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Abstract: Cardiovascular disorders are often diagnosed using an electrocardiogram (ECG). It is
a painless method that mimics the cyclical contraction and relaxation of the heart’s muscles. By
monitoring the heart’s electrical activity, an ECG can be used to identify irregular heartbeats, heart
attacks, cardiac illnesses, or enlarged hearts. Numerous studies and analyses of ECG signals to
identify cardiac problems have been conducted during the past few years. Although ECG heartbeat
classification methods have been presented in the literature, especially for unbalanced datasets, they
have not proven to be successful in recognizing some heartbeat categories with high performance.
This study uses a convolutional neural network (CNN) model to combine the benefits of dense
and residual blocks. The objective is to leverage the benefits of residual and dense connections
to enhance information flow, gradient propagation, and feature reuse, ultimately improving the
model’s performance. This proposed model consists of a series of residual-dense blocks interleaved
with optional pooling layers for downsampling. A linear support vector machine (LSVM) classified
heartbeats into five classes. This makes it easier to learn and represent features from ECG signals. We
first denoised the gathered ECG data to correct issues such as baseline drift, power line interference,
and motion noise. The impacts of the class imbalance are then offset by resampling techniques that
denoise ECG signals. An RD-CNN algorithm is then used to categorize the ECG data for the various
cardiac illnesses using the retrieved characteristics. On two benchmarked datasets, we conducted
extensive simulations and assessed several performance measures. On average, we have achieved
an accuracy of 98.5%, a sensitivity of 97.6%, a specificity of 96.8%, and an area under the receiver
operating curve (AUC) of 0.99. The effectiveness of our suggested method for detecting heart disease
from ECG data was compared with several recently presented algorithms. The results demonstrate
that our method is lightweight and practical, qualifying it for continuous monitoring applications in
clinical settings for automated ECG interpretation to support cardiologists.

Keywords: cardiac health; heart disease detection; convolutional neural; deep learning;
electrocardiogram (ECG); feature extraction; residual blocks; long-term short-term memory

1. Introduction

Millions of people die each year from cardiovascular disorders, which are among the
most serious illnesses. A new study estimates that globally, 17.9 million individuals passed
away from cardiovascular illnesses in 2019 [1]. This demonstrates how an inadequate
detection strategy contributes to the severity of heart disease. Heart attacks and strokes
account for the majority of these fatalities [2]. Therefore, in order to provide proper medical
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care, we need new frameworks for the early identification and diagnosis of heart abnormal-
ities. There are now a number of devices that can monitor human health using wireless
sensors, thanks to recent developments in wearable electronics and data-transmission
infrastructure [3]. Blood circulation depends on the human heart, which is also where most
cardiovascular problems start.

Electrocardiograms (ECGs) can be used to track the heart’s rhythmic activity [4]. The
condition of the heart may be quickly diagnosed with an ECG, a non-invasive test. It is
often used to check on the heart. It is a tool that captures the electrical impulses the heart
generates as it circulates blood throughout the body [5]. Due to the simplicity of testing
it provides, the ECG is a widely used medical instrument for monitoring heart rates. The
ECG signals must be analyzed with great skill, though. Additionally, interpreting the
ECG is particularly difficult since it frequently requires analyzing each heartbeat. The
analysis might also contain human mistakes, which is another option. Consequently, it
is essential to use an automated computational approach. Arrhythmia is one of the most
severe cardiovascular illnesses. The term “arrhythmia” describes deviations from the
heart’s normal rhythm or beat rate. Arrhythmia is the medical term for a heartbeat that is
abnormally rapid, slow, or irregular [6]. Depending on the patterns shown during the ECG
measurements, there are several kinds of arrhythmias. The two significant categories of
arrhythmia are morphological and rhythmic. While rhythmic arrhythmia is the condition
in which irregular heartbeats have a regular pattern, morphological arrhythmia is defined
by the rare occurrence of an irregular heartbeat. Arrhythmias can also be categorized
according to where they occur in the heart. As shown in Figure 1, there are five important
types of arrhythmia: Normal Beat, Supraventricular Premature Beat, Premature Ventricular
Contraction, Fusion of the ventricular and Normal Beat, and Unclassifiable Beat.
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tricular premature beat, Premature ventricular contraction, Fusion of ventricular, and Normal beat,
and Unclassifiable beat.

