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Abstract: Edge detection serves as the foundation for advanced image processing tasks. The accuracy
of edge detection is significantly reduced when applied to motion-blurred images. In this paper, we
propose an effective deblurring method adapted to the edge detection task, utilizing inertial sensors to
aid in the deblurring process. To account for measurement errors of the inertial sensors, we transform
them into blur kernel errors and apply a total-least-squares (TLS) based iterative optimization scheme
to handle the image deblurring problem involving blur kernel errors, whose relating priors are
learned by neural networks. We apply the Canny edge detection algorithm to each intermediate
output of the iterative process and use all the edge detection results to calculate the network’s total
loss function, enabling a closer coupling between the edge detection task and the deblurring iterative
process. Based on the BSDS500 edge detection dataset and an independent inertial sensor dataset,
we have constructed a synthetic dataset for training and evaluating the network. Results on the
synthetic dataset indicate that, compared to existing representative deblurring methods, our proposed
approach demonstrates higher accuracy and robustness in edge detection of motion-blurred images.

Keywords: edge detection; image deblurring; inertial sensor; neural network

1. Introduction

To initiate an exploration into the realm of image processing, one must be drawn to
the significance of edges—the fundamental features that underpin visual information. In
practical applications, edge detection serves as a pivotal low-level operation, forming the
bedrock for various high-level tasks such as feature extraction [1], image segmentation [2],
object recognition [3], and object proposal [4]. However, when there is relative motion
between the camera and the object during the exposure time, the captured image will
appear with motion blur. The direct application of edge detection on motion-blurred
images leads to significantly reduced accuracy due to the presence of artifacts, thereby
affecting subsequent image processing tasks. Currently, there are two main challenges in
performing edge detection on motion-blurred images.

Firstly, edge detection of motion-blurred images requires an effective deblurring
method. In previous work, the majority of efforts have focused on utilizing the content of
the image itself to remove motion blur [5–8], and it is an ill-posed problem since both the
latent image and the blur kernel remain unknown. Inertial sensors, such as gyroscopes
and accelerometers, can provide additional motion information about the imaging system
during exposure. Utilizing inertial sensors to assist in deblurring can effectively reduce
the ill-posedness of deblurring algorithms [9]. Nevertheless, due to time synchronization
error and noise, accurate motion information cannot be obtained from sensor data, thus the
deblurring methods aided by inertial sensor data often lack robustness [10].

On the other hand, motion deblurring methods have been developed for improvement
of the image quality but are not designed for a better edge structure perception. Recent
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studies have demonstrated that compared to deblurring results with lower peak signal-
to-noise ratio (PSNR), deblurring results with higher PSNR do not always achieve better
performance in edge detection [11]. Coupling deblurring algorithms with edge detection
tasks and ensuring that the deblurring method can effectively improve the edge detection
accuracy is another key problem to be addressed.

Based on the above issues, our work made the following contributions:

• The sensor data with errors are transformed into blur kernel with errors, and we apply
a TLS-based iterative optimization scheme to handle the image deblurring problem
involving blur kernel errors, whose relating priors are learned by two types of neural
networks. The inclusion of the blur kernel with sensor data error information in the
training process makes the final deblurring method strongly robust.

• The canny edge detection algorithm is incorporated into the deblurring process for
calculation of the final loss function. By coupling the edge detection task and the
deblurring iterative process more tightly, we ensure that the edge detection task
achieves higher accuracy through the image deblurring process.

• The BSDS500 edge detection dataset and an independent inertial sensor dataset are
combined to create a synthetic dataset for edge detection of motion-blurred images.
The results for the synthetic dataset demonstrates the effectiveness and robustness of
the proposed method.

