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Abstract: Rotor unbalance is the most common cause of vibration in industrial machines. The
unbalance can result in efficiency losses and decreased lifetime of bearings and other components,
leading to system failure and significant safety risk. Many complex analytical techniques and specific
classifiers algorithms have been developed to study rotor imbalance. The classifier algorithms, though
simple to use, lack the flexibility to be used efficiently for both low and high numbers of classes.
Therefore, a robust multiclass prediction algorithm is needed to efficiently classify the rotor imbalance
problem during runtime and avoid the problem’s escalation to failure. In this work, a new deep
learning (DL) algorithm was developed for detecting the unbalance of a rotating shaft for both binary
and multiclass identification. The model was developed by utilizing the depth and efficacy of ResNet
and the feature extraction property of Convolutional Neural Network (CNN). The new algorithm
outperforms both ResNet and CNN. Accelerometer data collected by a vibration sensor were used to
train the algorithm. This time series data were preprocessed to extract important vibration signatures
such as Fast Fourier Transform (FFT) and Short-Time Fourier Transform (STFT). STFT, being a feature-
rich characteristic, performs better on our model. Two types of analyses were carried out: (i) balanced
vs. unbalanced case detection (two output classes) and (ii) the level of unbalance detection (five
output classes). The developed model gave a testing accuracy of 99.23% for the two-class classification
and 95.15% for the multilevel unbalance classification. The results suggest that the proposed deep
learning framework is robust for both binary and multiclass classification problems. This study
provides a robust framework for detecting shaft unbalance of rotating machinery and can serve as a
real-time fault detection mechanism in industrial applications.

Keywords: unbalance detection; artificial neural network; deep learning; statistical property;
Short-Time Fourier Transform; optimization

1. Introduction

The predominant factor contributing to mechanical failures in rotating machinery is
the presence of vibrations [1], commonly caused by unbalance in the rotor [2,3]. “Rotor
unbalance is a condition in which the Centre of mass of a rotating assembly, typically the shaft and
its fixed components like disks, and blades etc. is not coincident with the Centre of rotation” [3].
Frequent causes of rotor unbalance are vibrations due to some externally applied load,
bent shafts, or asymmetric mass distribution [4,5]. Other causes of rotor unbalance include
bearing damage [6] and casting inaccuracies like porosity, non-uniform material density,
asymmetric shaft fatigue, or faults in ball bearings that support the shaft [7,8]. Vibrations
due to rotor unbalance can easily escalate to the failure of critical machine components such
as bearings, gears, couplings, etc. [9]. Constant health monitoring in rotating machinery is
needed to avoid structural damage.

Usually, three types of machinery maintenance approaches are adopted in industry:
Reactive maintenance, often referred to as the “run till failure” approach;
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Preventive maintenance, when machinery is periodically overhauled regardless of
the condition of parts;

Predictive maintenance, which is the process of machinery health monitoring during
runtime in order to predict when and which parts are likely to fail [10].

Reactive and preventive maintenance do not require any sensors to constantly monitor
the condition of the machinery, whereas predictive maintenance does need health moni-
toring sensors like acoustic, vibration, shock pulse monitoring, wear debris, and thermal
sensors [11]. Vibration sensor-based condition monitoring is common in industry as it
allows for identifying 90% of faults or failures in machines [1].

In contrast to preventive and reactive maintenance, predictive maintenance is less
costly and provides a constant analysis of machinery conditions [10]. Predictive-maintenance-
based fault identification methods can be classified into two groups according to their de-
pendence on the structural model: model-based methods and signal-based methods [12,13].
Model-based methods can estimate the damage location and severity by improving the
mathematical model of the structure using experimental data or Finite Element Analy-
sis data [12]. On the other hand, signal-based methods detect damage by comparing the
structural responses before and after the damage. The method makes use of recorded
signals rather than explicit input–output models for fault prediction. Damage is defined
by damage indices, which are determined from the time–frequency domain analysis or by
modal analysis [14,15]. Artificial Intelligence (AI), as a class of signal-based methodology,
has emerged as a powerful tool for the identification of multivariable nonlinear systems.