In the proposed model, we combine the strengths of residual blocks and dense blocks
within a convolutional neural network (CNN). The objective is to leverage the benefits of
residual and dense connections to enhance information flow, gradient propagation, and
feature reuse, ultimately improving the model’s performance. When residual and thick
blocks are used together, the best parts of both are taken advantage of. This improves
information flow, gradient stability, and feature reuse, which can lead to better learning of
representations and better model performance. The proposed model can be trained using
standard optimization techniques, such as stochastic gradient descent (SGD) or the Adam
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optimizer, along with appropriate loss functions for the specific task (e.g., cross-entropy
loss for classification). Regularization techniques like dropout or batch normalization can
be applied to prevent overfitting. The proposed Residual-Dense Convolutional Neural
Network methodology combines the advantages of residual blocks and dense blocks
to enhance the performance of CNN models. This methodology promotes information
flow, gradient stability, and feature reuse by integrating residual and dense connections,
improving representation learning and model accuracy. This proposed model consists of a
series of residual-dense blocks interleaved with optional pooling layers for downsampling.
Each residual-dense block incorporates residual and dense connections to facilitate effective
feature learning and representation.

The ECG signals are first preprocessed and denoised. It aids in the removal of unim-
portant noise and mistakes, including contact loss, motion noise, and Gaussian noise. We
separate the signals after denoising them to draw attention to the critical call and amplify
it. After that, we add new data to the collection to balance the dataset for training and
testing and offset the impacts of class imbalance. The expanded dataset is fed through
a deep convolutional neural network architecture to extract critical characteristics from
ECG signals. These extracted characteristics capture the distinctive elements of the ECG
signals that are important for identifying patient arrhythmias. The retrieved features are
fed through an RD-CNN classifier to categorize the ECG signals into various arrhyth-
mias. The performance of our model is further optimized via hyperparameter adjustment.
To determine the impact of the suggested approach’s different elements on our model’s
functionality, we conducted ablation research. We ran extensive simulations on several
benchmarked arrhythmia-based ECG signal datasets and assessed many standard perfor-
mance criteria. The resulting results were evaluated against several modern methods. The
collected findings show how well our suggested approach for detecting arrhythmias in
ECG data works.

1.1. Main Contribution

The major contributions of our work are as follows:

1. We present a deep-learning (DL)-based framework, named RD-CNN, for detecting
and classifying five classes of arrhythmia from ECG signals.

2. The combination of residual and dense blocks leverages the benefits of both ap-
proaches, promoting effective information flow, gradient stability, and feature reuse,
which can lead to improved representation learning and better model performance.

3. The proposed model can be trained using standard optimization techniques, such as
stochastic gradient descent (SGD) or Adam optimizer, along with appropriate loss
functions for the specific task (e.g., cross-entropy loss for classification). Regularization
techniques like dropout or batch normalization can be applied to prevent overfitting.

4. We provide a deep CNN-based feature extraction method and use the deep learning
algorithm to categorize the ECG data into the various types of heartbeat. The deep
CNN-based strategy combined with the image augmentation technique helps to
enhance the dataset’s quality and extract features as efficiently as possible.

5. An ablation study is performed to analyze the effects of the various components of
our signal processing techniques on the obtained results. To examine how the various
elements of our signal processing approaches affect the outcomes, an ablation study
is conducted.

1.2. Paper Organization

The remainder of the essay is structured as follows. In Section 2, we discuss the
research that has been done in the area of heartbeat identification using ECG data. Section 3
provides a thorough explanation of our suggested technique, a brief explanation of the
datasets, and the assessment measures employed. We conducted an experimental inves-
tigation, which is demonstrated in Section 4. The research discussions are described in
Section 5. Conclusions and suggestions for further development are provided in Section 6.
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2. Literature Review

In this section, we discuss the research that many researchers have done to improve the
identification of ECG-based arrhythmias. The ECG signals have built-in noise, which makes
analysis highly challenging. Reading the ECG signals also demands a great deal of skill.
Researchers have been inspired by this throughout the years to suggest more precise and
automated methods to increase the efficacy and efficiency of ECG signal processing [7]. The
majority of current research on improving arrhythmia diagnosis using electrocardiograms
falls under the categories of parametric feature-based and signal processing-based research.
The next section discusses the work done in various sub-domains.

In [8], the authors introduced a supervised classification method that performed
the classification using a support vector neural network (SVNN). The ECG signals were
subjected to feature extraction using a wavelet and Gabor filter. They trained SVNN using
a genetic approach called Bat Optimization. They attained a classification accuracy of
96.96% using their method. In the research [9], the authors utilized the Support Vector
Machine (SVM) to classify the data using the nonparametric power spectral density (PSD)
approach to extract features. They chose the SVM’s parameters using Particle Swarm
Optimization (PSO). Their method has a 96.06% classification accuracy rate. Using a deep
neural network, the authors of [10] divided the ECG data into 13, 15, and 17 groups.
For the 13, 15, and 17 classes, they attained classification accuracy of 95.2%, 92.5%, and
91.33%, respectively. They measured a calculation time of 0.015 s on average. With more
lessons, their work showed that their performance was declining. Additionally, in [11], the
segmented features were retrieved using Dynamic Time Warping (DTW) and Principal
Component Analysis (PCA). For the final classification, a Radial Base Function (RBF)-based
SVM was fed the collected segmented features. They scored 97.80% accuracy.

