance ratios.

2.10. Structure of Neural Network Used for Spectral Shelf Life Estimator for Dates (SSLED)

In this study, Tiny Machine Learning-based ANNs have been used to predict the shelf
life of fresh date fruit. The reflected light from the AS7265x chipset corresponding to major
physicochemical properties, i.e., date fruits’ pH, TSS, sugar, tannin, and MC, were taken as
input for the regression NN model.

The input layer acquires data from the AS7265x Triad optical sensor through the I2C
port of the Arduino Nano33 BLE sense microcontroller (Edge Device). The connection
diagram illustrating the spectral sensor to Arduino is shown in Figure 6. The neural
network diagram of the TinyML SSLED prediction model is shown in Figure 7. The hidden
layer performs the data transformation and feature extraction, and the output layer delivers
the continuous predicted values and the shelf life/freshness index based on the major
attributes of fresh date fruit.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 28 
 

 

 
Figure 6. Connection schematic between spectral sensor and Arduino. 

 
Figure 7. TinyML-based spectral shelf life estimator for dates (SSLED) neural network architec-
ture. 

This study utilized the Edge Impulse Cloud platform [37,38] to develop TinyML pre-
diction models and assess their accuracy. Edge Impulse offers a straightforward approach 
to gathering data using built-in or external sensors in smart devices like mobile and em-
bedded devices compared with other machine learning development platforms. It boasts 
a user-friendly interface, assists in data analysis, model design, and testing, and provides 
a deployable version of the model without requiring extensive coding knowledge, facili-
tating rapid prototype development. 

The neural networks in the multilayer perceptron module were trained using a back-
propagation learning algorithm with the Adam optimizer. The Adam optimization 
method adaptively estimates first- and second-order moments in stochastic gradient de-
scent, efficiently updating the weights to minimize the error function. 

The dataset was randomly divided into three subsets to train and evaluate the mod-
els: 60% for training, 20% for testing, and 20% for the holdout subset. The training dataset 
was used to determine the weights and build the model, while the testing data helped 
identify errors and prevent overtraining during the training process. Finally, the holdout 
data validated the artificial neural network prediction model. 

Figure 6. Connection schematic between spectral sensor and Arduino.

This study utilized the Edge Impulse Cloud platform [37,38] to develop TinyML pre-
diction models and assess their accuracy. Edge Impulse offers a straightforward approach
to gathering data using built-in or external sensors in smart devices like mobile and em-
bedded devices compared with other machine learning development platforms. It boasts a
user-friendly interface, assists in data analysis, model design, and testing, and provides a
deployable version of the model without requiring extensive coding knowledge, facilitating
rapid prototype development.

The neural networks in the multilayer perceptron module were trained using a back-
propagation learning algorithm with the Adam optimizer. The Adam optimization method
adaptively estimates first- and second-order moments in stochastic gradient descent, effi-
ciently updating the weights to minimize the error function.
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The dataset was randomly divided into three subsets to train and evaluate the models:
60% for training, 20% for testing, and 20% for the holdout subset. The training dataset
was used to determine the weights and build the model, while the testing data helped
identify errors and prevent overtraining during the training process. Finally, the holdout
data validated the artificial neural network prediction model.

2.11. Model Evaluation

In this work, we used root mean square error and mean absolute percentage error to
evaluate the TinyML prediction model using the following equation:

RMSE =

√
∑n

i=1(Oi − Pi)
2

n
(1)

MAPE = 100 × 1
n
× ∑n

i=1

∣∣∣∣Oi − Pi

Oi

∣∣∣∣ (2)

where RMSE is the relative error, MAPE is the mean absolute percentage error, Oi is the
measured value, n is the number of the measured values, and Pi is the predicted value of
the target parameter data, i.

3. Results and Discussion

The importance of this study is to estimate the shelf life of fresh dates using low-cost,
real-time machine learning-assisted sensing techniques.

The samples (Khalas cv.) collected were tested for major attributes with Laboratory
standard tests, and the low-cost AS7265x Triad—18-channel spectral optical sensor was
calibrated using the benchmark results. The AS7265x chipset was calibrated with diffused
light and a pre-stored Hexadecimal string stored in EPROM given by the vendor before
data acquisition.

