
Citation: Nawaz, T.; Alzahrani, A.

Machine-Learning-Assisted

Cyclostationary Spectral Analysis for

Joint Signal Classification and

Jammer Detection at the Physical

Layer of Cognitive Radio. Sensors

2023, 23, 7144. https://doi.org/

10.3390/s23167144

Academic Editor: Dimitrie Popescu

Received: 20 June 2023

Revised: 20 July 2023

Accepted: 3 August 2023

Published: 12 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Machine-Learning-Assisted Cyclostationary Spectral Analysis
for Joint Signal Classification and Jammer Detection at the
Physical Layer of Cognitive Radio
Tassadaq Nawaz * and Ali Alzahrani

Department of Computer Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
aalzahrani@kfu.edu.sa
* Correspondence: tnawaz@kfu.edu.sa

Abstract: Cognitive radio technology was introduced as a possible solution for spectrum scarcity by
exploiting dynamic spectrum access. In the last two decades, most researchers focused on enabling
cognitive radios for managing the spectrum. However, due to their intelligent nature, cognitive radios
can scan the radio frequency environment and change their transmission parameters accordingly on-
the-fly. Such capabilities make it suitable for the design of both advanced jamming and anti-jamming
systems. In this context, our work presents a novel, robust algorithm for spectrum characterisation
in wideband radios. The proposed algorithm considers that a wideband spectrum is sensed by a
cognitive radio terminal. The wideband is constituted of different narrowband signals that could
either be licit signals or signals jammed by stealthy jammers. Cyclostationary feature detection
is adopted to measure the spectral correlation density function of each narrowband signal. Then,
cyclic and angular frequency profiles are obtained from the spectral correlation density function,
concatenated, and used as the feature sets for the artificial neural network, which characterise each
narrowband signal as a licit signal with a particular modulation scheme or a signal jammed by a
specific stealthy jammer. The algorithm is tested under both multi-tone and modulated stealthy
jamming attacks. Results show that the classification accuracy of our novel algorithm is superior
when compared with recently proposed signal classifications and jamming detection algorithms. The
applications of the algorithm can be found in both commercial and military communication systems.

Keywords: cognitive radios; signals classifications; stealthy jammer; cyclostationary spectral analysis;
artificial neural networks

1. Introduction

Cognitive Radio (CR) emerged as a result of recent breakthroughs in Software Defined
Radios (SDR) and Machine Learning (ML), as well as neuroscience findings [1,2]. Due to
Dynamic Spectrum Access (DSA) capability, CR technology has the potential to address
the problems of the wireless spectrum shortage and inefficient spectrum utilisation [3,4].
In both TV white space (TVWS) CR networks [5–9] and 5G technology [10], DSA plays a
vital role.

In CR networks, the Secondary Users (SUs) can use the radio spectrum with different
intentions, which means the licit user uses the radio spectrum in a manner to remain
compliant with the security needs of licensed Primary Users (PUs) and avoid interfering
with other users, whereas malicious users transmit signals with the motive of interfering
with or jamming the communications of the targeted radio system. Due to their broadcast
nature, radio communications are susceptible to external attacks launched by malicious
users. The physical layer (PHY-layer) is particularly exposed to radio frequency (RF)
jamming attacks. RF jamming and anti-jamming are well-known in conventional radio
communication systems. However, significant advances have been made in the last two
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decades in CR technology that allow the design and deployment of advanced intelligent
jamming [11] and anti-jamming [12,13] systems.

The need for measurable communications security in the Internet-of-Things (IoT)
and Cyber-Physical Systems (CPSs) frameworks [14–16] has recently necessitated the
establishment of an appropriate paradigm. SHIELD, which comprises the methods and
techniques for designing secure embedded systems [17], is an important step taken in this
direction. TVWS research [18] has also tackled the problem of illegitimate user detection.

CR networks allow the devices to sense the neighbouring radio environments, decide
about the occupation of channels, and reconfigure the transmission parameters to achieve
the required quality of service. Spectrum sensing is embedded in modern anti-jamming
systems and plays a key role in the detection and identification of interfering and jamming
entities [19]. Furthermore, it is used to record a history of the malicious user’s activities to
design more efficient anti-jamming strategies, e.g., in frequency hopping spread spectrum
(FHSS) systems it can be used to change the hopping sequence in order to avoid the bands
jammed by malicious users [20].