On the MIT-BIT arrhythmia database, the authors of [12] suggested a deep learning-
based method for identifying arrhythmia from ECG signals and achieved a classification
accuracy of 94.2%. A deep convolutional neural network was employed for feature ex-
traction, while a straightforward neural network with backpropagation was used for
classification. In [13], the authors suggested a framework for machine learning to extract
vital patterns from mobile ECG signals. A three-stage hybrid machine learning framework
is proposed for estimating ECG duration associated with cardiovascular disease. Initially,
a support vector machine (SVM) is used to recognize the ECG’s unprocessed heartbeats.
The authors of [14] also conducted research to classify the arrhythmia signal into one of
the 10 disorders, which includes sinus arrhythmia. They classified data using the radial
basis probabilistic process neural network (RBPPNN), and their classification accuracy was
75.52%, with the greatest disease-specific accuracy coming in at 86.75%.

The authors used the MIT arrhythmia and MIT supraventricular arrhythmia databases,
similar to [15]. The ECG data were divided into five arrhythmia classes using a two-layered,
fully linked neural network architecture that was suggested. The architecture’s two lev-
els each had a separate neural network that was completely interconnected. They ran
the simulations using the AAMI guidelines and achieved 93.4% accuracy. The authors
of [16] used a convolutional neural network architecture to study rhythmic cardiovascular
motions in order to identify arrhythmia. They employed Fourier transformations and
the dynamic wavelet transform for resampling and denoising throughout the filtering
process. They received an F-Score of 82%. They also employed a multilayer perceptron
(MLP) [17] to identify arrhythmias from ECG data. They extracted the features using a
field-programmable gate array and then reduced the features using DWT. The classification
accuracy of their suggested method was 98.3%. A deep deterministic learning (DDL)
technique was suggested in the study [18] to detect the various cardiovascular illnesses
based on the ECG waves. They employed a synthetic neural network architecture to carry
out pattern identification and categorization. The simulations were run on several publicly
accessible datasets and ECG samples that the researchers had individually gathered. Their
suggested method had a 98% classification accuracy rate overall.



Sensors 2023, 23, 7204 5 of 25

The authors of [19] conducted research to improve the detection of atrial fibrillation
in ECG data. Arrhythmias most frequently occur in the form of atrial fibrillation (AF).
They suggested using tightly linked neural networks in one dimension for deep learning.
According to the experimental findings, the suggested method has a classification accuracy
of 99.35%. The authors in [20] described a method to record the rhythmic variations in
heartbeat that are symptomatic of different disorders, such as atrial fibrillation. For the
purpose of extracting pertinent information from the ECG signals, they used improved
QRS complex recognition. They performed feature extraction using nonlinear principal
component analysis and employed a radial basis function network (RBFN) for classification,
combining neural networks with PCA. According to the authors of [21], an evolving neural
system based on the SVM framework can be used to identify irregular heartbeats. The
accuracy of their classification of the ECG signals into 17 different cardiac illnesses was
98.85%. For the most part, the authors developed machine learning for the categorization
of ECG signals using a dataset from the MIT-BIH arrhythmia database [22].

Recently, the authors proposed [23] a few-shot learning paradigm based on Siamese
Convolutional Neural Networks (SCNN) to classify 12-Lead ECG heartbeats using a few
training samples with supervised information. Based on a public dataset and the hold-
out validation approach, which was used for various combinations of similarity and loss
functions, the suggested SCNN model demonstrated accuracy of up to 95%, whereas in [24],
ECG signals’ temporal characteristics were first removed, then combined with the original
input to provide a time representation input. Then, for feature extraction, a deep-learning
network incorporating a convolutional neural network and long short-term Memory was
used. Focusing on feature differences required the employment of a simultaneous attention
technique. An accuracy of 98.95% was reported by the proposed method in the classification
of five classes of heartbeats.

In fact, in [25], the authors summarized the benefits of using all three networks together.
For example, autoencoders provide high-level features without the need for preprocessing;
random neural networks provide strong generalization and quick training; and RBF neural
networks allow you to use what you already know. RR interval-based features and coded
features, which are acquired via the autoencoder, are employed instead. We do tests on the
MIT-BIH arrhythmia dataset to assess the performance of the suggested system, and we
consider the association’s suggestions for the development of medical equipment, which
specify five classes of interest. In [26], the authors suggested a model that adapts the
classification process and incorporates the trait of patient-specific analysis.