Exploiting AI for motor fault detection has been of interest since 1993. Mo-Yuen Chow
et al. [16] concluded that the size of training data directly affects the accuracy of the AI
system. Bo Li et al. (1998) showed that FFT values of a vibration signal spectrum can be
used as relevant features of the vibration dataset [17]. The authors of [4,16] proved that opti-
mizing network parameters like learning rate, momentum, and neuron size is important for
increasing accuracy. S. Rajakarunakaran et al. used an Adaptive Resonance Theory (ART)
network as a vector classifier. It accepts time series vibration signals as the input vector
and classifies them into one of the categories (clusters) depending on which of the stored
patterns it most resembles [18]. The unsupervised method is good for clearly distinguished
classes of balanced and highly unbalanced machine signals where the difference is high.
However, the accuracy decreases fast when the unbalance factor is reduced. Chih-Hao
Chen et al. (2008) proposed a new fault diagnosis procedure for rotating machinery fault de-
tection using wavelet packet–fractal technology and a radial basis function neural network.
The fault categories considered were unbalance, shaft misalignment, and looseness [19];
however, the level of unbalance was not considered. For diagnosing the type of unbalance,
Sendhilkumar et al. proposed feeding vibration acceleration data features as input into
Elman neural networks [20]. Weining Lu et al. [21] introduced a deep neural network for
Domain Adaptation in Fault Diagnosis (DAFD), which increases classifier accuracy by
adapting the neurons’ weights to new values by deploying the weight regularization term,
hence strengthening the representative features of the original data. Tang et al. [22] trained
an SVM model using chaotic particle swarm optimization (PSO) to classify inputs into the
multiple faults of rotating machines. Similar to the references [22,23], several other authors
adopted SVM in fault classification models [24–27]. However, SVM runs into target class
overlapping problems when faced with noisy and industrial-level large-scale data [28].

Rotor imbalance has been studied by various researchers recently. The authors of [29]
presented an online unbalance rotor fault detection technique. The method carries out
statistical and frequency domain analyses of the vibration data as well as current signatures;
however, unlike machine learning methods, the proposed method requires expert-level
knowledge of spectral analysis. Brando et al. used SVM for multiclass rotor misalign-
ment prediction of an induction motor [30]; however, the methodology uses complex and
extensive preprocessing steps such as the coefficient of statistical variation, the Boruta
algorithm, and the Recursive Feature Elimination (RFE) algorithm. Wang et al. have
shown that CNN performs significantly better and reduces preprocessing as compared
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to SVM [31]. The authors used a three-dimensional STFT feature of the vibration data to
classify the imbalanced, broken, and normal rotor. However, it is important to note that the
use of 3D signals as input for CNN can be computationally expensive. In [32], the authors
focus on a new CNN-based method for detecting various bearing faults of a planetary
gearbox. The developed method specializes in cases where datasets are unbalanced or
too noisy. The algorithm is promising for data with medium and high signal-to-noise
ratios; however, its performance for large-scale industrial data is not known. Zhao et al.
(2022) developed a rotor fault diagnostic framework based on the Normalized Conditional
Variational Auto-encoder (NCVAE) [33]. The basic theme is to enhance and exploit the
feature-learning ability of the NCVAE. Simulation-based bearing and rotor fault data are
generated for classification purposes. The model focuses on increasing accuracy when data
are imbalanced, as fewer data samples are available for certain classes. The model works
well on simulated bearing and rotor fault data; however, as suggested by the authors, the
actual industrial data, being complex and noisy, may need a more sophisticated model.
All these models use variable depth models as the number of classes and data increases.
A single model which can deal with fewer data and fewer classes, as well as multiclass
problems and large datasets, has not been optimized for industrial rotor fault applications,
which is the focus of this work.

A de facto research trend for prognostic health monitoring (PHM) problems is the use
of shallower AI algorithms for binary class prediction with relatively small training data
and deeper networks for multiclass high-level data [34]. These algorithms have shown
promising results for the specific test conditions; however, shallower networks fail to adapt
to complex data in multiclass problems [35], while deep networks degrade in performance
on a small number of classes and run into overfitting [36]. This paper proposes a new
deep learning algorithm that is deep enough to extract deep features of large datasets used
in multiclass problems and also performs well on simple binary classification problems
without running into overfitting. The model was developed for a special use case of an
industrial rotor problem, using the same data and the same machine learning (ML) model
for both binary class and multiclass prediction problems. For training the ML algorithms
on vibration data, PHM engineers mostly prefer to use frequency components of signals
obtained by Fast Fourier Transform (FFT) [34]. To address this problem, it is a good practice
to analyze portions of the signal at various intervals with the help of STFT [37]. The
feature-rich STFT has been used in fault diagnosis by several researchers to detect broken
rotors [38], faulty bearings [39,40], and motor winding faults [31]. However, it has not
been given much attention in the prediction of the unbalance level. FFT is effective for
stationary signals but it is not quite powerful enough to analyze non-stationary signals [41].
To exploit the benefits of feature-rich STFT, we utilized STFT as the training input data
for the classification of the rotor unbalance. This work focused on developing an online
prediction model for multiclass rotor unbalance. When trained with different levels of
unbalanced data, the algorithm can be applied to industrial rotors during runtime to predict
the type and level of unbalance signaled by the runtime vibration data of the rotor. Hence,
the unbalance problems identified in real time are dealt with before escalating into damage
and complications. This is of significant help to the operator.