A number of sensing methods were introduced over the last decade, which include
energy detector (ED) [21], cyclostationary feature detector (CFD) [22], and matched filter
detector (MFD) [23]. ED has a reasonably simple implementation and does not need any
prior information about the signal. It is also included in the IEEE 802.22 standard for
spectrum sensing. However, the detection performance of ED is significantly degraded
in low signal-to-noise (SNR) radio environments. The MFD is the optimal detector but
needs thorough prior information on the PU signal. Therefore, a receiver with a dedicated
architecture is needed for the PU signal, which makes it impossible to consider in most
practical sensing scenarios. On the other hand, in most practical scenarios, CR devices
need to detect low-power signals; therefore, a new sensing technique—namely, CFD—is
presented in the literature. The CFD technique has the capability to distinguish licit signals
from noise and interference in low SNR conditions with high accuracy, which are attained
at the expanse of high computational complexity. CFD relies on the cyclostationary features
of modulated communication signals, such as modulation rate and carrier frequency, to
distinguish between signals. The CFD sensing methods compute the spectral correlation
function (SCF) [24–26] of signals, since noise is a stationary process and has no spectral
components at harmonics that make it suitable to be used in low SNR environments. SCF
has been employed as a reliable method for signal categorisation [27–29] since it produces a
unique pattern for each signal. Therefore, it can also be used as a reliable tool to distinguish
between legitimate signals and jamming waveforms. In [30], the authors compared the most
widely used sensing methods in terms of accuracy and computational complexity. Methods
for determining the most likely signal to which the observed feature set belongs are required
by feature-based classification algorithms. Choosing the appropriate ML algorithm for
signals classification is not the only challenge to overcome to obtain targeted classification
accuracy; feature extractions and selection techniques are also important because they
have a big impact on classification accuracy. Therefore, a reliable CFD detector is used for
feature extraction in this work. In previous works, refs. [31,32] performed cyclostationary
spectral analysis on the wideband spectrum resulting in high computational complexity; in
order to reduce the overhead, this work exploits the sparse nature of WB, which is a valid
assumption in the context of CR, and performed CFD analysis for the NB signal in each
occupied sub-band in the WB spectrum. Further, a computationally efficient algorithm strip
spectral correlation algorithm (SSCA) [33] is used to compute the SCF, as compared with
the FFT accumulation method (FAM) [33] used in previous work. Further, a large dataset is
collected using different carrier frequencies, jamming powers, and SNRs as compared with
the jammer’s fixed power in [31,32]; here, varying jamming power can be considered as a
mobile jammer scenario. In this work, a novel, single artificial neural network is proposed
to detect and identify both multi-tone and pulse-modulated jammer attacks as well as to
classify the legitimate signals with comparable accuracy to the work in [31,32].
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While CR has emerged as a solution for DSA/OSA, its capacity to sense and explore
a wide variety of frequencies and opportunistic applications has posed severe issues to
network security. These features enable attackers to carry out more sophisticated attacks,
for example, the primary user emulation (PUE) attacks [34], in which a hostile user imper-
sonates a primary user. Furthermore, attackers can monitor the spectrum and use smart
jamming to disrupt it [35,36]. Jamming attacks are Anomalous Spectrum Utilisation Attacks
(ASUAs) that cause abnormal spectrum usage and disrupt the DSA/OSA in CR networks.

Our work considers stealthy jamming attacks. Such jammers are equipped with CR-
spectrum sensing capability; therefore, they only transmit a jamming signal when activity
is sensed over the channel and stop once the legitimate transmission stops. Such jammers
are difficult to detect using common sensing techniques like ED at the physical layer. The
majority of studies that investigate RF jamming assumed additive white Gaussian noise
(AWGN) jamming [37,38].

However, the authors showed in [39,40] that modulation-based jamming attacks can
result in optimum jamming in power-constrained conditions. We consider two different
types of stealthy jammers: (i) the jammer is equipped with ED capabilities and uses a
high-power multi-tone to jam various bands in WB radios; (ii) the jammer is equipped with
a feature detector, able to identify the modulation schemes of a legitimate signal, and uses
an optimum pulsed jamming strategy against the target signal. Hence, a reliable jammer
detection algorithm is required to design a suitable anti-jamming system to counter such
jamming attacks.

This article focuses on designing a reliable algorithm for the joint classification of
legitimate signals and jammer detection in WB CRs. The main contributions of the article
are the following:

1. Classify received licit signals into their corresponding modulation schemes using CFD
and artificial neural network;

2. Detect both multi-tone and modulated pulsed stealthy jammers using the CFD and
the same trained artificial neural network classifier as above.

We consider a WB spectrum that is constituted of many sub-bands, and each of the
sub-bands is used by a narrowband (NB) signal or free. The occupied sub-bands are
either used by a licit signal or jammed by the stealthy jammer. The algorithm’s first step
is to perform cyclostationary spectral analysis on received NB signals and compute the
corresponding SCF. Then, angular frequency profile ( f ) and cycle frequency profile (α)
are obtained from the SCF of the signal. These two profiles are combined and used to
train an artificial neural network, which then characterise various NB signals in a WB
spectrum. Further, the algorithm is tested with an independent signal set at various SNRs.
The algorithm has shown significantly high classification performances in the literature
in comparison to the proposed techniques [41]. Moreover, it achieved very high jammer
detection rates.