2. Related Work

Deblurring methods have remained an active research area in recent years and
usually requires priori knowledge or additional capture information to obtain a valid
solution [12,13]. More accurate information about the camera motion can be obtained using
inertial sensors, such as gyroscopes and accelerometers, which have been successfully
utilized to assist in motion deblurring. Joshi et al. built a single lens reflex camera equipped
with a gyroscope and accelerometer to estimate the motion of the camera over the course of
the exposure [9]. The sensor data was corrected beforehand under the guidance of a natural
image. Park and Levoy employed a similar gyroscope calibration method to address the
multiple image deblurring problem [14]. Šindelář and Šroubek developed a real-time de-
blurring method on mobile devices based on a spatially invariant blur approximation [15].
Due to hardware precision limitations, the sensor data play only a qualitative role in the
blur kernel estimation. Zhang and Hirakawa combined inertial measurements and image
based information to remove the blur [16]. All of these works assume that the sensor data
they recorded is reliable, or they only slightly relax this assumption. However, there are
more challenging problems when using inertial sensors that do not provide high quality
sensor data for effective image clarification.

Mustaniemi et al. applied gyroscopic data for the first time for single image deblurring
based on deep learning networks [17]. In their work, sensor data errors have been taken into
account during network training. However, they only used the sensor data to simplify the
shape of the blur kernel to a straight line, which would result in partial loss of information
in the physical phase and thus would have an impact on the final performance of the
Convolutional Neural Network (CNN). Nan and Ji recently proposed a TLS-based iterative
optimization scheme for dealing with the kernel error problem in image deblurring [18],
which can obtain good deblurring results even when there is an error in the estimation
of the blur kernel. This framework is particularly suitable for handling blur kernel errors
caused by sensor data errors.

In the aspect of coupling deblurring algorithms with edge detection tasks, an extensive
theoretical overview of task-adapted image reconstruction was presented in the work by
Adler et al. [19]. Their study revealed that joint reconstruction-segmentation approaches
achieved more accurate segmentations compared to both sequential and end-to-end meth-
ods. Yang et al. proposed a new cooperative game framework for joint image restoration
and edge detection [20]. It used an iterative approach to solve the two tasks, and the
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interactive facilitation between the tasks during iteration resulted in improvements in both
image restoration and edge detection performance.

Despite these efforts, effectively addressing edge detection tasks in the presence of
motion blur remains a challenging endeavor. The key aspect lies in ensuring the efficacy of
the deblurring process while also striving to achieve higher edge detection precision with
the deblurred results.

3. Method
3.1. Initial Kernel Estimation

Recall the spatially-invariant convolutional model of the image blurring process:
g = f ∗ k + n, where g and f denote the motion-blurred image and its latent sharp image,
* is the convolution operator, k is the blur kernel and the noise term n is often formulated
as the additional white Gaussian noise.

In order to incorporate the inertial sensor data that record the camera motion informa-
tion, the motion-blurred image is formulated as the summation of multiple sharp images
under a sequence of projective motions during the exposure interval:

g(x) =
1

Np ∑Np
t=1 f(Htx) + n (1)

where x ∈ R3×1 denotes the pixel location in homogeneous coordinate, Ht denotes the
homography matrix, n denotes the noise term and Np denotes the number of all camera
poses during the exposure time. Considering the planar homography that maps the
initial projection of points at t = 0 to any other time t, the homography matrix Ht can be
characterized as [21]:

Ht = K(Rt +
TtNT

d
)K−1 (2)

for a particular depth d. Rt is the rotation transformation matrix, Tt is the translation vector,
and NT is the unit vector that is orthogonal to the image plane. The camera intrinsic matrix
K can be characterized by the focal length f and camera optical center (Ox, Oy):

K =

 f 0 Ox
0 f Oy
0 0 1

 (3)

Parameters related to motion, the rotation transformation matrix Rt and the translation
vector Tt, can be calculated from the measurements of the gyroscope and accelerometer,
respectively. The process of image blurring caused by camera motion is shown in Figure 1.
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Assuming that the rotation center locates at the optical center of the camera, the
rotation transformation matrix can be approximated as

Rt =

 1 −dθz
t dθ

y
t

dθz
t 1 −dθx

t
−dθ

y
t −dθx

t 1

Rt−1 (4)

by employing the sinusoidal approximation when the angular rotation is small. Given
the gyroscope measurement ωt =

[
ωtx, ωty, ωtz

]T at time t and the sampling interval ∆t,[
dθx

t , dθ
y
t , dθz

t

]T
= ωt × ∆t. Since only relative rotation is considered, the initial rotation

transformation matrix R0 = Identity.
As for the translation vector Tt, since there are currently mobile devices that can

eliminate the influence of gravity using data from other sensors, we can perform a double
integration on the accelerometer measurement at =

[
atx, aty, atz

]T without subtracting the
gravitational acceleration.