In [27], the modified convolutional network with channel attention (MCC-Net) mech-
anism was presented. Using the MIT-BIH arrhythmia database, the suggested method
obtained 99.98% accuracy (ACC) for five categories. In [28], in comparison to plain-vanilla
CNN- and SincNet-based models, the proposed WavelNet-based models demonstrated
excellent performance on classifying non-ectopic, supraventricular-ectopic, and ventricular-
ectopic beats. In contrast, the authors in [29] were trying to solve the drawbacks of current
wearable devices for ECG detection. In this paper, the authors showed how traditional
convolutional neural networks, deep neural networks, and hardware acceleration can be
used to make a cardiac rhythm abnormality classification model that is light and accurate
enough to compete. The MIT-BIH arrhythmia database dataset was used to analyze the
architecture, and the results indicated a classification accuracy of 97.69% and a classification
time of 0.3 ms for a single heartbeat. In [30], convolutional neural network (CNN) classifiers
might offer improved overall accuracy. In this paper, we suggest a CNN-based approach
for classifying ECG heartbeats. Based on the MIT-BIH arrhythmia database, our suggested
technique had an overall accuracy of 99.43%.

In [31], the authors proposed an optimization phase for the deep CNN model using a
brand-new focus loss function to get around this problem. Our suggested strategy obtained
98.41% accuracy, 98.38% F1-score, 98.37% precision, and 98.41% recall. Additionally, our
method outperformed current cutting-edge techniques in terms of performance. Moreover,
in [32], a unique deep CNN model for reliable heartbeat classification is based on cutting-
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edge deep learning methods. They reported an accuracy of 99.48%, whereas in [33], a brand-
new automated categorization method is suggested. A deep structure with numerous input
layers is presented, which is based on long-short-term memory (LSTM) and convolutional
neural network (CNN) networks. Based on various heartbeat locations and RR interval
properties, four input layers are created. Different strides are used to convolve the first
three inputs. Then, the three CNN outputs are combined and sent via an LSTM network.
The output is joined with the fourth input after two fully linked layers. The last fully
connected layer eventually produces the anticipated label. The MIT-BIH arrhythmia
database’s two division algorithms were used to assess the proposed approach. As a result,
the technology may be applied in a clinical setting. In [34], in order to automatically
categorize the heartbeat of an arrhythmia, a better CNN is presented in this study. All
heartbeats are first separated from the original signals. The ECG heartbeats can be fed into
the first convolutional layers after segmentation. Each convolution layer in the suggested
layout uses kernels of various sizes, fully using the characteristics at various scales. A
max-pooling layer came next. The last pooling layer’s outputs are combined and used
as the input for fully linked layers. The experiment shows that 99.06% of the heartbeat
detection accuracy was achieved. Table 1 summarizes the recent state-of-the-art ECG
heartbeat recognition systems.

Table 1. Recent state-of-the-art ECG heartbeats recognition systems.

Cited Methodology Dataset Accuracy Limitations

[13] SVM + Clustering Private 92%

Disease patterns are identified but no
steps were performed for categorizing
those patters. Computationally
expensive, extensive preprocessing
steps are required.

[16]
Convolutional neural network
architecture + Preprocessing to

remove noise
PhysioNet F-score of 82%

Disease patterns are identified but no
steps were performed for categorizing
those patters. Computationally
expensive, extensive preprocessing
steps are required.

[21] SVM MIT-BIH 90.02%

Single dataset was used. Different
disease patterns are identified with
signal preprocessing steps.
Computationally expensive, extensive
preprocessing and segmentation steps
are required.

[24] CNN+LSTM PTIB 98.95%

Five different classes of heartbeat
disease patterns are identified.
Computationally expensive and applied
on a single dataset.

[25]
Preprocessing and quick

training are provided by RF
neural networks

MIT-BIH 93.5%
Heartbeat disease patterns are identified.
Computationally expensive and
accuracy is not up-to-the-mark.

[26]

Pre-processing, QRS complex
detection, segmentation,
feature extraction, and

LSTM-based RNNs

MIT-BIH 99.41%

Single dataset was used. Different
disease patterns are identified with
signal preprocessing steps.
Computationally expensive, extensive
preprocessing and segmentation steps
are required.

[31] Deep CNN MIT-BIH- INCART 98.38% accuracy

Five classes of heartbeat, no data
imbalance, training is computationally
expensive, and there are no
preprocessing steps.
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Table 1. Cont.

Cited Methodology Dataset Accuracy Limitations

[33] CNN and LSTM MIT-BIH 98.41% accuracy
Five classes of heartbeat are identified
but computationally expensive and it is
not generalized solution.