The database used in this study was downloaded from the Fraunhofer Fordatis Re-
search Institute, Germany [42], and was collected on a DC motor setup connected with
three vibration sensors. In total, five test condition datasets were recorded; one dataset
was measured when there was no unbalance in the rotor, and the remaining four datasets
were collected when different levels of unbalance were introduced to the rotor. The main
contributions of this work are as follows:

• A new deep learning approach is developed for improved accuracy of binary and
multiclass classification. Our model’s basic architecture is derived from ResNet and
CNN, and the developed model outperformed both algorithms. In addition, the results
are compared with state-of-the-art ML algorithms, which shows the superiority of our
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algorithm. To the best of our knowledge, this is the first study for the development of
this model.

• A core dataset selection strategy is presented to speed up the training process by
selecting fewer datasets for training. Among the four datasets for the unbalanced
cases, only two were selected for training based on the statistical analysis by observing
the standard deviations of the datasets. Two types of classifications were carried
out. First, two-class classification for predicting balanced and unbalanced signals was
performed (Analysis-1). Afterwards, in Analysis-2, a multiclass classification was
performed to categorize the severity of rotor unbalance (refer to Table 1 for details).
Analysis-2 is useful to predict the severity of the imbalance in the rotor (divided into
four different classes).

• It demonstrates the feasibility of using the STFT feature map for better training, in
contrast to conventional FFT as the main feature of data.

Table 1. Parameters of the dataset used. Data classes and datasets vary according to the unbalance
factor present in the rotor.

Training
Dataset

Evaluation
Dataset

Attached Mass
(g) Radius (mm)

Unbalance Factor
(mmg)

Analysis-1 Analysis-2

Class (Total 2) Class (Total 5)

D0 E0 0 0 0 Balanced (B) Balanced (B)

D1 E1 3.281 ± 0.003 14 ± 0.1 45.9 ± 1.4

Unbalanced (U)

Unbalanced-1 (U1)

D2 E2 3.281 ± 0.003 18.5 ± 0.1 60.7 ± 1.9 Unbalanced-2 (U2)

D3 E3 3.281 ± 0.003 23 ± 0.1 75.5 ± 2.3 Unbalanced-3 (U3)

D4 E4 6.661 ± 0.007 23 ± 0.1 152.1 ± 2.3 Unbalanced-4 (U4)

The rest of the paper is organized as follows. Section 2 details the system under
discussion. Section 3 describes the methodology in detail. An improved deep learning
model is proposed in Section 4. Section 5 deals with the results. Finally, the conclusion of
this study is given in Section 6.

2. System Overview

Rotary machines frequently experience imbalances as a result of high speeds, mis-
alignment, and inappropriate loading or mass deposition. This imbalance is often the
starting point of machine failure. One of the frequent causes of mechanical failures is rotor
imbalance [8].

Imbalance in Rotary Machines

Mathematically, rotor imbalance can be expressed as follows [8]:

→
U = m×→r u (1)

where m is the added mass in grams and
→
r u is the distance in millimeters of added

mass from the axis of rotation. The common types of imbalances in rotating machinery
are (i) static, (ii) coupled, (iii) quasi-static, and (iv) dynamic [29]. In this article, only
static imbalance is considered, which is the most common type of imbalance in industrial
machines. Static imbalance is the condition when the center of gravity of a rotor shaft is
not aligned with its axis of rotation, primarily due to asymmetric mass distribution [43], as
shown in Figure 1.
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Figure 1. Graphical representation of static imbalance in rotors.

It is called static because it is always present in rotors, even if they are stationary [43].
Static imbalance produces the centrifugal force induced by mass imbalance when a rotor is
in motion, which is stated as follows [44]:

F = m× ru ×ω2 (2)

where F is the force in Newtons and ω is the speed in radians per second (rad/s). The
centrifugal force is balanced by the reaction force on the bearing(s) on the endpoint of
the rotor.