After calculating the homography matrix Ht at any given moment t, we can ultimately
obtain the projected trajectory within the exposure time. Moreover, we approximate the
blur kernel of the entire image using the projected trajectory of the central pixel point.
Specifically, we set all pixel values to 0 except for the central coordinates, where the pixel
value is set to 255, to obtain the image fc(x). Then, we set the white noise to 0 and use
fc(x) as input in Equation (1) to compute the image gc(x), which represents the initial blur
kernel k.

Due to the influence of time synchronization error and noise, the direct calculation of
blur kernel using sensor data will lead to the difference between the estimated blur kernel
and the exact blur kernel. Thus, the problem turns to how to use the blur kernel with errors
for image deblurring.

3.2. TLS-Based Iterative Optimization Scheme for Blur Kernel with Errors

When considering the blur kernel with errors, the image blurring model is as follows

g =
(
K̂− ∆K

)
f + n = K̂f− ∆Kf + n (5)

where K̂ is the matrix form of the convolution operator.
The TLS estimator finds the solution to (5) through the resolution of a constrained

optimization problem.

min
∆K,n,f

‖∆K‖2
F + ‖n‖

2
2 s.t.

(
K̂f− ∆Kf = g− n

)
(6)

By introduction of an auxiliary variable u that represents the kernel error term ∆Kf,
we reformulate the problem (6) into an optimization problem as follows:

min
f,u
‖∆K‖2

F + ‖g− k̂ ∗ f− u‖2
2 + λ‖u− ∆Kf‖2 + Φ(f) (7)

where Φ(f) denotes the regularization term with respect to certain image prior which is
usually imposed on high-frequency image components, as they are the main parts lost in the
blurring process. By introduction of an auxiliary variable z and applying the half-quadratic
splitting, the problem (7) can be reformulated as:

min
f,u,z
‖g− k̂ ∗ f− u‖2

2 + ϕ(u|f) + ‖diag(λ)(Γf− z)‖2
2 + ρ(z) (8)

where ϕ(u|f) = min
∆K
‖∆K‖2

F + λ‖u− ∆Kf‖2 is the regularization term related to the prior
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imposition on the correction term caused by kernel error and Γ denotes high-pass filters.
An alternating iterative scheme can be employed to solve the optimization problem (7):

f(t) = argmin
f
‖g− k̂ ∗ f− u(t−1)‖

2
2 + λ‖diag(λ)

(
Γf− z(t−1)

)
‖

2

2
(9)

z(t) = argmin
z

µ‖Γf(t) − z‖
2
2 + ρ(z) (10)

u(t) = argmin
u
‖g− k̂ ∗ f(t) − u‖

2
2 + ϕ(u|f(t)) (11)

The first step (9) is an inversion process which can be solved using discrete Fourier
transform given u(t−1) and z(t−1) of last iteration.

The second step (10) is a denoising process, which eliminates potential artifacts present
in the high-pass image channels. The CNN-based denoising neural network called Dn-
CNN [22] can be used to remove noise in f(t).

The third step (11) is a correction process, which corrects the term relating to kernel
error. Proposed by Nan and Ji [18], the neural network Dual-Path U-net can be used as a
tool to estimate the correction term u(t) by combining the downsampled codes from f(t)

and the residual g− k̂ ∗ f(t).
By adopting the above framework, we have obtained an effective deblurring method

assisted by inertial sensors which could handle blur kernel errors caused by sensor data
errors. Our proposed deblurring method can be described as Algorithm 1.