The article is structured as follows. Sections 2 and 3 give the system model and pro-
posed algorithm, respectively. Results are illustrated in Section 4. Finally, the conclusions
are drawn in Section 5 with some future directions.

2. System Model and Problem Formulation

A number of transmitters (Txl), k s.t. l ∈ {0, 1, 2 . . . M− 1}, are present in the vicinity
of CR terminal. The CR terminal sensed a WB spectrum and, therefore, received a signal
that can be represented by the expression

z(t) =
M−1

∑
l=0

hl(t) ∗ Sl(t) + v(t) (1)

where Sl(t) shows the signal transmitted by the l-th transmitter, hl(t) is the radio channel
between the l-th transmitter and receiver, ∗ represents convolution operator, and v(t) de-
notes the AWGN with zero mean and power spectral density of σ2

v . We considered that the
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received NB signal’s power is degraded over the square of the distance; therefore, the free
space path loss model (FSPL) is used to compute the received power at the receiver terminal.
Further, it is considered that the channel (hl(t)) is the slow, flat, Rayleigh fading channel
in the observation process. It is assumed that transmitters can generate the signals with
different modulation schemes, such as binary amplitude shift keying (BASK), binary phase
shift keying (BPSK), quadrature amplitude modulation (QAM), quadrature phase shift
keying (QPSK), pulse amplitude modulation (PAM), binary frequency shift keying (BFSK),
or any other modulation scheme, as depicted in Figure 1. It shows that a receiver node scans
a WB spectrum constituting multiple NB transmitted signals while a multi-tone jammer
(upper panel) and modulated pulsed jammer (lower panel) try to jam multiple signals at
the receiver terminal. The transmitters generate the signals using the following model:

Sl(t)MPSK =
∞

∑
n=−∞

Ap(t− nTs)e(j2π(mn−1)/M+j2π fc) (2)

where A is amplitude, Ts = 1/Rs is the symbol period and Rs is the symbol rate, M = 2, 4
are the number of unique phases, mn is the n-th transmitted symbol, fc is the carrier
frequency, and p(t) is the Root Raised Cosine Pulse Shape (RCC) filter with a roll-off factor
of β = 0.5.

Figure 1. Cognitive radio terminal (Rx) senses a wideband spectrum composed of various narrow-
band transmitted signals. The multi-tone and modulated pulsed stealthy jammers try to jam different
signals at the receiver node.

For our system model, two types of stealthy jammers are considered with different CR
sensing capabilities:

1. Jammer is equipped with ED sensing technique and uses multi-tone as the jamming
strategy to jam multiple NB signals in the observed WB signal. A tone with sufficiently
higher power than the licit signal can jam any of the occupied SBs as shown in Figure 1.

2. Jammer is equipped with a feature detector; hence, it is able to recognise the modula-
tion schemes of transmitted signals and, therefore, uses the optimal pulsed (modu-
lated) jamming schemes against the target signals, as shown in Figure 1.

The pulsed jamming attacks are particularly effective in power-constrained environ-
ments, and optimal jamming schemes against modulated target signals are given in [40].
We assumed that both types of jammers are able to transmit powerful RF signals to cause
interference at any communication frequency in the WB spectrum. Indeed, the received
signal strength (RSS) related to the jamming signal depends on the distance between the
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jammer and the receiver terminal. Therefore, in order to simulate this scenario, the jammer-
to-signal ratio (JSR) is fixed to 0 dB and the jammer terminal is moved towards receiver
terminal from 15 m to 3 m with a step size of 3 m. In second scenario, the distance between
the jammer and receiver terminals is fixed to 12 m and the JSR is changed between 0 dB
and 7 dB. The dataset is collected for three broad jamming scenarios:

- No jamming: jammer is not transmitting
- Tone jamming: jammer employs multi-tone to jam the NB signals in WB spectrum
- Pulsed jamming: jammer employs pulsed jamming to jam the NB signals in WB spec-

trum. We used the MatLab environment to simulate the system model according to the
specifications provided above.

3. Proposed Algorithm

This section first introduces cyclostationary spectral analysis and artificial neural
networks; then, our newly proposed algorithm is presented.

3.1. Cyclostationary Spectral Analysis

The received signal z(t) is considered cyclostationary if its mean and autocorrelation
function are periodic with period T0,

Mz(t + T0) = Mz(t), Rz(t + T0, τ) = Rz(t, τ). (3)

Fourier series components can be used to represent the autocorrelation of a cyclosta-
tionary signal z(t).