3. Methodology
3.1. System Parameters

The data used in this study were collected from a 130-watt DC motor (type UE 511TM,
manufactured by WEG GmbH, Kerpen, Germany) [45] connected to a steel shaft 12 mm in
diameter and 75 mm in length. The shaft was guided by a roller bearing in a galvanized
steel bearing block. The experimental setup is depicted in Figure 2. A 3D-printed bracket
for holding the load mass was inserted at the end of the shaft. Unbalance was created
by inserting a mass at different radii in the 3D-printed bracket. Three vibration sensors
(M001AC) attached to the motor mounting and bearing block were read out using a four-
channel data acquisition device (DT9837). The mass (m) and the distance from the axis of
rotation (ru) are the two basic parameters considered for the imbalance factor. Table 1 shows
the test conditions used in this study. For each test condition, the motor was swept through
a rotation speed between 300 and 2300 revolutions per minute. Motor speed was controlled
by a 24 V controller (WEG GmbH, type W2300) mounted on a plate of galvanized steel. A
total of 10 datasets were recorded, 5 for training purposes (dataset D) and 5 for evaluation
(dataset E). Dataset 0 D,0 E was recorded when there was no unbalanced load acting on
the shaft. Datasets 1–4 were recorded when loads acted with various configurations of size
and location.
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As shown in Equation (1), the product of the mass m and the radius r is a direct
measure of the unbalance strength. A large mass and radius will therefore produce the
highest unbalance factor (unbalance U4 in our study). Two types of classifications are
performed. First, in Analysis-1, a binary classification of balanced (B) and unbalanced (U)
is performed, as shown in Table 1. Second, in Analysis-2, a 5-label classification of balance
(B) and the level of unbalance (U1, U2, U3, U4) is performed.

3.2. Data Selection and Preprocessing

It is important to emphasize that two types of classification analyses (shown in Table 1)
are performed in this study. Analysis-2, a multiclass prediction problem, is relatively simple
in terms of input data, as for each class label, exactly one dataset is available. Meanwhile,
Analysis-1, a binary classification problem—“Balanced” and “Unbalanced”—has one training
dataset D0 for the balanced case and four training datasets (D1–D4) for the unbalanced
case. Using all these datasets (D1–D4) in training for the class label “Unbalanced” in
Analysis-1 will result in overfitting as well as high computational costs. The large datasets
in Analysis-1 will push the model to overfit towards the minute behavior of the data, and
hence, a better generalization cannot be achieved. This results in a high computational
cost and decreased accuracy. Therefore, only two of the four unbalanced case datasets
were used so that the computational advantage could be achieved without compromising
the accuracy.

By choosing the core set from huge datasets, it is possible to considerably increase the
computational effectiveness of ML models. Even if we omit them from training, the model’s
evaluation of D3 and D4 as unbalanced is obvious due to their high data distribution (as
shown in Table 2 and Figure 3). On the contrary, D1 and D2 have low standard deviations,
similar to the balanced dataset D0. In order for the model to distinguish the unique feature
qualities of D1 and D2 from those of D0, it is crucial to choose these datasets for training.
This will help the model attain the traits of small local features of data and increase the
sensitivity and accuracy of the model. This will also reduce the training time for Analysis-1
and better suit industrial needs when training data are small.
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Table 2. Mean and standard deviation of the training datasets. Distributions of D0, D1, and D2 do
not vary much as compared to D3 and D4.

Training Dataset Minimum Maximum Mean Std. Deviation

D0 −0.10675 0.101037 0.000664 0.00838
D1 −0.09483 0.084269 0.000715 0.007499
D2 −0.11995 0.118957 0.000571 0.010673
D3 −0.1188 0.127205 0.000689 0.010989
D4 −0.12719 0.125183 0.000684 0.013755
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There is always some degree of noise in the signals measured from a real-life me-
chanical system. Figure 4c shows how the random noise effect is reduced by passing the
vibration data through a Gaussian moving average filter. A two-sided moving-average
Gaussian filter can be written as follows:

y(i) =
1
N

+(N−1)/2

∑
j=−(N−1)/2

w(i− j)× x(i− j) (3)

where y(i) is the smoothed value for the ith data point, N is the window size, and w(i− j)
are the weights associated to each data point. The filter reduces the noise effect and
unwanted data edges in the time domain. A sampling frequency (Fs) of 4096 samples per
second is used in the data acquisition setup. For simplicity, the filtered raw data are broken
into samples of size Fs. Each sample is called a window. Each window has 4096 data points.
Data from vibration sensor 1, as well as samples of raw and filtered signals, are presented
in Figure 4.