Algorithm 1: Deblurring Assisted by Inertial Sensors

Input: gyroscope data {w}i, accelerometer data {a}i, blurred image g
Output: deblurred image f
Procedure:

(1) obtain {T}t performing a double integration on {a}i
(2) obtain {R}t using (4)
(3) obtain {H}t using (2), (3)
(4) set the center pixel to 255, and all other pixels to 0, obtaining the image fc

(5) obtain blur kernel k applying (1), using all the obtained {H}t and the image fc with the
noise set to 0

(6) initialize z0 and u0 to 0
(7) obtain f 0 using discrete Fourier transform to solve (8) with blur kernel k
(8) for iter = 1 to N do

obtain ziter using Dn-CNN with f iter−1

obtain uiter using DP-Unet with blur kernel k and f iter−1

obtain fiter using discrete Fourier transform to solve (8) with blur kernel k, ziter

and uiter

end
(9) fN is the final output f

end

3.3. Overall Network Structure with Canny Edge Detection Algorithm Added

The loss function in the framework proposed by Nan and Ji is defined as [18]:

L =
1
J

J

∑
j=0

(
‖f(T,+,1)

j − fj‖
2

2
+

T

∑
i=2

µi‖f
(i)
j − fj‖

2

2

)
(12)

where
{

f(1), f(2), . . . , f(T+1)
}

are the sequence of deconvoluted images corresponding to
T + 1 iterations in the optimization algorithm. To ensure that the network’s optimization
goal is to improve the accuracy of edge detection, we incorporate the effect of edge detection
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results into the iterative process. Specifically, at each step of the iterative process, we
perform Canny edge detection [23] on the output of Equation (11) and use the edge
detection result to calculate the edge cross-entropy function

l(i)edge = −
1
J

J

∑
j=0

(
e(i)j log(

ˆ
e(i)j ) +

(
1− e(i)j

)
log(1− ˆ

e(i)j )

)
(13)

where e(i)j is the edge detection result of f(i) and
ˆ

e(i)j represents the edge ground truth. The
overall loss function is redefined as

L = l(T+1)
edge +

T

∑
i=2

µil
(i)
edge (14)

where the weights {µi}T−1
i=1 are set to 0.8. In summary, our deblurring method can be

represented by the schematic diagram in Figure 2.
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Incorporating edge detection into the deblurring process and using the edge loss
function to adjust network parameters can encourage the model’s output to be close to the
ground truth edges, as specified by the first term in Equation (14). This can be achieved
using currently advanced deblurring methods. However, our approach differs in that
we use an iterative optimization-based deblurring algorithm, which allows us to obtain
intermediate edge detection results. This ensures that the intermediate results are not too
far from the ground truth edges, as specified by the second term in Equation (14). Indeed,
our method incorporates richer edge information and is expected to perform better in edge
detection tasks for motion-blurred images.

3.4. Synthetic Dataset of Motion-Blurred Images with Inertial Sensor Data

Sufficient high-quality training samples are essential for deep learning-based models.
We propose a method for synthesizing a comprehensive dataset that includes ground truth
edges, blurred images, and inertial sensor data captured during the exposure time of each
blurred image.

We construct our dataset based on the real images and their corresponding ground
truth edges from the BSDS500 dataset [24]. The BSDS500 dataset has already partitioned
the data into training, validation, and test sets. For each image and its ground truth in
the BSDS500 training set, we crop them into patches of 256 × 256. In the direction with
pixel value 321, the first cropping uses a stride of 1 pixel, and subsequently, a step size of
32 pixels is used, resulting in a total of 4 patches. In the direction with pixel value 481, the
first three croppings use a stride of 1 pixel, the fourth cropping uses a stride of 2 pixels,
and thereafter, a stride of 4 pixels is used, resulting in a total of 60 patches (The purpose of
doing this is to make the number of patches obtained from cropping adaptable to a wider
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range of batch sizes). As a result, 200 × 4 × 60 = 48,000 sharp images along with their
corresponding ground truth edges are obtained.