[34] CNN and Max-Pool MIT-BIH 99.06% accuracy

CNNs and max-pooling layers usually
expect inputs of fixed dimensions.
Dealing with variable-length sequences
might require additional preprocessing
or custom architectures. NNs tend to
require a large amount of labeled data to
perform well.

3. Proposed Work

This part presents an example of our suggested deep-learning approach for identify-
ing arrhythmias from ECG information. The five steps of the proposed algorithm are as
follows: the ECG signals are denoised, data are augmented, features are extracted using
a residual-dense convolutional neural network, and LSVM is used for classification. We
denoise the ECG data to produce cleaner waves without extraneous noise. Further enhance-
ments are made to the preprocessed photos to correct the sample imbalance. The deep
Convolutional Neural Network (CNN) architecture is then given the enhanced dataset to
extract features from. The LSVM algorithm receives the retrieved features and performs
the final classification. We suggested deep learning (Residual-CNN) and LSVM-based
frameworks for arrhythmia identification of ECG data are shown in Figure 2 as a flow
diagram. The following is a description of each phase.
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Figure 2. A systematic flow diagram of proposed RD-CNN architecture to classify five classes of
cardiac disease heartbeats.

3.1. Acquisitions of Dataset

We utilized two datasets, which are publicly available, to perform simulations of
the work. It also exemplifies the many assessment measures we employed to assess
the effectiveness of the work we had suggested. The following is a description of the
dataset. These two benchmarked datasets have been heavily referenced in recent literature
in order to carry out the simulations. The MIT-BIH Arrhythmia Dataset [22,23] and the
PTB Diagnostic ECG Dataset [23,24] are the datasets that we utilized. Below is a quick
explanation of the datasets:

Table 2 shows the main heartbeat types included in the MIT-BIH Arrhythmia and PTB
Diagnostic ECG Datasets related to five classes of heartbeats. The MIT-BIH Arrhythmia
dataset contains 48 half-hour segments of two-channel ambulatory ECG recordings as
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data samples. The information is accessible to everyone at physionet.org. It includes the
following five classifications: Normal Beat, Supraventricular Premature Beat, Premature
Ventricular Contraction, Fusion of the ventricular and Normal Beat, and Unclassifiable Beat;
whereas in PTB’s Diagnostic ECG Dataset’s sample signals, the information is accessible
to everyone at physionet.org. The main categories of heartbeats are listed in Table 2, and
the sample signals for each category are displayed in Figure 1 of the PTB and MIT-BIH
Diagnostic ECG Datasets for each class.

Table 2. An ECG five-classes Heartbeats collected from two sources.

Category N 1 S 1 V 1 F 1 Q 1 Total

Train data 94,573 3415 6799 752 7642 113,181

Test data 38,218 1256 2678 278 2845 45,275

Total 132,791 4671 9477 1030 10,487 158,456
1 N: Normal Beat, S: Supraventricular Premature Beat, V: Premature Ventricular Contraction, F: Fusion of
Ventricular and Normal Beat, and Q: Unclassifiable Beat.

3.2. Denoising Pre-Process for ECG Signals

The denoising process is integrated as a preprocessing step to improve the quality
of the input data. Denoising ECG signals is a crucial step in improving the accuracy of
arrhythmia detection, as it helps remove unwanted noise and artifacts that can hinder
the interpretation of the underlying cardiac activity. In the context of the Residual-Dense
Convolutional Neural Network (RD-CNN) model for arrhythmia detection, a denoising
process is likely implemented to enhance the quality of ECG signals before they are fed into
the model. Let us delve into a general denoising process and provide an example of how
it could handle various types of noise and errors commonly encountered in ECG signals,
including contact loss, motion noise, and Gaussian noise.

Let us consider a scenario where an ECG recording is affected by contact loss, motion
noise due to patient movement, and Gaussian noise. The following steps demonstrate how
the denoising process might be applied:

(a) Contact Loss Handling: Identify segments of the ECG signal where contact loss occurs.
Interpolate missing data points within these segments using techniques like linear or
cubic interpolation.

(b) Motion Noise Reduction: Apply adaptive filtering to suppress motion artifacts. This
involves estimating the motion-induced noise profile and then subtracting it from the
original signal.

(c) Gaussian Noise Removal: Utilize a wavelet denoising approach. Apply a discrete
wavelet transform to the signal, threshold the wavelet coefficients to remove noise
components, and then reconstruct the denoised signal.

By combining these techniques, the denoised ECG signal becomes more suitable for
accurate arrhythmia detection by the RD-CNN model. The denoising process ensures
that noise and errors introduced by contact loss, motion, and Gaussian interference are
effectively addressed, leading to improved performance in arrhythmia detection.