Rz(t, τ) = E[z(t + τ/2)z∗(t + τ/2)] (4)

Rz(t, τ) = ∑
α

Rα
z (τ)e

j2παt (5)

Here, E[.] is the expectation operator and α = b
T0

, where b is an integer. Rα
z (τ) is the cyclic

autocorrelation function (CAF) of the received signal z(t) and given by the equation

Rz(τ) = lim
T→∞

1
T

∫ T
2

−T
2

Rz(t, τ)e−j2παtdt (6)

as Rz(τ) is periodic with period T0; therefore, (5) can be given by

Rz(τ) =
1
T0

∫ T0
2

−T0
2

Rz(t, τ)e−j2παtdt (7)

The SCF is obtained by computing the Fourier Transform of the CAF (6) and given by

Sz( f ) =
∫ ∞

−∞
Rα

z (τ)e
−j2π f τdτ (8)

where Sz( f ) is the SCF of received signal z(t), f and α represent the angular and cyclic
frequencies, respectively.

The key advantage of using SCF is that its computation is not affected by noise, since
noise is a stationary process and its spectral component has no correlation. This allows ac-
curate computation of SCF even at very low SNRs. Moreover, modulated communications
signals such as FSK, MSK, QAM, AM, PAM, QPSK, and BPSK with overlapped PSDs have
unique SCF patterns. Since higher-order QAM and PSK modulation show the same second-
order statistics, our experiments only considered BPSK and QPSK modulation schemes.
Higher-order statistics [42] is needed for such signals that will be considered in the future
to differentiate between higher-order QAM and PSK. The SCF of BPSK and QPSK signals is
shown in Figure 2a,b. These panels show the spectral correlation densities of received NB
signals as a function of both angular and cyclic frequencies. Since SCF estimation generates
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a large amount of data, it is not feasible to use it as a feature set for a classifier; therefore,
two profiles—namely, f -profile and α-profile, given in Equations (9) and (10)—are obtained
from SCF. The α-profile of NB BPSK and QPSK signal is depicted in Figure 2c,d. These
profiles are combined to form an input feature vector that is then fed to an ANN-based
classifier.

I(α) = max f [Sα
z ] (9)

I( f ) = maxα[Sα
z ] (10)

(a) (b)

(c) (d)
Figure 2. (a) SCF of BPSK signal. (b) SCF of QPSK signal. (c)Alpha profile of BPSK signal. (d) Alpha
profile of QPSK signal.

3.2. Artificial Neural Network and Proposed Algorithm

The proposed algorithm embeds an Artificial Neural Network (ANN) for spectrum
characterisation because of its efficient use in pattern recognition problems. Further, it has
the potential to generalise to any carrier frequency, signal-to-noise ratio, symbol rate, and
frequency offset, which makes it suitable for the problem under consideration. The system
is designed to characterise the spectrum under two stealthy jamming attacks, namely,
multi-tone and modulated pulsed jamming attacks. First, a dedicated ANN is used as
a classifier for each jamming attack. For multi-tone jamming attack, an ANN classifies
received NB signals as BPKS, QPSK, BPSK plus Tone Jammer (BPSK-TJammed), and QPSK
plus Tone Jammer (QPSK-TJammed). Similarly, for modulated pulsed jamming attacks, an
ANN is used to characterise the signals as QPSK, BPSK, BPSK plus Pulsed Jammer (BPSK-
PJammed), and QPSK plus Pulsed Jammer (QPSK-PJammed). ANN, like every supervised
machine learning algorithm, operates in two stages: training (offline) and testing (online).
The f and α profiles obtained from the SCF of each NB signal are concatenated and fed as a
feature vector to ANN. Accordingly, both dedicated ANNs have 100 inputs associated with
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both the profiles, a hidden layer with ten neurons whose transfer function is a hyperbolic
tangent sigmoid, and an output layer that contained four neurons associated with four
signal classes, as discussed above. Each output value is between 0 and 1, and the class
with the maximum value is treated as the signal type. The scale conjugate gradient back-
propagation [43] algorithm is used to train ANN. For both dedicated ANN architectures,
100 trains are run, with weights being randomly initialised for each run. Each network
architecture is trained (70%), validated (15%), and tested (15%) using a dataset of 40,000
signals. Over 98% (average) true positive classification was achieved with a single hidden
layer for the four signal classes. Such classification accuracy indicates that an increase in
the number of hidden layers will significantly increase the training time but not improve
classification accuracy. As a result, the ANN architecture with a single hidden layer that
consisted of 10 neurons and performed the best among the 100 trains was chosen for the
classification of signals. Figure 3 depicts the ANN used in this work.

Figure 3. Proposed artificial neural network with ten neurons in hidden layer.