The inertial sensor data, specifically the angular velocity and the acceleration of each
axis, are modeled using a Gaussian distribution with a mean of 0. The standard deviation
of angular velocity of each axis is σωx = σωy = 1 × 10−6 rad/s and σωz = 0.1 rad/s;
the standard deviation of acceleration of each axis is σax = σay = 1 × 10−3 m2/s and
σωz = 1 × 10−5 m2/s. After randomly determining the exposure time within the range
of (0.02, 0.2) seconds, we sample the sensor data within the exposure time at a frequency
of fs = 200 Hz. To simulate continuous motion, each sensor data sample is interpolated
from the preceding data point, with angular velocity data linearly and acceleration data
approximated. Utilizing the sharp images and their edges ground truth obtained from
cropping the BSDS500 training set, combined with the generated sensor data, the overview
of our training data generation scheme is shown in Figure 3.
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It is essential to note that the exact sensor data is directly combined with the clear
images to calculate the motion-blurred images for the training set, while the sensor data
with errors, obtained by adding synchronization errors and noise terms to the exact sensor
data, is used to compute the estimated blur kernel for the training set. Following the steps
outlined in [25], we set the time delay td randomly picked from a Gaussian distribution
N
(
0.03, 0.012) in seconds, and the noise for inertial sensor data as additive white Gaussian

noise with standard deviation as 1/10 of the standard deviation of corresponding data.
The validation and test set images of the BSDS500 dataset are not cropped, and we also

employ the aforementioned scheme to generate the validation and test sets for our dataset.

4. Experiments
4.1. Experimental Setup

As for
{

λ(t)
}

in Equation (9), we set λ(0) = 0.005 for stage 0 and λ(t) = 0.5 for later
stage. The network is trained using the Adam optimizer [26]. The learning rate, training



Sensors 2023, 23, 7187 8 of 13

batch size and the number of epochs for network training are set to be 1 × 10−4, 4 and 100,
respectively. The iterative parameter N has a significant impact on the performance of the
approach we proposed. Therefore, we determine its value through the heuristic method.
We set the value of N to range from 2 to 6 and exploit the cross-entropy loss of the final
iteration with different N. Figure 4 shows the loss trend on the test set with the change of N.
It can be observed that the performance improvement becomes marginal when N exceeds
4. Considering that the network architecture should not be overly complex, N is set to 4.
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Figure 4. Cross-entropy loss of the final iteration by varying the iteration parameter N.

Since there may be random dislocation between the deblurred image and the cor-
responding sharp image, we adopt the same procedure as described in [27] to align the
deblurred images with the sharp images and then cut off the boundary pixels. Before
evaluating the results on the test set, the same alignment operation is performed on the
edge detection results, ensuring they are accurately aligned with the ground truth edges.

4.2. Ablation Study

Our ablation study focuses on the performance gain brought by the introduction of
intermediate edge detection results in the iterative optimization process. We consider the
following three cases for comparison: the original deblurring network structure without
edge information, incorporating edge information only in the final output and incorporating
richer intermediate edge information during the iterative process(ours). We keep the
training settings consistent, and the same Canny edge detection algorithm is applied
to obtain the edge detection results for all the deblurred results. The edge detection
performance on the test set of our proposed synthetic dataset is shown in Table 1, and the
F-measure at both Optimal Dataset Scale (ODS) and Optimal Image Scale (OIS) are recorded
for evaluation. The F-measure is a widely used metric in edge detection evaluation, and it
balances the precision and recall of detected edges. ODS refers to computing the F-measure
by selecting the best threshold for each individual image in the dataset, while OIS calculates
the F-measure by choosing the optimal threshold globally across all images. These metrics
are crucial for assessing the performance of our proposed approach for edge detection in
motion-blurred images.
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Table 1. Edge detection performance of ablation study on synthetic dataset.

Method ODS OIS

w/o edge info 0.558 0.585
with output edge info 0.566 0.593

ours 0.569 0.596

It can be seen from Table 1 that our method achieves the highest ODS and OIS scores
while the original deblurring network structure without edge information performs the
worst, which indicates that incorporating richer edge information during the deblurring
process can indeed improve the edge detection performance.