3.3. Class Imbalance by Resample

Downsampled BIDMC to 128 Hz to fit MIT-BIH, filter for only (N) normal beats,
each heartbeat being z-normalized; and since each subject has a large amount of up to
70,000 beats, the study extracted a beat every 5 s. The distribution of classes in Figure 3a
demonstrates the imbalance in the MIT-BIH and PTB datasets. As a result, the class with
the most samples is biased, and the classification performance suffers to categorize five
classes of downsampling while the number of samples in the other classes is increased by
upsampling. Table 3 displays the class distributions prior to and following these operations.
From Table 3, it is clear that there is a huge class imbalance in this dataset. The model
can easily diminish the loss by ignoring everything other than class 0. Next, we take the
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overrepresented class (N) and sample 5000 samples randomly. These will be used for
training, and the rest will be ignored. The number of ECG signals falling within each type
varies significantly. A visual result of this technique is displayed in Figure 3b.
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Figure 3. Sample distribution before and after resizing was performed, where (a) shows the original
dataset with respect to heartbeat class, (b) displays the data distribution after resizing performed,
where 0 label shows the normal beat, 1 shows supraventricular premature beat, 2 label shows
premature ventricular contraction, 3 label shows fusion of ventricular and normal beat, and 4 label
shows unclassifiable beat.

Table 3. Class distributions of MIT-BIH dataset before and after resampling.

Class Name # Samples Before # Samples After

N 1 132,791 20,000

S 1 4671 20,000

V 1 9477 20,000

F 1 1030 20,000

Q 1 10,487 20,000
1 N: Normal Beat, S: Supraventricular Premature Beat, V: Premature Ventricular Contraction, F: Fusion of
Ventricular and Normal Beat, and Q: Unclassifiable Beat are classes of cardiac disease heartbeats.

In the context of addressing class imbalance, an important observation is that the
model might tend to prioritize or focus on the majority class (Class 0), leading to potential
performance issues and biased results. To counter this, a strategic approach is taken to
balance the dataset and improve the model’s overall performance.

The first step involves focusing on the overrepresented class, which is referred to
as Class 0. The aim is to prevent the model from disproportionately favoring this class
and ignoring the other classes. By doing so, the model’s loss function encourages all
classes to be considered equally, thus promoting more balanced learning. Moving forward,
attention is directed towards handling the overrepresented class. From this class, a subset
of 5000 samples is randomly sampled. These samples are meticulously chosen to maintain
a representative and unbiased distribution. This subset serves as the training data, enabling
the model to learn from a more diverse range of examples within the overrepresented class.

Concurrently, the remaining data points from the overrepresented class are deliber-
ately excluded from the training process. This selective sampling strategy is designed to
strike a balance between preventing class bias and ensuring efficient and effective model
training. This approach demonstrates a thoughtful method to manage class imbalance and
enhance model training. By diminishing the influence of the majority class and strategically
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sampling from the overrepresented class, the resulting dataset provides the model with
a more equitable representation of different classes. This measured approach not only
fosters improved classification performance but also maintains fairness and accuracy in
the model’s predictions across all classes. In order to reduce overfitting and bias, the class
with the most samples is downsampled, while the number of samples in the other classes
is increased by upsampling.

3.4. Feature Extraction Using Residual-Deep CNN Model

Instead of manually collecting the necessary characteristics from the ECG signal
dataset that was acquired in the previous phases, the salient features are extracted from
the images using a Residual-Deep CNN model architecture. Convolutional layers, each
followed by a max pooling layer, make up the CNN architecture used in this work. We
use a convolutional neural network (CNN) model to combine the benefits of dense and
residual blocks. The benefits of residual and dense connections are integrated to enhance in-
formation flow, gradient propagation, and feature reuse, ultimately improving the model’s
performance. This proposed model consists of a series of residual-dense blocks interleaved
with optional pooling layers for downsampling. Each “residual-dense” block has both
“residual” and “dense” connections. This makes it easier to learn and represent features
from ECG signals, and each heartbeat is put into one of five classes.

The Residual-Deep (RD-CNN) CNN architecture utilized to extract features from the
ECG data is shown in Figure 4. The numerous hyperparameters of the RD-CNN architecture
shown in Figure 4. All of the key elements from the ECG signals are extracted using the
deep CNN architecture. Additionally, while retaining a manageable computational cost, an
appropriately deep CNN architecture guarantees the dependability of the extracted features.
In the following stage, the RD-CNN algorithm makes use of these retrieved characteristics.
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Figure 4. A systematic flow diagram of the proposed RD-CNN architecture to classify five classes
of heart diseases, where N: Normal Beat, AP: Supraventricular Premature Beat, PVC: Premature
Ventricular Contraction, FVN: Fusion of Ventricular and Normal Beat, and FPN: Unclassifiable Beat
are classes of cardiac disease heartbeats.
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In order to create the training and testing datasets, we first divided the complete
dataset into an 80:20 ratio, retaining 80% for training and the remaining 20% for testing.
The whole dataset is divided into these pieces in order to reserve an adequate amount
of data for training and testing while avoiding issues with over- and under-fitting. The
centroids for the various data points are assessed as feature vectors using the training
dataset to train the RD-CNN algorithm. The testing dataset is used to test the framework
once it has been trained. This evaluates the various assessment measures as shown in
Algorithm 1.