3.3. Feature Extraction

The filtered data were examined for important features. The most important character-
istics of vibration signals are the frequency components. By frequency analysis, it can be
seen that there are certain frequencies present in both balanced and unbalanced vibration
data that correspond to the operational parameters such as rotation frequency and the
number of rotating components such as bearings. Furthermore, in the “Unbalanced case”,
additional frequencies are present as well, which are the result of unbalance present in
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the rotation system. Fourier Transform is an important tool to analyze the characteristic
features of a signal.
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3.3.1. Fast Fourier Transform

Fast Fourier Transform (FFT) resolves a signal into its frequency components. FFT
gives us acting frequencies hidden in the signal. The unbalance in the machine, due to
mass asymmetry, adds extra frequency components and amplitude spikes to the vibration
signal. The set of active frequencies and their amplitudes deduced from the FFT signal
can be selected as a promising feature for ML algorithms. Figure 5a (blue) and Figure 5b
(pink) illustrate sample FFT for balanced and unbalanced case signals, respectively. It is
evident from Figure 5b that in the unbalanced case, there are more frequency components
and high amplitudes as compared to the balanced case in Figure 5a. Regression-based ML
algorithms work well with FFT; however, the efficiency degrades when data complexity
and the number of classes increase, as is the case for Analysis-2 (5 classes). For such cases,
along with deeper networks, a comprehensive set of features or signal characteristics like
STFT can perform better.

3.3.2. Short-Time Fourier Transform

Short-Time Fourier Transform (STFT), which is an extension of FFT, allows us to view
the frequency characteristics of a signal as a function of time. STFT captures frequency char-
acteristics as a function of time by using sliding windows in time. As a result, a spectrum
is formed at discrete time intervals. STFT has better temporal and frequency localization



Sensors 2023, 23, 7141 9 of 19

properties compared with Fourier Transform. It is used to generate representations that
capture both the local time and frequency content in the signal. When the rotor along with
the added mass spins at high speeds, sharp energy gusts inevitably happen in the vibration
data. Bright notches, as shown in Figure 6, that change in the time domain are an indication
of this effect in the STFT histogram.
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Figure 6a is an example of how STFT spectral images were created from signals with
a sampling rate of 4096 data points per second. The STFT images are transformed into
grayscale 2D images with half the resolution (438 × 328) of the original signal because
the STFT images’ high resolution (3D RGB channel; 875 × 656 for one sample) consumes
a significant amount of memory and is burdensome for academic-scale machines with
memory constraints. This makes the computation process faster. Figure 6a,b display the 3D
STFT images for the balanced and unbalanced examples, respectively, whereas Figure 6c,d
displays the corresponding grayscale images.

3.4. Classification Models

In this work, we focus on the modified ResNet model for our data. For comparison
purposes, 5 state-of-the-art classification algorithms are also employed: Artificial Neu-
ral Network, Convolution Neural Network, Random Forest, Support Vector Machine,
and Xtreme Gradient Boost. These classification techniques are often called algorithm
adaptation techniques.

3.4.1. Artificial Neural Network

Artificial Neural Network (ANN) is a machine learning algorithm that mimics the
structure and function of the human brain [46]. ANNs are composed of interconnected
node layers, containing an input layer, one or more hidden layers, and an output layer.
When a node value reaches a certain threshold, the node is activated, and its value is passed
on to the next layer of the network. ANNs have been extensively used by many researchers,
including [24,47] and others, for fault detection of rotors and bearings.
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3.4.2. Random Forest

Random Forest (RF) is a supervised learning algorithm that utilizes ensemble learning
techniques to create a robust classifier by combining weaker classifiers [48]. This approach
involves training models using a bagging method, which is responsible for the improved
performance of the algorithm. As the name suggests, the algorithm builds a “forest” of
decision trees, each of which serves as a weak classifier. The output of each decision tree is
then merged in parallel to form a strong classifier. Random Forest has been used by many
authors [29,42,48] for vibration-based damage classification of rotary machines.