3.1. Major Attributes for Shelf Life

The mean values of the major attributes of dates during the fruit ripening stage were
tested in the DPRC laboratory, and their values are given in Table 4. These values were
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used as a guide to label the dataset. In the current study, we focused on the three main
stages of fruit maturity to capture a representative range of date fruit properties spanning
from the Khalal to the Tamr stage. These stages were carefully selected to include dates at
various ripeness levels, allowing us to observe variations in fresh fruit shelf life estimations.
We considered that the shelf life expires after the fresh fruits turn into the second maturity
stage (Rutab) or the fruits are spoiled. To determine the shelf life intervals for the fresh or
Khalal stage, we conducted measurements throughout the entire storage of the dates. The
measurements were taken at regular intervals, weekly for specific periods, depending on
the change in the significant attributes we monitored under each storage temperature and
method. By incorporating measurements throughout the entire ripening stage period, we
aimed to comprehensively understand the attribute variations and their correlations with
the shelf life of fresh dates. This information allowed us to accurately label the values of
significant attributes based on the specific shelf life intervals for the fresh fruits.

Table 4. Attributes of dates during ripening stages.

Maturity Stage of
Date Fruit

The Mean Value of Major Attributes of Dates

pH TSS (Brix) Sugar (%) MC (%) Tannin (%)

Khalal 5.30 24.86 24.96 71.47 6.19

Rutab 6.15 51.29 52.02 46.54 1.05

Tamr 6.64 60.58 63.35 16.94 0.3

3.2. Major Attributes

The reflectance value (photon count) from samples read by 18 channels of optical
sensors was recorded with an optical current source drive of 12.5 mA and a receiver gain
of 64×. The 18-channel optical filters were swept at 20 nm incrementally from 410 nm
up to 940 nm for each setting mentioned above (current and gain). Figure 8 presents the
reflectance values from 18 spectral channels for three different stages of fruit maturity.
The reflected photon count of the spectral sensor is reported on the y-axis for different
wavelength settings of the sensor. All samples were tested under the same environmental
light conditions.
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From the laboratory results and reported results from related works [10–13,36,57],
we found the following spectral bands sensitive to the significant attributes of date fruits,
which are listed in Table 5. We termed the spectral band sensitive to each attribute as
pH-SWNIR, TSS-SWNIR, Sugar-SWNIR, MC-SWNIR, and Tan-SWNIR.
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Table 5. Wavelength table for attributes of fresh fruit.

Major Attribute
Wavelength in nm

Number Terminology/Name

1 MC-SWNIR 535, 705, 940

2 pH-SWNIR 510, 680, 900

3 Sugar-SWNIR 460, 645, 810

4 Tan-SWNIR 560, 585, 610

5 TSS-SWNIR 410, 560, 730

The spectral measurements were conducted on the same day when the laboratory tests
were conducted on the samples as they progressed through different maturity stages of date
fruit, and the results matched the attributes of date fruits. The results were very convincing,
and they prove the robustness of the Triad Spectrometer used for experimentation. The
three-spectral sensor used is the AS7265x—triad sensor, which has three optical sensors
(As72651, As72652, and AS72653), and hence we sum up all the three reflectance photon
count values from the samples driven from White LED sources, NIR LEDs, and UV.

Having verified the correctness/matching of spectral bands with measurement results
and identified the range of values for all major attributes during the fruit maturity stages,
the dataset was used to train the neural network. At first, we verified the correctness or
matching of the spectral bands. Spectral bands are specific ranges of wavelengths captured
by the sensors used in the study. It is essential to validate that the spectral bands correspond
accurately to the specific attributes or characteristics of the measured date fruit.

Next, we identified the range of values for all major attributes during various stages of
fruit maturity. These attributes include moisture content, sugar level, pH, and other quality
parameters relevant to the shelf life of date fruits. By determining the appropriate range of
values for these attributes at different maturity stages, we established the target variables
for the neural network to predict accurately.

Once the correctness and range of attribute values were confirmed, this dataset became
the input for training the neural network. The neural network learns from this dataset by
iteratively adjusting its internal parameters to minimize the difference between predicted
and actual attribute values. Through this training process, the neural network becomes
better at estimating the shelf life of date fruits based on the captured spectral information.

