
Citation: Drobnič, M.; Verdel, N.;

Holmberg, H.-C.; Supej, M. The

Validity of a Three-Dimensional

Motion Capture System and the

Garmin Running Dynamics Pod in

Connection with an Assessment of

Ground Contact Time While Running

in Place. Sensors 2023, 23, 7155.

https://doi.org/10.3390/s23167155

Academic Editor: Bing Pan

Received: 21 June 2023

Revised: 3 August 2023

Accepted: 10 August 2023

Published: 14 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

The Validity of a Three-Dimensional Motion Capture System
and the Garmin Running Dynamics Pod in Connection with an
Assessment of Ground Contact Time While Running in Place
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Abstract: A three-dimensional motion capture system (MoCap) and the Garmin Running Dynamics
Pod can be utilised to monitor a variety of dynamic parameters during running. The present
investigation was designed to examine the validity of these two systems for determining ground
contact times while running in place by comparing the values obtained with those provided by the
bilateral force plate (gold standard). Eleven subjects completed three 20-s runs in place at self-selected
rates, starting slowly, continuing at an intermediate pace, and finishing rapidly. The ground contact
times obtained with both systems differed significantly from the gold standard at all three rates, as
well as for all the rates combined (p < 0.001 in all cases), with the smallest mean bias at the fastest
step rate for both (11.5 ± 14.4 ms for MoCap and −81.5 ± 18.4 ms for Garmin). This algorithm was
developed for the determination of ground contact times during normal running and was adapted
here for the assessment of running in place by the MoCap, which could be one explanation for its
lack of validity. In conclusion, the wearables developed for monitoring normal running cannot be
assumed to be suitable for determining ground contact times while running in place.

Keywords: 3D kinematics; accelerometer; force plate; IMU; inertial sensor; performance; wearables

1. Introduction

To objectively assess the effort and quality of exercise, it is necessary to monitor physio-
logical and/or biomechanical parameters, such as ground contact time (GCT) while running,
i.e., the time between the first contact of the foot with the ground and the moment the foot
leaves the ground [1]. In general, GCT is inversely proportional to the running speed [2] and,
thus, is also inversely proportional to the metabolic cost of running [3]. Most comparisons
of athletes running at the same speed have concluded that a shorter GCT is associated
with superior running economy [4–6], but in some cases, no connection between these two
parameters has been observed [7,8]. Moreover, the relative lengths of the left and right
GCTs play an important role in running the economy, with each 1% increase in asymmetry
raising the metabolic cost by 3.7% [9]. In trained runners, the GCT has been reported to
be approximately 140 ms at a speed of 7.8 m/s, 210 ms at 4.7 m/s [10], and 310 ms at
2.9 m/s [11]. For elite runners at a maximal sprinting speed, GCT is only 104 ms [12].

GCT can be measured in a number of ways, depending on the purpose and equipment
available. The gold standard in this context is a bilateral force plate, which determines
the area of ground contact above a given force threshold [13,14]. However, these are used
solely in the laboratory, where only one or two running steps are usually assessed on a
force plate. On the other hand, instrumented treadmills allow for an unlimited amount
of data to be collected and have, therefore, become increasingly popular [15], although,
to date, relatively few laboratories have access to such a setup. Moreover, insoles that
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detect plantar pressure can also collect more data, although usually at sampling frequencies
several times slower than those that can be achieved with force plates. Furthermore, an
increase in temperature and/or humidity inside the shoe can reduce the accuracy of insole
measurements [16], and sensitivity during more powerful movements such as running can
be significantly reduced, thereby lowering durability and repeatability [17].

Three-dimensional motion capture systems (MoCap) are being used more and more
often to measure kinematic parameters under laboratory conditions and can, at least to
a certain extent, replace the use of force plates [18]. The advantage of such systems is
their ability to monitor the biomechanics of an individual’s motion without the need for
additional equipment. Recently, several somewhat complex MoCap algorithms that differ
for different individuals have been used to determine GCTs [13,14,19–21]. In one of these
studies involving only rear-foot strikers, Hreljac and Stergiou [21] reported an error of
0.5 ms and a root mean square (RMS) of 7.5 ms; by contrast, in the report by Smith and co-
workers on mostly rear-foot strikers [14], the corresponding values were 3.5 and 18.4 ms. To
our knowledge, Handsaker and co-workers [22] have developed the most robust algorithm
that is not dependent on artificial intelligence to date. Their method can be utilised under a
variety of conditions (various types of ground contacts and running speeds) with a reported
offset of −1.1 ms and a confidence interval of −18.6 to +16.4 ms.