3.4.3. Xtreme Gradient Boost

Xtreme Gradient Boosting (XGBoost) is a decision tree technique based on an ensemble
learning algorithm that uses a gradient boosting framework. Its most appealing features
are its execution speed and model performance. Many writers [49,50] proved that XG-
Boost outperforms other ensemble-based approaches such as FFT in terms of vibration
characteristics.

3.4.4. Convolutional Neural Network

Convolutional Neural Network (CNN or ConvNets) is a deep learning network ar-
chitecture that can recognize patterns in input images by assigning importance (learnable
weights and biases) to various aspects of images to differentiate one object from another.
As CNN learns directly from the data, the data preprocessing for ConvNets is substantially
reduced as compared to other classification algorithms. CNNs are frequently employed in
the fault detection of bearings [47] and rotors [39].

Convolutional Neural Networks are very effective in extracting important image
features in computer vision applications. A typical CNN model is composed of convolu-
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tional layers (hidden layers), activation layers, pooling layers, fully connected layers, and a
classification layer. When an input feature vector x of size m × m × 1 is passed through a
convolutional layer, the convolutional block passes the input through various convolutional
filters of size n × n × 1, which then transforms the input vector into n × n × 1 convolved
feature vectors. The CNN kernels (filters) aim to reduce the number of features present
in a dataset by creating a new subset of features that summarizes the overall original set
of features. When an input vector x passes through a convolution block, the convolution
operations F(x) are applied to it. The output H(x), also shown in Figure 7 (left), can be
represented as follows:

y = H(x)CNN = F(x) (4)

where H(x) is the desired mapping of the stacked convolutional blocks. It can be deduced
from the above equation that CNN output is dependent upon the selection of kernels used for
the convolution process in the layers. The output mapping F(x) is passed through a ReLU
activation function to classify inputs appropriately, producing a probability from 0 to 1.
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Usually, the presence of more convolutional layers in the CNN model means a better
feature vector of the input data (image) can be extracted. However, because of the multipli-
cation of very small gradients, a deep plain neural network also suffers from the vanishing
gradient problem or sometimes gradient explosion. The gradient explosion or vanishing
problem limits the depth of the network. The ResNet architecture uses a shortcut pass,
called a residual connection, to solve the vanishing gradient problem.

3.4.5. ResNet-152

Residual Neural Network (ResNet) is a CNN architecture that makes use of residual
connections to overcome the vanishing gradient problem that is typical in deep neural
networks [51]. ResNet-152 is an extension of the original ResNet architecture, with a deeper
network that has 152 layers. It has been pre-trained on the large-scale ImageNet dataset,
which contains over a million images and thousands of categories. This pre-training
allows ResNet-152 to be fine-tuned for other image recognition tasks with relatively few
training data.
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In a residual connection, shown in the middle diagram of Figure 7, the output H(x)Res
is the sum of the CNN’s output F(x) and the identity mapping of input x. The output y of a
building block of the residual network is as follows:

y = H(x)Res = F(x) + x (5)

The formulation in Equation (5) can be realized by feedforward neural networks with
“shortcut connections”, as shown in Figure 7. Shortcut connections in ResNet serve the
purpose of preserving input by skipping one or more layers in the residual block. For
normalizing the shifted mean and covariance of the feature maps, batch normalization (BN)
is applied before the activation function. Research has shown that among the various deeper
versions of ResNet-50/101/152/1202 layers, the 152-layer ResNet offers both depth and
high accuracy for better classification. Hence, this research adopted ResNet-152 architecture
as the base model of choice.

In the first stage of our investigation for the model selection, the above-mentioned
networks were trained with numerical FFT feature data and image-based STFT data. The
two best-performing networks were picked to continue with the development of a robust
framework. Figure 8 shows that CNN and ResNet-152 (trained with STFT) outperform the
other supervised learning models in terms of accuracy. This highlights the fact that STFT is
a desirable feature for our classification problems of Analysis-1 and Analysis-2.
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Almost similar to Extra Tree, CatBoost, and RF in terms of accuracy, it can be seen that
CNN and ResNet-152 outperform all the algorithms in Figure 8. Both CNN and ResNet
have their unique advantages, and it can be hypothesized that a hybrid model with the
residual properties of ResNet and the classification accuracy of CNN will perform better
than ResNet or CNN alone. A hybrid algorithm with base model ResNet (represented as
B in Figure 7) and classification model CNN (represented as A in Figure 7) will have the
advantage of depth (of ResNet) for better feature extraction and the advantage of promising
classifiers (of CNN). In the following section, a hybrid version of ResNet-152 and CNN for
this purpose is described.