Even though we chose five attributes to estimate the shelf life of fruit, the moisture
content is primarily responsible for fruit freshness/shelf life. So, we tried to plot the
reflectance ratio of moisture content related to four treated samples maintained at 5 ◦C and
24 ◦C, totaling eight samples. Figure 9 shows the reflectance ratio for moisture content for
various treatments. Reflectance ratio is the measure between incident light and reflected
light; it gives the measure of absorption by sample under target. The Khalal stage (fresh
fruit) reflected 80% of the incident light on the first day. When the fruit matures/ripens,
the reflectance ratio deteriorates, indicating the degradation of freshness and, in turn, shelf
life. The vacuum-sealed bags maintained at 5 ◦C showed the strongest resilience to fruit
maturity/ripening, and it took 53 days to transform from khalal into the Tamr stage. In
other words, we can say that the Glycemic Index of cv. Khalas was under control for 53 days.
Whereas the unsealed sample kept at room temperature (24 ◦C) has lost its freshness in
10 days. From this graph, we can conclude that the cheapest and most affordable treatment
is a vacuum-sealed bag, which is kept at room temperature and retains shelf life for 24 days.
Figure 10 shows the plot for the cumulative reflectance value from the spectral sensor
of five major attributes, and one can notice the same trend as in Figure 9 since moisture
content is a major reason for fruit maturity and TSS and sugar content are influenced by
moisture content.
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3.3. Datasets for TinyML Model Development

The Edge Impulse platform provides a well-structured and simple step to building a
model. It allows users to upload different types of preprocessed data. For this experiment
on a predictive model, the raw data were uploaded and indicated as time series data. Since
our data were used for regression problems, the data upload technique may differ from
the familiar classification method. The dataset structure requires separate files (CSV), each
named under its label, for all data points as integer values.

The reflectance value from spectral sensors of four categories of treated samples,
respectively unsealed, vacuum sealed bags, MAP1, MAP2, and unsealed bags, was coded
as a time series of data representing the significant attributes of fruit quality and labeled
as a continuous value to represent the shelf life in the number of days as an integer value.
The sample-labeled dataset structure coded as time series steps used for uploading the
datasets to the Edge Impulse platform for untreated samples is shown in Table 6. Similarly,
we labeled all categories of samples and uploaded them to the Edge Impulse cloud training
platform. In all our discussions, if shelf life is 0, it is fresh fruit (Khalal—0th/starting day of
ripening stage; 14th/nth day the fruit has fully ripened, that is matured to Tamr stage).
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Table 6. Labeled dataset for untreated sample (control) at 5 ◦C.

MC-SWNIR pH-SWNIR TSS-SWNIR Sugar-SWNIR Tan-SWNIR Shelflife

1087 280 787 797 430 0

1065 282 797 807 417 1

1043 285 808 817 403 2

1021 287 819 827 388 3

999 289 829 837 376 4

977 292 840 847 360 5

955 294 850 857 349 6

933 297 861 867 333 7

911 299 872 877 322 8

889 302 882 887 305 9

867 304 893 897 293 10

845 307 903 907 277 11

823 309 914 917 259 12

801 312 924 927 243 13

779 314 935 937 231 14

3.4. TinyML Model Development

The next step is model building. Regression models with the hyperparameters used
for implementation are shown in Table 7. The model has to predict the shelf life of fruits,
which are continuous values; hence, regression models were chosen. In addition, the edge
device has memory limitations, and lightweight regression models were used.

Regression models are used for prediction, forecasting, and understanding the impact
of independent variables on the dependent variable. They are widely used in various fields,
including medical sciences, finance, social sciences, and machine learning. Here, regression
models were utilized in shelf life estimation to understand the relationship between various
factors and the deterioration of a product over time. In this work, we used continuous
independent variables for regression models. These models help predict the remaining
shelf life of a product based on factors such as temperature, humidity, packaging, and
storage conditions. Here, the independent variables used are TSS, pH, water content, sugar,
and tannin. The above features are extracted from the reflectance values of AS7265x sensors.
The model parameters for the Neural Network block used to implement regression models
are listed in Table 7.

The number of samples taken for VSB (5) (Vacuum Sealed Bag maintained at 5 ◦C)
was 960 because the shelf life of the VSB samples is the longest (57 days for fruit ripening).
Every week, we need samples for laboratory testing to validate the attributes of dates
during the ripening stages. Similarly, untreated samples kept at room temperature have
the least shelf life (10 days); 120 samples were sufficient for training. The batch size of 32
was chosen to reduce memory during the training and inference phases. The learning rate
of 0.005 was chosen based on batch size and for better convergence. The ADAM optimizer
is used because it has fast convergence.