When motion or GCTs are measured in the field rather than in the laboratory, inertial
measurement unit (IMU) sensors are frequently used [23]. One such sensor currently avail-
able on the market is Garmin’s Running Dynamics Pod (Garmin Ltd., Olathe, KS, USA),
which is attached to the top of sports shorts in the lower lumbar region. Since this sensor’s
data are collected through a watch, it can be used anywhere [24]. Recently, Gonzales
and colleagues [25] reviewed several investigations that were designed to validate IMU
sensors [12,26–31], in two of which [27,29], the sensor was mounted on the subject’s pelvis.
The validation of the IMU with an instrumented treadmill provided estimates of the accu-
racy and precision of GCT measurements that were −29 ms and 20 ms, respectively [27].
Validation with a force plate gave corresponding values of 4.6 and 12.1 ms [29]. Mount-
ing the IMU on the pelvis was also shown to result in valid measurements [32], with a
systematic bias of 13 ms compared to the instrumented treadmill.

Clearly, sensors and algorithms must be tested for validity before being used in
practice. To our knowledge, this has not been conducted for Garmin’s Running Dynamics
Pod. Several studies have documented the marketing of devices with exaggerated claims
of accuracy not based on adequate scientific investigation [33,34].

During the COVID-19 pandemic, when the amount of time individuals engaged in
physical activity decreased significantly [35–39], working out indoors became a viable
option. Although the characterisation of indoor exercises, such as running in place, has,
therefore, become more important [40], no studies have focused on GCT while running in
place, in contrast to the recent systematic review of 49 articles on normal running [41]. In
addition to its usefulness in connection with monitoring recreational exercise at home, the
determination of the GCT can also be employed to detect asymmetries during rehabilitation
of the legs. For instance, in connection with reactive strength exercises, such as the single
leg drop jump, this time is significantly longer for the injured leg. Thus, this parameter
is a valuable indicator during the rehab-related exercises, such as running in place, when
training for a return to sporting activities [42]. Although other characteristics of running in
place have been assessed with systems such as MoCap [43,44], IMU sensors [43,44], and
electromyography (EMG) [45], there appears to have been no investigations on GCT during
this activity.

Therefore, the present investigation was designed to determine these GCTs both in the
laboratory using a MoCap based on infrared (IR) cameras and reflective markers, as well as
in the field employing the Garmin Running Dynamics Pod based on IMU accelerometer
sensors. An additional purpose was to compare the values obtained to those provided
by the bilateral force plate. This approach allowed a relatively large set of GCTs to be
compared to this gold standard.
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2. Materials and Methods
2.1. Participants

The 11 healthy volunteers (age 22.8 ± 2.6 years; body mass 71.5 ± 18.3 kg; height
173.3 ± 9.7 cm; body mass index 23.4 ± 3.6) who participated were already familiar with the
measurements to be made. The criteria for inclusion were the performance of exercise for at
least 5 h each week, normal health with no injuries at the time of the study, and an age between
18 and 55 years. The senior and junior researchers, together with the technician, conducted
the measurements, which were performed in the biomechanics laboratory (room temperature
~22 ◦C, humidity ~50%, time approximately middle of the day). The subjects had not eaten
anything for at least two hours prior to testing, which they carried out in sports clothes, and
reported that they were not taking any medication. They were instructed not to engage in
intense exercise, refrain from consuming alcohol, and go to bed early on the day before the
measurements. This research was pre-approved by the Regional Ethical Commission of the
University of Ljubljana (033-16/2021-2), which follows the principles outlined by the World
Medical Assembly Declaration of Helsinki. Moreover, all participants provided their written
informed consent and agreed that their data could be used for publication.

2.2. Study Design

The subjects performed three consecutive 20-s bouts of running in a place separated
by 5 s of standing still—the first slowly, the second at an intermediate pace, and the last
rapidly. Each individual chose his own step rates, with the instruction that this rate should
increase as evenly as possible from one 20-s bout to the next.