Further, a single ANN is designed to classify the signals under both multi-tone and
modulated pulsed stealthy jamming attacks. The ANN is aimed at classifying the signals as
BPSK, QPSK, BPSK-TJammed, QPSK-TJammed, BPSK-PJammed, and QPSK-PJammed. The
ANN is trained (70%), validated (15%), and tested (15%) using a dataset of 80,000 signals.
For the classification of the above six classes of signals, the ANN with a single hidden layer
that contained 18 neurons and demonstrated the best results among the 100 trains was
chosen. The results are reported in Section 4. The block diagram of the proposed algorithm
is depicted in Figure 4 and the pseudo-code of the algorithm is outlined in Algorithm 1.
The CR terminal senses a WB spectrum that consists of many NB signals. Then, the SCF of
each NB signal is computed according to the procedure detailed in Section 3.1, and f - and
α-profiles are subsequently extracted from SCF. The f - and α-profiles of the respective NB
signals are concatenated and given as input features to train the ANN. Then, the ANN is
also tested for the independent signal set; it classifies the signal in occupied sub-bands as
a legitimate signal with a corresponding modulation scheme or NB signal jammed by a
particular type of jammer.

Figure 4. Proposed algorithm for joint signal classification and stealthy jammer detection.
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Algorithm 1 Pseudo-code for proposed algorithm

1: function Joint Signal Classification and Stealthy Jammer Detection
2: Input:
3: Train→ Train ANN with Labelled data set
4: Test→ Independent data set
5: Output:
6: Predicted→ Signal class
7: Procedure:
8: Initialise all SB states to “free”
9: Receive the WB signal

10: Divide WB into j SBs
11: for j = 1 to J, do
12: Compute the SCF of each NB signal
13: Obtain the α and f -profiles from SCF
14: Feed the concatenated α and f frequency profiles for SBj to previously trained

ANN
15: Decision← Signal class
16: end for
17: end function

4. Simulation Results and Discussion

A WB signal of 50 MHZ, which is occupied by K NB signals, is considered to be sensed
by a CR terminal. For our simulations in the MatLab environment, it is assumed that
NB signals are generated by QPSK and BPSK modulation schemes. Two types of stealthy
jamming attacks, namely, multi-tone and modulated pulsed, are considered against these
signals. The WB spectrum is considered to be affected by Rayleigh fading and AWGN. The
sampling rate is set to 100 MHz. It is assumed that detection is already performed and
the CR node has knowledge of occupied SBs. The signal characterisation is performed at
α = 2 fc, where AWGN has no correlation. The designed algorithm is further tested with
the independent dataset and the classification results are given by confusion matrices.

4.1. Dedicated ANN Architecture for the Stealthy Jamming Attacks

A dedicated ANN architecture, for each type of jamming attack, is designed according
to the process detailed in Section 3. The ANN is trained using a dataset of 40,000 signals at
various carrier frequencies and SNRs; hence, the system performance is independent of
carrier frequencies and SNRs.

The overall performance of the ANN classifier in the presence of a multi-tone stealthy
jamming attack is shown in the form of a test confusion matrix in Figure 5 that shows a
classification rate of approximately 99% is achieved. The tested signals are 15% (6000) of the
total signals used to train ANN. Figure 5 shows that the algorithm successfully identified
the un-jammed legitimate signals, QPSK as QPSK and BPSK as BPSK, with 99% and 98%
accuracy, respectively. For both jammed signals, BPSK-TJammed and QPSK-TJammed, the
classification accuracy is approximately 99.7% and 99.8%. After training and testing the
ANN with 40,000 samples, the ANN is further tested using an independent signal set. The
system’s performance is specifically evaluated online for 1000 independent signals that are
generated using various carrier frequencies and SNRs (−9 to 6 dB). The confusion matrices
in Tables 1–6 give the classification rate for the four classes of signals. The proposed
algorithm, which is based on cyclic spectral analysis and ANN, performs well in most of
the system configurations, even at low SNRs. It can be observed in Table 1 that at −9 dB,
the ANN classified BPSK and QPSK to their corresponding classes with a rate of 97.7% and
96.7%, while for 98.7% and 99.2%, the algorithm correctly classified the jammed signals
(BPSK-Jammed and QPSK-Jammed). Table 1 shows that for all four classes of signals, a
classification rate of approximately 99% is achieved. Further, it is possible to infer from
confusion matrices (Tables 2–7) that no classification errors (100% accuracy) are observed at
and above −3 dB.
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Figure 5. Test confusion matrix of the dedicated ANN with four output classes: BPSK, QPSK,
BPSK-TJammed, and QPSK-TJammed.

Table 1. Confusion matrix of the proposed ANN at −9 dB in presence of Tone jamming.

Signal Class BPSK QPSK BPSK-TJammed QPSK-TJammed

BPSK 977 21 2 0

QPSK 33 967 0 0

BPSK-TJammed 2 3 987 8

QPSK-TJammed 0 0 8 992

Table 2. Confusion matrix of the proposed ANN at −6 dB in presence of Tone jamming.