The current study used the ReLU activation function, widely adopted in various ML
applications, including neural networks. ReLU is an activation function used in neural
networks, especially convolutional and deep neural networks. It is defined as y = max (0, x),
which means it outputs the input value if it is positive and zero if it is negative. It is simple
yet far superior to previous activation functions like sigmoid or tanh. ReLU has become the
default activation function for many types of neural networks because a model that uses it
is easier to train and often performs better. ReLU has shown superior performance in many
scenarios and offers computational efficiency compared with other activation functions
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such as sigmoid or tanh. However, using adaptive activation functions is an interesting
avenue to explore for enhancing the convergence and performance of neural networks.
Adaptive activation functions adjust their parameters during the learning process and can
adapt to the specific characteristics and complexity of the given dataset [58].

Table 7. Model parameter for NN Block.

Parameters Specifications

Model Type Sequential

Input layer 15 major features + 3 (Vacuum, MAP2, MAP1)

First level Hidden Dense layer 20 neurons

Second level Hidden
Dense Layer 10 neurons

Dropout rate 0.2

Output Layer 1 neuron (Y-Predicted, no activation function)

Learning Rate 0.005

Activation function for all layers ReLu

Batch Size 32

Epochs 100

Optimizer Adam

Loss function MSE (Mean Squared Error)

Number of Training Cycles 100

Treatments VSB (5) VSB (24) MAP2(5) MAP2(24) MAP1(5) MAP1(2) Unsealed
(5)

Unsealed
(24)

Training
Dataset
(80%)

960 706 706 448 416 272 240 120

Testing and
Validation

Dataset (20%)
240 178 178 112 104 68 60 30

The Edge Impulse cloud platform is designed to deploy models for real-time appli-
cations on the edge device (Arduino Nano 33 BLE). Based on the hyperparameter used
for the neural network model, the inference time is 1 milli second, and the RAM usage is
1.8k out of 256 KB to store model parameters. Also, the neural network model consumes
only 10.9 KB out of the 1 MB of flash available. These numbers show that this model is
optimized for TinyML implementation and for real-time inferencing.

The performance results, accuracy, and MSE for various confidence threshold settings
for all treated categories of samples after training using all validation set samples are shown
in Table 8.

The range of attribute values (moisture content, total soluble solids, and sugar) was
almost 16 to 60 and was responsible for fruit maturity/ripening. However, the tannin
value range changed between 0.3 and 6.19 and the pH value between 5.30 and 6.9, which
were responsible for fruit maturity/ripening. Even though it looks linear, there is a small
amount of nonlinearity during the lab test and a visible short wave near the infrared
sensor. Hence, we introduced a nonlinear activating function (ReLu) in the neural network
introduced in the tinyML flow. The accuracy plots for all modified atmosphere samples
at different confidence levels were plotted with and without reluctant activations, and we
conclude that ReLu is much needed for the SSLED sensor. To satisfy both the accuracy
and lightweight model of the tiny sensor proposed, which is not a shallow network, we
performed a sensitivity analysis for various hyperparameters (batch size, number of hidden
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layers, Adam optimizer, momentum), and from the results, we conclude that a bat with a
size of 32, two hidden layers, and momentum of 0.9 offered better accuracy. The learning
rate and epochs are not very sensitive. The learning rate was chosen as 0.005, and # epochs
was 100 to converge.

Table 8. Evaluation of the prediction accuracy for the TinyML model.