2.3. Equipment

A MoCap consisting of six Oqus infrared cameras (Oqus 7+, Qualisys, Gothenburg,
Sweden) surrounding the subject was utilised to monitor the positions of two reflective
markers, one on the anterior and the other on the posterior part of the foot. In addition,
each subject was equipped with a Garmin Running Dynamics Pod (Garmin Ltd., Olathe,
KS, USA), which was placed on the lower lumbar region of the body in accordance with the
manufacturer’s instructions. Running in place was also performed on a bilateral force plate
(S2P, Science to Practice Ltd., Ljubljana, Slovenia). Data from the MoCap were acquired using
the Qualisys Track Manager (QTM, Qualisys, Gothenburg, Sweden); these values provided by
the Garmin Running Dynamics Pod were collected by the corresponding app on a Forerunner
945 watch (Garmin Ltd., Olathe, KS, USA); the bilateral force plate was connected to a Dewe-43
analogue-to-digital converter which utilised DewesoftX software (Version 2022.1, Dewesoft
Ltd., Trbovlje, Slovenia). These data were collected at 256, 1, and 1000 Hz, respectively.

The Garmin Running Dynamics Pod (Figure 1) measured 6 running parameters,
including GCT, simultaneously [24].
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2.4. Data Analysis

The synchronisation of the bilateral force plate with the Oqus cameras was ensured
by utilising a start signal from the Qualisys Track Manager. In addition, the bilateral force
plate was synchronised with the Garmin Pod using the time stamp of both devices.

In the case of the bilateral force plate, a ground reaction threshold of 20 N was used to
calculate GCT [13,14] (Figure 2). The GCTs provided by the MoCap were compared to those
obtained with the bilateral force plate for each and every step; however, for comparison
with the Garmin Running Dynamics Pod, the GCTs provided by the bilateral force plate
were averaged over one-second intervals.
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Figure 2. The solid line depicts the ground reaction force of the left foot on the bilateral force plate
while the dashed line shows when this force was greater than 20 N, i.e., the duration of the contact of
the left foot with the ground.

To our knowledge, no algorithm for the determination of GCT using position data
captured by a MoCap when running in place has yet been developed. Therefore, we
adapted the most accurate approach in this study of normal running by Handsaker and
colleagues [22] to our purposes. This approach involved two parts.

First, the time points at which the ground contact started and ended had to be deter-
mined. Handsaker and colleagues utilised the horizontal velocity of the foot to determine
these time points, but this velocity was essentially zero when running in place. Therefore,
contact was considered here to have been established when the position of the anterior
marker signal reached a local maximum. The local minimum on the left side of the vertical–
displacement curve then represented the onset of contact, while the local minimum on
the right side was used to determine the end of the contact. In the second part of this
approach, the maximal local acceleration on the left side of the vertical–displacement
curve and the local jerk maximum on the right side were determined. The time be-
tween these two points is the GCT (Figure 3). This part was the same as that described
by Handsaker et al. [22].
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Figure 3. The kinematics of the marker on the anterior left foot. Each signal was normalised to its
own maximal value. Q_disp—vertical displacement; Q_acc—vertical acceleration; Q_jerk—vertical
jerk; TD—touchdown; TO—take-off.

In some cases, Garmin did not provide GCT data; therefore, these data were excluded
from the analysis (Figure 4).
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Figure 4. One set of GCT measurements by the Garmin Running Dynamics Pod illustrating missing
data (surrounded by a red ellipse). GCT—ground contact time.

2.5. Statistical Analysis

As assessed with the Kolmogorov–Smirnov test, the distributions of all data obtained
were not normal, so non-parametric tests were utilised. Concurrent validity, which reflects
the relationship between the data provided by a new device and/or algorithm and the
gold standard, is reported. The Wilcoxon signed–rank test was used to evaluate a mean bias
between devices while the limits of agreement (LoA) were calculated using the non-parametric
Bland–Altman approach [46]. In all cases, a p-value of <0.05 was considered significant. The
statistical power was found to be 100% for the comparisons between the FP and MoCap
groups as well as the FP and Garmin groups. This was determined using G*Power software
version 3.1.9.7 (Düsseldorf, Germany). All other statistical analyses were performed using
MATLAB software (version R2020b, The MathWorks Inc., Natick, MA, USA).
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3. Results

Table 1 shows the contact times detected by the different devices while running in
place at various step rates. As can be seen clearly, the measurements provided by both the
MoCap and Garmin Running Dynamics Pod at all three step rates differed significantly
from those obtained with the gold standard.