Signal Class BPSK QPSK BPSK-TJammed QPSK-TJammed

BPSK 990 10 0 0

QPSK 13 985 0 3

BPSK-TJammed 0 0 992 8

QPSK-TJammed 0 0 2 998

Table 3. Confusion matrix of the proposed ANN at −3 dB in presence of Tone jamming.

Signal Class BPSK QPSK BPSK-TJammed QPSK-TJammed

BPSK 1000 0 0 0

QPSK 0 1000 0 0

BPSK-TJammed 0 0 1000 0

QPSK-TJammed 0 0 0 1000
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Table 4. Confusion matrix of the proposed ANN at 0 dB in presence of Tone jamming.

Signal Class BPSK QPSK BPSK-TJammed QPSK-TJammed

BPSK 1000 0 0 0

QPSK 0 1000 0 0

BPSK-TJammed 0 0 1000 0

QPSK-TJammed 0 0 0 1000

Table 5. Confusion matrix of the proposed ANN at 3 dB in presence of Tone jamming.

Signal Class BPSK QPSK BPSK-TJammed QPSK-TJammed

BPSK 1000 0 0 0

QPSK 0 1000 0 0

BPSK-TJammed 0 0 1000 0

QPSK-TJammed 0 0 0 1000

Table 6. Confusion matrix of the proposed ANN at 6 dB in presence of Tone jamming.

Signal Class BPSK QPSK BPSK-TJammed QPSK-TJammed

BPSK 1000 0 0 0

QPSK 0 1000 0 0

BPSK-TJammed 0 0 1000 0

QPSK-TJammed 0 0 0 1000

Similarly, a dedicated ANN is trained for a total 40,000 signals set at different SNRs
and carrier frequencies to classify the signals in the presence of modulated pulsed jamming
attacks. ANN classifies the signals into four classes, namely, BPSK, QPSK, BPSK-PJammed,
and QPSK-PJammed. The optimal jamming strategies for such a jammer are given in
Table 1. The test confusion matrix for signal classification under modulated pulsed stealthy
jamming attack is given in Figure 6 and the results show that the proposed ANN correctly
classifies all signals with an overall classification of 99.5%. Moreover, the ANN is further
tested for an independent signal set and test confusion matrices for various SNRs are
shown in Tables 7–12. Table 7 shows that at −9 dB, for all four types of signals—BPSK,
QPSK, BPSK-PJammed, and QPSK-Jammed—the classification rate is approximately 99%.
Tables 9–12 show that a classification rate of 100% is achieved at and above −3 dB, which
makes this algorithm suitable to not only classify the legitimate signals but also detect
jamming attacks at low SNRs.

Table 7. Confusion matrix of the proposed ANN at −9 dB in presence of Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJammed QPSK-PJammed

BPSK 990 5 3 2

QPSK 3 988 2 7

BPSK-PJammed 0 0 992 8

QPSK-PJammed 0 0 5 995
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Figure 6. Test confusion matrix of the dedicated ANN with four output classes: BPSK, QPSK,
BPSK-PJammed, and QPSK-PJammed.

Table 8. Confusion matrix of the proposed ANN at −6 dB in presence of Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJammed QPSK-PJammed

BPSK 990 10 0 0

QPSK 13 985 0 3

BPSK-PJammed 0 0 992 8

QPSK-PJammed 0 0 2 998

Table 9. Confusion matrix of the proposed ANN at −3 dB in presence of Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJammed QPSK-PJammed

BPSK 1000 0 0 0

QPSK 0 1000 0 0

BPSK-PJammed 0 0 1000 0

QPSK-PJammed 0 0 0 1000

Table 10. Confusion matrix of the proposed ANN at 0 dB in presence of Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJammed QPSK-PJammed

BPSK 1000 0 0 0

QPSK 0 1000 0 0

BPSK-PJammed 0 0 1000 0

QPSK-PJammed 0 0 0 1000
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Table 11. Confusion matrix of the proposed ANN at 3 dB in presence of Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJammed QPSK-PJammed

BPSK 1000 0 0 0

QPSK 0 1000 0 0

BPSK-PJammed 0 0 1000 0

QPSK-PJammed 0 0 0 1000

Table 12. Confusion matrix of the proposed ANN at 6 dB in presence of Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJammed QPSK-PJammed

BPSK 1000 0 0 0

QPSK 0 1000 0 0

BPSK-PJammed 0 0 1000 0

QPSK-PJammed 0 0 0 1000

4.2. A Single ANN Architecture for Both Stealthy Jamming Attacks

A single ANN is designed to characterise the spectrum in the presence of both multi-
tone and modulated pulsed jamming attacks. The ANN is trained with 80,000 signals set at
different SNRs and carrier frequencies for six classes of signals, which are BPSK, QPSK,
BPSK-Modulated Pulse Jammed (BPSK-PJ), QPSK-Modulated Pulse Jammed (QPSK-PJ),
BPSK-Tone Jammed (BPSK-TJ), and QPSK-Tone Jammed (QPSK-TJ). The ANN classifies the
signals with a total classification rate of 98.5%, as presented in Figure 7. The true positive
for six classes are 99%, 98%, 98%, 97%, 99%, and 99% consecutively, which shows that
the proposed algorithm not only classifies the legitimate signals with a very high rate but
also detects both multi-tone and modulated pulsed stealthy jamming attacks with very
high accuracy. Further, this single ANN gives comparable performance to dedicated ANN
architectures (Figures 5 and 6) that used a dedicated neural network to detect one particular
type of jamming attack.