Algorithm 1: Our Modified Residual-Dense CNN Network Architecture

Step 1:
Input: Training dataset, X; Corresponding labels, Y; Number of residual blocks, num_res_blocks
Number of dense blocks, num_dense_blocks; Number of layers within each residual block, num_res_layers;
Number of layers within each dense block, num_dense_layers

Step 2: Output: Trained Residual-Dense Network model

Step 3:

[Initialization]:
a. Define the input layer: Input layer: XInput, shape determined by dataset
b. Add an initial convolutional layer: Initial Convolutional Layer:
Xconv = Conv1D

(
XInput, f ilters = 63, kernel = 3

)
c. Add residual-dense blocks: Initialize Xcurrent = Xconv

Step 4:

[Define Inner Residual Block]:
Repeat For k = 1 to num_res_blocks do:
a. Initialize a new Block: Block input: Xblock_input = Xcurrent
b. Repeat For I = 1 to num_res_layers do
Convolutional layer: Convolutional Layer: XConv_i = Conv1D

(
blockInput, f ilters = 63, kernel = 3

)
Batch normalization: Bn_i = BatchNormalization(XConv_i)
Activation: acti = ReLU(Bni)
c. Residual connection: Residual output: Xresidual = Xact_num_res_layers + XCurrent
d. Update Xcurrent = Xresidual

Step 5:

[Define the Dense Block]:
Repeat For k =1 to num_dense_blocks do:
a. Initialize a new Block: Block input: Xblock_input = Xcurrent
b. Repeat For I= 1 to num_dense_layers do
Convolutional layer: Convolutional Layer: XConv_i = Conv1D

(
blockInput, f ilters = 63, kernel = 3

)
Batch normalization: Bn_i = BatchNormalization(XConv_i)
Activation: acti = ReLU(Bni)

c. Concatenate with block input: output: Xconcat = Concatenate
(

Xblockinput
, Xnum_dense_layers

)
d. Update Xcurrent = Xconcat

Step 6:

Global Average Pooling and Fully Connected Layers:
Global average pooling: avg_pool = GlobalAvgPooling(Xcurrent)
Flatten layer: f lt_layer = Flatten(avg_pool )
Fully-connected layers: dense = Dense( f lt_layer, units = 64, activation = ReLU)

Step 7: [Return Trained Residual-Dense Network model]

3.5. Proposed Residual-Dense CNN Model

Algorithm 1 provides a summary of the many phases of our suggested architecture.
The provided algorithm outlines the construction and training process of a modified
Residual-Dense CNN Network architecture for tasks such as classification or regression.
It begins by initializing the model with an input layer and an initial convolutional layer
to extract initial features. Residual-dense blocks are then introduced, where each block
combines the advantages of residual and dense connections. Within each residual block,
convolutional layers are applied, followed by batch normalization and ReLU activation.
The final output of a residual block is added to its input, creating a residual connection.
Similar operations are performed in dense blocks, where the outputs of convolutional
layers are concatenated with the initial input. A global average pooling layer aggregates
spatial information, followed by fully connected layers for feature extraction. The model is
compiled with a specified loss function, optimizer, and evaluation metrics, then trained on
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the input data. The trained model is then returned. This algorithm provides a structured
and formalized guide for creating and training the proposed network architecture. Our
algorithm’s inputs include a collection of ECG signals, labels for those ECG signals, and the
number of arrhythmia classifications, while the assessed performance metrics are output
by our algorithm.

Incorporating residual and dense connections into the RD-CNN model is a strategic
architectural choice that aims to solve some of the most important problems in training
deep neural networks, especially in the area of detecting arrhythmias from ECG signals.
This integration is made to improve the flow of information, stabilize gradient propagation,
and promote the effective reuse of features. All of these things are important for finding
arrhythmia patterns in ECG data quickly and accurately.