Packing Type Temperature
Threshold

Metrics 1 1.25 1.5 1.75 2

VSB

5
MAPE 89.39 96.6 97.87 98.3 98.3

RMSE 0.39 0.39 0.39 0.39 0.39

24
MAPE 96.65 96.65 99.44 100 100

RMSE 0.23 0.23 0.23 0.23 0.23

MAP2

5
MAPE 85.8 97.73 100 100 100

RMSE 0.39 0.39 0.39 0.39 0.39

24
MAPE 97.13 100 100 100 100

RMSE 0.15 0.15 0.15 0.15 0.15

MAP1

5
MAPE 83.65 90.38 96.15 96.15 96.15

RMSE 0.61 0.61 0.61 0.61 0.61

24
MAPE 76.4 88.2 92.18 94.16 96.12

RMSE 0.68 0.68 0.68 0.68 0.68

Unsealed

5
MAPE 75.2 84.67 92.76 94.1 95.2

RMSE 0.69 0.69 0.69 0.69 0.69

24
MAPE 86.36 93.18 93.18 95.45 100

RMSE 0.65 0.65 0.65 0.65 0.65

Figure 11 presents the sensitivity analysis results for hyperparameters: momentum,
batch size, and layer numbers. This analysis is crucial to understanding these hyperpa-
rameters’ impact on the model’s performance. The sensitivity analysis provides valuable
insights into how changes in these hyperparameters affect the overall performance and
accuracy of the model. The study assesses their influence on the model’s predictive capabil-
ities by systematically varying each hyperparameter while keeping others constant. The
results in Figure 11 allow us to identify optimal values for each hyperparameter, which can
significantly enhance the model’s performance. This information is vital for fine-tuning the
model and achieving the best possible accuracy while considering resource constraints.

Figure 12 compares the model accuracy with and without the activation function.
Figure 12A shows that the activation function significantly benefits the model’s accuracy.
The activation function introduces nonlinearity to the neural network, enabling the model
to capture complex patterns and relationships within the data. As a result, the model’s
accuracy improves, demonstrating the importance of selecting the appropriate activation
functions for this task. Figure 12B shows the plot for the model accuracy without the
activation function. Without an activation function, the model might struggle to learn
complex patterns and perform poorly on the given task. This is because linear models
can only learn linear relationships between features, limiting the model’s representation
power. The results indicate that activation functions are crucial for higher accuracy and
better generalization in the ANN models.
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The confidence threshold setting suggested by Edge Impulse based on the number
of samples in the dataset is 4.3, but we restricted it to lower levels. Increasing confidence
threshold values will always yield better results. Since shelf life is reported in the number
of days with a resolution of 1 day, the ideal confidence threshold should be 1. Out of all
four treated samples maintained at 5 ◦C and 24 ◦C, MAP2(24) gives 97.13% accuracy with
a MSE of 0.15. On the other hand, MAP1(24)-MAP trays sealed with 10% O2, 20% CO2,
and N balance at room temperature yield 76.4% accuracy with a MSE of 0.68. The model
accuracy plot is plotted for various confidence thresholds starting from ideal case 1 up
to 2, with an increment of 0.25, as shown in Figure 13. This plot shows that even all the
samples show more than 93% accuracy for a confidence threshold of 1.5, and even for an
ideal threshold setting of 1, most of the sample’s model accuracy is greater than 85 percent,
except for the MAP1(24) and unsealed (5) categories of samples. This proves that the model
is robust. The reason for poor accuracy related to the MAP1(24) and unsealed (5) categories
of samples could be that some of the samples could have been spoiled in that sealed bag
due to bruises/friction during the cleaning process or some other internal attributes.



Sensors 2023, 23, 7081 19 of 28

Sensors 2023, 23, x FOR PEER REVIEW 19 of 29 
 

  

(A) (B) 

Figure 12. Model Accuracy with Activation Function (A) and Model Accuracy without Activation 

Function (B). 

 
Figure 13. Model accuracy for treated samples for various confidence thresholds. 

Using the feature explorer option of the Edge Impulse platform, the RMS value of 

reflectance concerning spectral sensor AS7261 and AS7262 and shelf life RMS is plotted 

for better data visualization for all 8 samples and are given in Figure 14. From all those 

plots we can see the linear relationships between the reflectance value of the spectral sen-

sor and shelf life, confirming the robustness of model. In all the following plots X- axis 

shows the shelf life in several days. From Right to left marked from 0 – fresh fruit ( Khalal)/ 

starting day of ripening to last day/ fully ripened ( Tamr stage ), The RMS value of reflec-

tance (a.u) wrt AS7262 is marked as Rb RMS. Similarly, RMS value of reflectance wrt 

AS7261 is marked as Refl RMS. The colors (blob) given for the samples in Figure 14 were 

(VIBGYOR) and reported by Edge impulse studio application for better visualization. Vi-

olet for ripened fruit (more days) to Red for Khalal /fresh date fruit ( 0th day). 