Moreover, the ANN is also tested for independent signals from the one used in the
previous confusion matrix computation. For testing, 1000 samples, for each class of signals,
are tested at SNRs in the range of −9 dB–6 dB. The resultant confusion matrices for each
SNR are shown in Tables 13–18. The results show that at −9 dB, the classification rates
for un-jammed signals, BPSK and QPSK, are 96.8% and 91.4%, while for four jammed
signals—BPSK-PJ, QPSK-PJ, BPSK-TJ, and QPSK-TJ—they are 90.7%, 95.4%, 93.3%, and
96%, respectively. Classification performance is reduced compared with dedicated ANN
architecture, for example, the classification rate at −9 dB is approximately 93% compared
with 98% with dedicated ANN (Tables 2 and 8) architecture. Similarly, the detection
rate of the jammer is also reduced to 93% compared with 99% with dedicated ANN for
each jamming attack. However, the performance of the algorithm is increased at −6 dB
and classified the first four classes (BPSK, QPSK, BPSK-PJ, and QPSK-PJ) with a rate of
approximately 98%, whereas the last two classes of signals (BPSK-TJ and QPSK-TJ) are
classified with a rate of 99.5%. A similar trend is observed at −6 dB and a classification rate
in dedicated ANN is approximately 100%, whereas it is 97% for single ANN architecture.
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Figure 7. Confusion matrix of the single ANN architecture with six output classes: BPSK, QPSK,
BPSK-PJammed, QPSK-PJammed, BPSK-TJammed, and QPSK-TJammed.

A total classification rate of approximately 100% is achieved at −3 dB, which means
ANN is able to correctly classify all the signals without any errors. This performance is
comparable to dedicated ANN architecture; therefore, it can be inferred from the results
that a single ANN architecture can be selected to detect both types of stealthy jamming
attacks as well as to classify legitimate signals to their corresponding modulation schemes.
The jammer detection rate achieved by the algorithm at different SNRs is plotted in Figure 8.
It can be noticed from the figure that a very high jammer detection rate of 0.97 is achieved
at low SNR of −6 dB, whereas a jammer detection rate of 1 is attained at −3 dB. Moreover,
it can be seen that a very low miss-classification rate of legitimate signals as a jammer is
obtained. Further, to evaluate the robustness of the algorithm, the overall signal correct
classification rate ordained at various SNRs is given in Figure 9. The figure shows that a
classification rate of 0.975 is achieved at −6 dB and increased to 1 at −3 dB. The algorithm
achieved such high performances because the SCF of different types of signals results in
highly distinct patterns; therefore, corresponding α profiles of signals can be used as a
feature set (refer to Section 3.1). Further, an ANN-based classifier is shown to be a robust
tool to recognise such patterns of various signals at low SNRs.
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Figure 8. Jammer detection rate at various SNRs.

Figure 9. Signal’s classification rate at various SNRs.

Table 13. Confusion matrix of the proposed ANN at −9 dB in presence of Tone and Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJ QPSK-PJ BPSK-TJ QPSK-TJ

BPSK 968 23 9 0 0 0

QPSK 2 914 15 1 1 67

BPSK-PJ 9 7 907 1 71 5

QPSK-PJ 0 0 2 954 1 43

BPSK-TJ 0 0 48 5 933 14

QPSK-TJ 0 3 0 23 13 961
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Table 14. Confusion matrix of the proposed ANN at −6 dB in presence of Tone and Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJ QPSK-PJ BPSK-TJ QPSK-TJ

BPSK 980 20 0 0 0 0

QPSK 13 984 3 0 0 0

BPSK-PJ 0 1 982 10 7 0

QPSK-PJ 0 0 0 985 1 14

BPSK-TJ 0 0 35 5 960 0

QPSK-TJ 0 9 0 25 3 963

Table 15. Confusion matrix of the proposed ANN at −3 dB in presence of Tone and Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJ QPSK-PJ BPSK-TJ QPSK-TJ

BPSK 999 1 0 0 0 0

QPSK 2 998 0 0 0 0

BPSK-PJ 0 0 1000 0 0 0

QPSK-PJ 0 0 0 1000 0 0

BPSK-TJ 0 0 0 3 997 0

QPSK-TJ 0 0 0 5 0 995

Table 16. Confusion matrix of the proposed ANN at 0 dB in presence of Tone and Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJ QPSK-PJ BPSK-TJ QPSK-TJ