See Figure 5 for the comparison of the deblurred and edge detection results for these
three methods. Figure 5a shows a motion-blurred image, while Figure 5e displays its
edge detection result. Figure 5b–d depict the deblurred results of these three methods:
the network without edge information, the network with output edge information, and
our proposed network with richer intermediate edge information, and Figure 5f–h rep-
resent the edge detection results obtained after deblurring the images using these three
methods. Due to the incorporation of richer edge information during training, our pro-
posed method enhances the contrast between objects and the background when deblurring
motion-blurred images. Although this may increase the gap between the deblurred result
and the sharp image, it improves edge detection performance and produces clearer and
more stable edges.
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Figure 5. Visual inspection of ablation study. (a,e) Motion-blurred image and its edge detection
result; (b,f) Deblurred result of the network without edge information and its edge detection result;
(c,g) Deblurred result of the network with output edge information and its edge detection result;
(d,h) Deblurred result of our network with intermediate edge information and its edge
detection result.

4.3. Performance Evaluation and Comparison

The proposed method is compared with representative image deblurring methods.
The competing methods include traditional single image-based deblurring method hyper-
Laplacian (HL) [28] and deep learning-based deblurring methods DeblurGAN-v2 [29],
FDN [30] and IRCNN [31], and the same Canny edge detection algorithm is applied to
obtain the edge detection results for all the deblurred results. DeblurGAN-v2 [29] is a blind
deblurring method, while FDN [30] and IRCNN [31] are non-blind deblurring method
swhere the blur kernels are estimated using the method described in Section 3.1, and
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all these deep learning-based methods have been retrained on our synthetic dataset to
establish fair play.

Figure 6 and Table 2 show the edge detection results of all the methods. It can be seen
that the ODS and OIS scores of our proposed method is modestly better than FDN [30] and
IRCNN [31] and surpasses HL [28] and DeblurGAN-v2 [29] by a significant margin. This
indicates that our method outperforms these existing methods in terms of edge detection
performance for motion-blurred images.
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Table 2. Edge detection performance of our method and some competitors on synthetic dataset.

Method ODS OIS

Sharp Images 0.573 0.605
Motion-Blurred Images 0.504 0.540

HL [28] 0.537 0.576
DeblurGAN-v2 [29] 0.557 0.583

FDN [30] 0.561 0.581
IRCNN [31] 0.564 0.590

Ours 0.569 0.596

To test the robustness of the proposed method against sensor data errors, we amplified
the sensor data error levels in the synthetic dataset by a factor of 2 and 3 (the exposure time
was also scaled by a factor of 2 and 3 correspondingly) to generate new test images for
evaluating the edge detection performance of the above methods. The comparison results
with other methods are shown in Figure 7. It can be clearly seen that the accuracy of our
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proposed method decreases less as the error level increases, which indicates the robustness
of our method in dealing with sensor data errors.
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5. Conclusions

In this paper, we propose an approach that ensures the efficacy of the deblurring
process while coupling it with the edge detection task, thereby achieving higher edge
detection precision. We utilize inertial sensors to aid in the deblurring process and address
the impact of sensor data errors through a NN-based iterative optimization scheme. During
the iterative process, we incorporate rich edge information to adapt the network’s opti-
mization objective to edge detection tasks. Experimental results show that our proposed
method achieves higher accuracy and robustness on a synthetic dataset, demonstrating the
effectiveness of our method for edge detection of motion-blurred images.

In our future work, we are committed to advancing our research by constructing an
image acquisition platform that incorporates inertial sensor data. By capturing real-world
motion-blurred image data along with inertial sensor data during exposure time, we will
compare the results of deblurring and edge detection with other methods in terms of size
measurement accuracy. This evaluation will allow us to better validate and showcase the
efficacy of our algorithm in practical scenarios and enable comprehensive comparisons
with currently advanced deblurring methods.
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