4. Proposed Framework

We aimed to develop a neural network that is deep enough to successfully extract
key features from complex vibration data in both binary and multiclass scenarios. The
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problem with deep networks is that they often fall victim to overfitting due to the vanishing
gradient problem. ResNet is one of the promising deep neural networks that, by using skip
connections, can successfully overcome the vanishing gradient problem. ResNet-152 was
chosen as the base model of our architecture because of its depth and ability to perform
better on complicated multiclass data than other versions of ResNet. This enables the
framework to use the feature extraction capability of very deep neural networks without
encountering the vanishing gradient problem. ResNet’s skip connections allow information
to bypass one or more layers in the network, which can help reduce the vanishing gradient
problem and improve gradient flow during training. However, if too many skip connections
are employed, the network may struggle to learn increasingly complicated data, and the
model may suffer from difficulties such as exploding gradients or overfitting, as evident
in Figure 11a. The addition of plain neural network layers will eliminate the problem of
exploding gradients while also assisting in the extraction of complex data features. The
KERAS library was employed to determine the optimum number of plain neural network
layers. Our optimized model has 3 neural layers on top of the 152 residual layers of
ResNet. Output values from neural network layers are passed onto the flattened layer,
which serves as a horizontal simplified representation of the neuron values. The flattened
layer is followed by the fully connected or dense layer, which processes all the information
and returns only a few values to determine feature-related values in the image. This
output is then condensed in the next step according to the number of output classes and
passed to the sigmoid layer for the binary class problem and to the softmax layer for the
five-class problem.

Figure 9 depicts the proposed deep learning framework. Using an image generator,
the training data comprising 3D STFT images are resized to 3 × 224 × 224, which is the
ResNet input image size. The final layer of ResNet, that is, the fully connected (FC) layer, is
removed, and plain convolutional network layers are added.
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The categorical cross-entropy loss function equation employed for the multiclass prob-
lem is denoted as follows:

L = − 1
N

N

∑
i=1

M

∑
j=1

yij × log
(

pij
)

(6)

where N is the number of training samples, M is the number of classes, yij represents the
true label of the ith sample for the jth class (1 if the sample belongs to the class, else 0), and
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pij is the predicted probability of the ith sample belonging to the jth class. For the binary
classification problem, the number of categories is M = 2.

To ensure that forward-propagated signals have non-zero variances and hence avoid
becoming trivial, batch normalization is performed after each convolution and before the
activation function. The Adam optimizer was used for the optimization of the loss function.
A 50% dropout rate was selected to avoid overfitting. The k-fold (k = 5) training strategy
was used to enable the model to learn and test the characteristics of each dataset by dividing
it into five subfolders during training. The key training parameters are given in Table 3.

Table 3. Hyperparameters of the proposed network.

Epoch Resize Folds Patience Mode Optimizer Rate Beta_1 Beta_2
Activation Function

For 2 Class For 5 Class

20 224,224,3 5 10 max Adam 0.0001 0.9 0.999 Sigmoid Softmax

Before the vibration data are sent to the network, they are preprocessed for noise
filtering and sampling, followed by extraction of the STFT features. The complete process
is shown in Figure 10.
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5. Results

The proposed framework, trained with the STFT feature data, shows that our network
performed best with three neural layers (ResNet-3N). Other neural network combinations
with no added neural layers like ResNet-152 or more neural layers like ResNet-5N (with
added layers) or ResNet-7N (with seven neural layers) suffer from the overfitting problem
either for Analysis-1 or Analysis-2. Accuracy graphs for both Analysis-1 and Analysis-2
are plotted in Figure 11.

The Analysis-1 results (dotted lines) show that network accuracy decreases as the
number of neural network (NN) layers increases beyond three. The difference between
test and training accuracy increases with five NN layers, and going further, the network
suffers from overfitting in the case of ResNet-7N (Figure 11d). The F1-score in Table 4 also
follows a similar trend. This suggests that increasing the network depth beyond three NN
layers pushes the model to generalize more toward the training data. This behavior is
inevitable when the network is deep enough to memorize all data patterns, including noise
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and random fluctuations. The three NN layers were found to be optimal and could indicate
a better way to extract high-, medium-, and low-level features.
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Table 4. Test accuracies vs. F1-scores of the tested models. Note that the accuracy and F1-score of the
proposed model are the highest.