BPSK 1000 0 0 0 0 0

QPSK 0 1000 0 0 0 0

BPSK-PJ 0 0 1000 0 0 0

QPSK-PJ 0 0 0 1000 0 0

BPSK-TJ 0 0 0 0 1000 0

QPSK-TJ 0 0 0 0 0 1000

Table 17. Confusion matrix of the proposed ANN at 3 dB in presence of Tone and Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJ QPSK-PJ BPSK-TJ QPSK-TJ

BPSK 1000 0 0 0 0 0

QPSK 0 1000 0 0 0 0

BPSK-PJ 0 0 1000 0 0 0

QPSK-PJ 0 0 0 1000 0 0

BPSK-TJ 0 0 0 0 1000 0

QPSK-TJ 0 0 0 0 0 1000
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Table 18. Confusion matrix of the proposed ANN at 6 dB in presence of Tone and Pulsed jamming.

Signal Class BPSK QPSK BPSK-PJ QPSK-PJ BPSK-TJ QPSK-TJ

BPSK 1000 0 0 0 0 0

QPSK 0 1000 0 0 0 0

BPSK-PJ 0 0 1000 0 0 0

QPSK-PJ 0 0 0 1000 0 0

BPSK-TJ 0 0 0 0 1000 0

QPSK-TJ 0 0 0 0 0 1000

Further, our proposed algorithm achieved significantly high accuracy when compared
with most recent techniques for signal classifications that require 10–20 dB SNR for compa-
rable classification performances [44–48]. For example, in [49], the authors presented an
algorithm based on instantaneous statistical characteristics and a Support Vector Machine
(SVM) capable of classifying modulated signals 2ASK, 4ASK, 2FSK, and 2PSK with a classi-
fication rate of 0.95 at 5 dB and can only attain error-free classification at approximately
14 dB. On the other hand, our proposed algorithm achieved a classification rate of 0.975
even at −6 dB, showing a significant performance gain due to the use of expert features
that are extracted from signals using cyclostationary spectral analysis. On the other hand,
our proposed algorithm achieved a classification rate of 0.975 even at −6 dB, resulting
a significant performance gain due to the use of expert features that are extracted from
signals using cyclostationary spectral analysis. In [45], the jammer detection algorithm
uses the centre frequencies, the peak amplitude of the PSD, and bandwidths of the NB
signals as the feature set for the naive Bayes Classifier (NBC). The result shows that at 5 dB
the algorithm is able to classify the un-jammed signals (BPSK and QPSK) and jammed
signals (BPSK-Jammed and QPSK-Jammed) at a rate of 0.82 and 0.69 (without compression),
respectively. Similarly, a classification rate of 0.88 and 0.79 is achieved at 10 dB. It can be
observed from the results shown in Table 15 that our proposed technique outperformed the
algorithm in [45] and achieved a classification rate of 0.98 for un-jammed and 0.97 at −6 dB.
Further, our designed algorithm achieved error-free classification even at −3 dB. Further,
it can be noticed that the newly proposed single ANN architecture yields approximately
the same accuracy when validated over a large dataset of 80,000 samples, in comparison to
our previous work in [31,32], which used a dedicated ANN architecture to detect each type
of jamming attack. Such validations show that a single ANN-based algorithm is highly
reliable and robust.

5. Conclusions

In this article, a novel algorithm is presented for joint signal classification and stealthy
jammer detection in WB radios. The WB is composed of numerous NB signals that could be
either licit signals or jammed by a stealthy jammer. The jammers embed energy detection
and feature detection capabilities of CR and use multi-tone and modulated pulsed jamming
signals to jam the licit NB signals. The received NB signals in WB are fed to the CFD
module that computes the corresponding SCF. The features related to α and f profiles
are obtained from SCF; then, they are concatenated and provided as input features to the
ANN that classifies the signals either as legitimate signals with corresponding modulation
schemes or jammers with a particular jamming attack (multi-tone and modulated pulsed).
The performances of both the ANN-based classifiers, dedicated networks and single network,
are evaluated at different SNRs and classification results are given by confusion matrices. The
results showed that our newly proposed algorithm performed well at low SNRs (−6–0 dB)
and, even with single ANN architecture, a classification accuracy of 0.98 is achieved at
−6 dB. Further, the designed algorithm showed superior performances when compared
with recently proposed signal classifications and jammer detection algorithms.
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Future work will include the development of an autonomous system capable of
dynamically accessing the WB spectrum in a CR environment for applications like defence
against more sophisticated jamming attacks. Another interesting future research direction
could be exploring deep learning for signal classification that does not need expert features.
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