Table 1. Comparison of the ground contact times (GCTs) at different step rates as determined by the
three-dimensional motion capture system (MoCap), the Garmin Running Dynamics Pod (Garmin)
and the gold standard bilateral force plate (FP). LoA—limits of agreement.

Step Rate FP
[ms]

MoCap
[ms] Garmin [ms] Mean Bias [ms] p-Value LoA [ms]

Low
377.1 ± 52.0 406.7 ± 59.6 / 29.6 ± 18.2 <0.001 * −5.7 to 60.5
368.6 ± 39.4 / 249.0 ± 27.4 −119.6 ± 31.2 <0.001 * −184.8 to −74.8

Medium
321.9 ± 55.5 343.2 ± 64.0 / 21.3 ± 17.2 <0.001 * −14.2 to 51.3
316.1 ± 43.2 / 214.9 ± 32.6 −101.2 ± 28.4 <0.001 * −155.8 to −55.9

High 255.9 ± 54.5 267.4 ± 60.9 / 11.5 ± 14.4 <0.001 * −15.2 to 38.4
267.8 ± 50.9 / 186.3 ± 46.7 −81.5 ± 18.4 <0.001 * −199.8 to −47.8

All
311.6 ± 73.6 331.4 ± 84.1 / 19.8 ± 18.1 <0.001 * −14.2 to 56.2
316.3 ± 61.0 / 216.0 ± 44.8 −100.3 ± 30.7 <0.001 * −165.0 to −54.0

* Significantly different mean GCT.

In addition, the mean biases associated with the MoCap were between 11.5 ± 14.4 ms
and 29.6 ± 18.2 ms and, in the case of the Garmin Pod, between −81.5 ± 18.4 ms and
−119.6 ± 31.2 ms. Both of these systems demonstrated the lowest mean bias and LoA at
the high-step rate and the greatest mean bias and LoA at the low step rate. The mean bias
and LoA for all rates combined are shown in the Bland–Altman plots in Figure 5.
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Figure 5. Bland–Altman plots comparing the ground contact time (GCT) determined with (a) The
three-dimensional motion capture system (MoCap) and (b) the Garmin Running Dynamics Pod
(Garmin) to those determined with the bilateral force plate (FP). Blue circles = low step rate, green
squares = medium step rate, red triangles = fast step rate. The dashed lines represent the limits of
agreement (LoA), while the solid line depicts the mean bias.

4. Discussion

The major finding here was that in comparison to the bilateral force plate, the MoCap,
and Garmin Running Dynamics Pod did not provide valid ground contact times while
running in place.

The average GCT at a medium step rate, as determined with the bilateral force plate,
was 316 ms. This value is similar to that obtained by Chan-Roper and co-workers [11]
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during marathon runs, which at kilometre 40 of the race were 310 ms at a speed of 2.89 m/s.
At the fast step rate, we found a GCT of 268 ms, which was slightly lower than the value
for marathon runners at kilometre 8 (290 ms at a speed of 3.23 m/s) reported in that
same study.

Compared to the gold standard, the MoCap overestimated (i.e., demonstrated positive
mean bias) the GCTs under all conditions examined. This meant that the bias clearly tended
to decline with the increasing step rate (from 29.6 ms at a low, 21.3 ms at a medium, and
11.5 ms at the fast step rate). Compared to the Garmin Running Dynamics Pod, these
values were still 4–8 times closer to those obtained with the gold standard. One possible
explanation for these differences is the fact that we employed a threshold of 20 N, whereas
the threshold chosen by Handsaker and co-workers was 5 N [22]. In our case, it was not
possible to utilise such a low threshold since preliminary attempts to replicate their method
revealed that data filtering increased the error even further.

To avoid a potential signal bias due to filtering, we were required to choose this higher
threshold, which is the same as that also utilised in numerous other investigations involving
a force plate [6,25,26].

In contrast, compared to the gold standard, the Garmin Running Dynamics Pod
significantly underestimated (negative mean bias) the GCTs at low, medium, and fast step
rates, as well as for all three combined. In this case, the mean bias decreased as the step
rate rose from low (−119.7 ms) to fast (−81.5 ms) but was still much larger than in the
two studies testing the validity of a commercial sensor (Garmin HRM-Run™, Garmin Ltd.,
Olathe, KS, USA) against a MoCap [19] or a treadmill equipped with force sensors [47],
which in both cases was, on average, only 10 ms during running on a treadmill.