 

Figure 13. Model accuracy for treated samples for various confidence thresholds.

Using the feature explorer option of the Edge Impulse platform, the RMS value of
reflectance concerning spectral sensors AS7261 and AS7262 and shelf life RMS are plotted
for better data visualization for all eight samples and are given in Figure 14. From all
those plots, we can see the linear relationships between the reflectance value of the spectral
sensor and shelf life, confirming the robustness of the model. In all the following plots, the
X-axis shows the shelf life over several days. From right to left, marked from 0–fresh fruit
(Khalal)/starting day of ripening to last day/fully ripened (Tamr stage), the RMS value of
reflectance (a.u) wrt AS7262 is marked as Rb RMS. Similarly, the RMS value of reflectance
for AS7261 is marked as Refl RMS. The colors (blobs) given for the samples in Figure 14 were
(VIBGYOR) and reported by the Edge Impulse studio application for better visualization.
Violet for ripened fruit (more days) to Red for Khalal/fresh date fruit (0th day).

Figure 15 shows a snapshot of live classification results from Edge Impulse studio. The
sample taken for the demonstration is from unsealed trays kept at 24 ◦C. The sample was
labeled as having a shelf life of 6, predicted as 5.16, and is pretty accurate with a confidence
of 0.99. The light blue color blob (bigger size) shows the live sample classification in the
screenshot. The shelf life of samples kept in an unsealed tray at room temperature ranges
from 1 to 10 days. Here, a shelf life of 0 days means the fruit matures fully (Tamr), whereas a
shelf life of 10 days means it will take 10 days to reach the Tamr stage from the Khalal stage.
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Figure 14. Data visualization plots covering four treated samples kept at cold storage room (5 ◦C)
and at normal temperature (room temperature 24 ◦C). (A) unsealed at 5 ◦C, (B) unsealed at 24 ◦C,
(C) MAP1 at 5 ◦C, (D) MAP1 at 24 ◦C, (E) MAP2 at 5 ◦C, (F) MAP2 at 24 ◦C, (G) VSB at 5 ◦C, and
(H) VSB at 24 ◦C.
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Figure 15. Live classification results for sample from unsealed tray kept at room temperature.

Figure 16 shows the eight subplots of model test results—data visualization covering
four treated samples kept at a cold storage room (5 ◦C) and a normal temperature (24 ◦C).
The green blobs are correctly predicted, and the red ones are wrongly predicted.
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Figure 16. Model test results for all treated samples when confidence threshold was set to 1.5: (green
blobs are correct; red ones are incorrect prediction). (A) unsealed at 5 ◦C, (B) unsealed at 24 ◦C, (C)
MAP1 at 5 ◦C, (D) MAP1 at 24 ◦C, (E) MAP2 at 5 ◦C, (F) MAP2 at 24 ◦C, (G) VSB at 5 ◦C, and (H)
VSB at 24 ◦C.
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To have better insight in reading and interpreting the model test result performance,
the results for all samples in unsealed (5 ◦C) and unsealed (24 ◦C) (the top two of the
subplots of Figure 15) are plotted for shelf life in the number of days versus all the samples
in that category and shown in Figures 17 and 18, respectively.
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Figure 17. Model test results for unsealed samples at cold storage (5 ◦C).
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Figure 18. Model test results for unsealed samples at room temperature.

Figure 17 shows the model test results of the unsealed sample kept at 5 ◦C. The
observation is that samples 1 up to 4 are labeled (the test sample) as having a shelf life of 0,
but the model predicted 1.78 days with an error of more than 100 percent. Similarly, sample
numbers 36 to 39 are supposed to predict that a shelf life of 9 has an error of more than 100
percent. For samples 5–9 and 57–59, the error is less than 100 percent. The remaining other
samples are predicted correctly, and these results are obtained with a confidence threshold
of 1.5.

Figure 18 shows the model test results of the unsealed samples kept at 24 ◦C. The
observation is that samples 1 up to 4 are labeled as having a shelf life of 0, but the model
predicted 1.78 days, which has an error of more than 100 percent. The remaining samples
are predicted correctly, and these results are obtained with a confidence threshold of 1.5.
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From the subplots of Figure 16, we validate that the model performs adequately for
most of the sample in four categories: VSB, MAP2, MAP1, and unsealed. There were few
wrong predictions highlighted in Figures 17 and 18; other than that, most samples were
predicted correctly. We believe the wrong prediction is due to some other internal attribute
of date fruit.