Model
Accuracy F1-Score

Analysis-1 Analysis-2 Analysis-1 Analysis-2

ResNet-152 88.01 80.31 0.8809 0.8405
ResNet-152-3N 98.71 94.15 0.9759 0.958
ResNet-152-5N 91.59 94.73 0.742 0.8847
ResNet-152-7N 83.2 94.540 0.845 0.910

In the case of Analysis-2 (solid lines), it is observed that as more NN layers are added
to the ResNet-152 architecture, the model behavior is considerably stable and has increased
accuracy and a higher F1-score. This is because the problem complexity increases with
the increase in data classes (five classes). Consequently, the deeper network is better at
identifying key features of each class without suffering from overfitting. However, going
for a deeper network is useless as the network’s accuracy does not increase further than
that of ReNet-3N for Analysis-2 and will overfit for Analysis-1.

The proposed model gives an increased accuracy of 11.22% for Analysis-1 and 14.84%
for Analysis-2 when compared with the original ResNet-152. This is a significant increase.

When the accuracy is compared with CNN, there is a significant increase of 12.92% for
Analysis-1 and 18.5% for Analysis-2. These results are given in Table 5.



Sensors 2023, 23, 7141 16 of 19

Table 5. The proposed hybrid model has higher accuracy than CNN or ResNet alone. Percent increase
is in the last row.

CNN ResNet-152 Proposed Model (ResNet-3N)

Analysis-1 Analysis-2 Analysis-1 Analysis-2 Analysis-1 Analysis-2

Accuracy 86.31 76.65 88.01 80.31 99.23 95.15
Percent increase (%) 12.92 18.5 11.22 14.84 n/a n/a

Since our proposed hybrid model is better than individual CNN and ResNet-152 for
industrial-scale rotor problems, the model is usable for multiclass prediction where a single
model can be used for a varying number of classes.

6. Conclusions

This paper proposes a robust framework for the classification of balanced and un-
balanced vibration signals of a rotor. For the given vibration data, the proposed model
displays significantly improved performance in terms of accuracy and F1-score in compari-
son to other state-of-the-art algorithms used in this field. Other close versions of the model,
namely, ResNet-5N and ResNet-7N, performed satisfactorily in Analysis-2 but poorly in
Analysis-1, whereas the proposed ResNet-3N performed excellently in both Analysis-1
and Analysis-2. It is concluded that for a multiclass rotor unbalance problem where the
number of classes may vary from binary to multiple, ResNet-3N is a robust algorithm
that will give high accuracy for industrial rotary machine data. Figure 12 implies that
ResNet-3N outperforms similar experimental designs as well as parent architectures of
CNN and ResNet-152.
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Figure 12. Accuracy comparison of the proposed model architecture (a) with added similar ex-
perimental designs and (b) with the base architectures. It is evidennt that framework ResNet-3N
outperforms other similar designs in (a) as well as the parent architectures in (b).

The presented work also demonstrates a strategy to effectively select the core set of
training data (from a pool of databases) by evaluating the statistical features of the datasets,
which consequently speeds up the training process and increases accuracy. Also, it is
deduced that similar to other applications, for rotor unbalance detection and quantification,
a rich data representation scheme (such as STFT) performs well in comparison to single-
feature FFT data. The STFT histogram (as shown in Figure 6) shows the effect of added
mass in the unbalanced rotor in the form of varying frequencies in the time domain. The
effect is prominent in transient state data, however is also visible if the rotor is in the
steady-state operation. This effect is represented by yellow blotches indicative of energy
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jumps of specific frequency components. This feature gives intrinsic properties to the STFT
and helps deep neural networks characterize the signal with distinguishable properties,
making STFT a more promising feature for our deep network.

Computational costs incurred during preprocessing can be a challenge to the real-
time application of the method in industry. As image-processing vibration data for STFT
feature maps need computational power (processor) and memory (RAM), a computer
needs to be attached to the rotor machine for the real-time processing of the data (as
shown in Figure 2). The grayscale STFT images can then be sent to a pre-programmed and
pre-trained microchip for fault prediction.

For future work, it is possible to test other types of rotor faults on the proposed
algorithm. Also, a combination of other data features, like power spectral density, voltage
or current values at different faults, rotational speeds, etc., can be tested to see the effect on
accuracy. Furthermore, a user interface strategy to transition between binary and multiclass
models can be developed for industrial-scale applications in which, with the touch of a
button, a user would be able to select the algorithm type for the number of classes to train.
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