As the rate of running in place increased, the limits of the agreement became lower.
The LoA for the MoCap was again much lower (66.2 ms at low, 65.5 ms at medium, and
53.6 ms at fast step rate) than those associated with the data provided by the Garmin
Running Dynamics Pod (111, 99.9, and 72 ms, respectively). For all step rates combined,
the LoA for the MoCap was 70.4 ms, which is 9.6 ms less than the value reported by Adams
and colleagues [48] in their test on the validity of the Garmin HRM-Run™ for determining
GCT during treadmill running. For the Garmin Running Dynamics Pod, the corresponding
LoA for all step rates combined was 111 ms, which is 31 ms more than in that same study.

In all devices designed to measure contact time, the accuracy of the sensor (including
the sampling frequency) and the definition of the beginning and end of the contact time
were crucial. The greater the noise, the larger the threshold used to define this beginning
and end had to be. In addition, from a biomechanical perspective, the location of the sensor
employed to determine contact time was also important. If an IMU was located on the foot,
the signal changed profoundly upon impact since the foot then stopped almost immediately.
However, if the accelerations were monitored more proximally (e.g., at the pelvis), the
signal was less pronounced and corresponded more to the acceleration of the body’s center
of mass. This challenge, in connection with the detection of contact time, could lead to
larger errors. When using the MoCap for measurements, the foot must be close enough to
the ground to allow for foot–ground contact to be assumed to have occurred, once again
emphasising the importance of measurement accuracy and threshold definition. While
it is possible to filter out noise, care must be taken, in this respect, when determining
contact times since filters can distort the signal during rapid changes in motion (e.g., foot-to-
ground contact).

In connection with normal running, the several different algorithms for determin-
ing GCT that have been developed provide values that differ by 22.4 ± 3.3 ms [20],
3.5 ± 18.2 ms [14], −1.1 ms [22] or 0.5 ms [21] from those obtained with the force plat-
form. The last of these studies, with the greatest accuracy, considered heel strikes only,
and the algorithm used was, therefore, inappropriate for running in places where forefoot
strikes were more common. Therefore, the algorithm of Handsaker and colleagues [22]
based on forefoot strikes was utilised here. This algorithm is considered to provide valid
GCTs during normal running, but our current findings indicate that a valid algorithm for
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running in place remains to be developed. Although MoCaps other than Qualisys might
exhibit a different validity in this connection, these differences are likely to be insignificant
since several modern MoCap systems can demonstrate a similar absolute error in the
marker distance of less than 0.6 mm in comparison to the reference value [49].

By contrast, as mentioned above, GCTs during normal running can be determined
with good validity. A meta-analysis by Zeng and colleagues [50] reported that these
GCTs could be determined using IMU sensors with moderate to excellent validity
(ICC (95% CI) = 0.664 (0.354, 0.845), r (95% CI) = 0.811 (0.701, 0.881), p < 0.001) and ex-
cellent test–retest reliability (ICC (95% CI) = 0.954 (0.903, 0.978), p < 0.001). It should be
emphasised that since the Garmin Running Dynamics pod was developed for monitor-
ing normal running, it was presumably performed more accurately in connection with
that activity. This indicated that the biomechanical differences between running in place
and normal running were too extensive to allow the measurement of GCT using the
same methodology.

One limitation of our study is that the rate of running in place was determined by
the subjects themselves. In this way, they were able to reach their maximal rate, but at the
same time, this approach made it impossible to evaluate the reliability of the two devices
tested. In the future, we suggest that, as in the case of the Garmin Running Dynamics Pod,
a specific algorithm be developed for both the MoCap and IMU-based devices for detecting
contact times.

5. Conclusions

In conclusion, neither of the two systems examined here provided valid GCTs while
running in place at any rate. Although the values provided by the MoCap were much
closer to those obtained with the gold standard than those provided by the Garmin Run-
ning Dynamics Pod, a reliable algorithm for use during running in place remains to be
developed. At the same time, two of the other five parameters assessed by the Garmin
Running Dynamics Pod might still be suitable for analysing running in place, and, indeed,
a measurement of cadence by this device in this context has recently been validated [51].
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