The plot showing the accuracy and loss curve for both training and validation for
100 epochs during the training cycle is shown in Figure 19. After 90 epochs, the model
converges very well and is the correct fit. This plot is generated with a seed of 31 (the initial
weights and bias during training are random and vary with different seeds) during the
training stage to report the model accuracy consistently.
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Figure 19. Training and validation accuracy and loss curves for VSB samples at room temperature.

We validated our model with lab results from the DPRC laboratory when we did live
testing. To the best of our knowledge, we did not find any papers working on shelf life
prediction using the TinyML regression model for shelf life prediction of fresh dates. How-
ever, several related studies exist for Royal Galas, strawberries, mangos, bananas, musk
melons, and grapes using Computer Vision models and other classification models. Most
of the work has reported around 95% accuracy. Our model results are also good, ranging
from 95% to 100% for different confidence threshold settings. The selected microcontroller,
Nano 33 BLE, was tested on a Cr2032 Lithium ion 3v3 battery (225 mAH) and consumes
much less inferencing power. The TinyML kit will consume only 1–2 mA; however, during
the sampling time, the spectral sensor LED is taking 12.5 mA. The battery will last for a
week without recharging, assuming 10 min of sampling/inferencing per day. The data
acquisition time is just 3 s with calibration, the inference time is less than 100 ms, and with
a 225 mAH battery, it will last for a minimum of a week.

The challenge we faced in the TinyML training phase using the Edge Impulse platform
was only uploading data for training models. Edge Impulse supports only the onboard
sensors of selected microcontrollers/edge devices to acquire the data directly (live upload).
The AS7265X sensor we used was an off-the-shelf sensor, and hence we had to acquire
the data and store it on an SD card, then convert the reflectance value corresponding to
all the attributes for shelf life prediction as a comma separated value (csv), which took
a considerable amount of time in weekly sampling and testing. However, the model
deployment was easy due to the Edge Impulse platform.

4. Conclusions

We conclude that simple vacuum packaging and low-cost shelf prediction—lightweight
models with a low-cost spectral sensor (40 USD)—support edge computing, a key enabler
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to predict shelf life, thus ensuring sustainable nutrient food availability throughout the year.
Consumers in food and agro-industry verticals such as quality management, production,
storage, logistics, supply chain, and processing can choose the type of treatment and ML
models (cloud/edge). A low-cost handheld spectral sensor integrated with an Arduino
Nano 33 BLE microcontroller able to predict the shelf life of fresh fruit at all stages of the
fruit ripening process has been experimentally verified for its robustness by validating
against lab results. The accuracy of the lightweight regression model for all the treated
samples was above 93% for a confidence threshold of 1.5. The reported performance shows
that this TinyML sensor can be used as a handheld device for real-time prediction of the
shelf life and freshness of the fruit.

5. Future Works

Ensemble Machine learning techniques that accommodate both vision and spectral-
based sensors for shelf life estimation, which can cover all perishable food items in the
supply chain and benefit a broad category of customers in the supply chain, may be
attempted.
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Nomenclature

A. U. Arbitrary Unit
AI Artificial Intelligence
ANN Artificial Neural Network
CNN Convolutional Neural Network
DT Decision Trees
ET Ensemble Technique
GI Glycemic Index
IoT Internet of Things
IR Infrared Red

ITSBLERP
Inference, Training, Scalability, Bandwidth, Latency, Economics,
Reliability, and Privacy Characteristics

K-MC K-Means Clustering
K-NN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LI Lifelong Learning (Ll)
LR Linear Regression
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAP Modified Atmosphere Packaging
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MC Moisture Content
ML Machine Learning
NB Naïve Bayes
NIR Near-Infrared Red
PCA Principal Component Analysis
MAPE Mean absolute percentage error
RF Random Forest
RLM Reinforcement Learning Models
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SC Sugar Content
SSLED Spectral Shelf Life Estimator For Dates
SVM Support Vector Machines
SWNIR Short-Wave Near-Infrared
TC Tannin Content
TFLM Tensor Flow Lite for Microcontrollers
TinyML Tiny Machin Learning
TSS Total Soluble Solids
wa Water Activity
Xgboost Extreme Gradient Boosting
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