Residual connections, initially popularized by the ResNet architecture, play a pivotal
role in facilitating seamless information flow throughout the network. By allowing the
model to learn residual mappings—the difference between the predicted output and the
desired outcome—these connections enable a more efficient transfer of information across
layers. In the context of ECG signal analysis, where preserving and transmitting relevant
information is paramount, residual connections prove invaluable. They effectively mitigate
the vanishing gradient problem that often plagues very deep networks, allowing gradients
to propagate back through the layers with greater ease. This aspect is particularly crucial
for the RD-CNN model’s ability to capture intricate patterns within ECG signals.

Furthermore, the RD-CNN model harnesses the power of dense connections, a hall-
mark of dense blocks, to foster enhanced feature reuse and cross-layer interaction. The
essence of a dense block lies in its ability to endow each layer with direct access to the
feature maps generated by all previous layers. In return, each layer contributes its own
feature maps to the subsequent layers. This interconnection between layers enables a robust
pathway for gradient flow, effectively addressing challenges related to gradient stability. In
the RD-CNN architecture, the amalgamation of dense connections with residual connec-
tions creates a formidable conduit for gradient propagation. This synergistic effect, in turn,
enhances the stability of gradients during the model’s training process. This improved
gradient stability is a key part of how the network is able to learn complex patterns from
ECG signals, which leads to more accurate and useful solutions.

By combining residual and dense connections, there is also a strong focus on reusing
features, which is important for complicated signal analysis, such as figuring out what
an ECG means. Dense connections, by design, facilitate the exchange and amalgamation
of features learned across various layers. This dynamic feature reuse mechanism enables
the RD-CNN model to capture a spectrum of information at different scales and levels of
abstraction. In the realm of ECG signal analysis, where the relevance of different signal
components varies across scales, this architectural approach proves highly advantageous.
The model’s capacity to exploit diverse features at multiple levels equips it to discern
both local and global patterns within the ECG signals. So, the RD-CNN model is likely
to improve the accuracy of detection by accurately capturing the subtle patterns that are
associated with arrhythmia.

As described in Algorithm 1, we first employ the signal resizing procedures. Those sig-
nals are then sent through a RD-CNN model. In this Section 3.4, the architecture’s specifics
are covered. Algorithm 1 is then used to process the characteristics that were extracted.
The different convolutional neural network architecture hyperparameters employed in
the suggested model: Hyperparameter Value or Description Convolutional Layers: How
Many 6 Max Pooling Layers: Number 6 Convolutional Layer Kernel Size 3 × 3 Pool Size
for Maximum Layer Pooling 2 × 2 Steps 2 Activation Mechanism 0.5 ReLU Dropout Rate;
the arrhythmia signals into the appropriate groups using the proposed approach. In Al-
gorithm 1, our modified residual-dense CNN Network architecture is described, which is
explored next in more detail. Finally, evaluations and returns are made for the different
performance measures.
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The input of the network as x and the output as y. The network consists of multiple
residual-dense blocks, interleaved with optional pooling layers for downsampling. Each
residual-dense block incorporates both residual connections and dense connections to
facilitate effective feature learning and representation. The combination of residual and
dense blocks can be represented as follows:

A residual block takes an input x and produces an output y. It can be represented
mathematically as:

Y = F(x) + X (1)

where F(x) represents the residual mapping learned by the convolutional layers within the
residual block.

A dense block takes an input x and produces an output y. It can be represented
mathematically as:

For each layer l in the dense block:

Yi = Hi(y0, y1, y2, . . .) (2)

where (y0, y1, y2, . . .) represents the concatenation of the outputs from all previous layers
within the dense block, and Hi denotes the composite function applied to the concatenated
feature maps. The residual-dense block combines the concepts of residual blocks and dense
blocks. It integrates both residual and dense connections within each block to promote
effective information flow and capture feature hierarchies efficiently.

The mathematical representation of a residual-dense block can be expressed as:
For each layer l in the residual-dense block:

Yi = Fi(y0, y1, y2, . . .) + Yi−1 (3)

where y0, y1, y2, . . . represents the concatenation of the outputs from all previous layers
within the dense block, Fi denotes the residual mapping learned by the convolutional layers
within the residual-dense block, and Yi−1 represents the output of the previous layer. The
residual-dense blocks are stacked together, and the final output y is obtained by passing
the output of the last residual-dense block through a global average pooling layer and fully
connected layers.

Finally, the features are classified by a linear support vector machine (LSVM) model
into a five-classes-based heartbeat.

3.6. Classification by LSVM

The overall algorithm to recognize the multiclass of heart disease, a dense and residual-
based CNN model, along with a linear support vector machine (LSVM), is presented in the
form of Algorithm 2. The dense and residual-based CNN model is already explained in the
previous section. Here, we explain the LSVM-ML technique.

Algorithm 2: Overall algorithm for Classification of five-classes recognition of ECG signals using residual and dense based CNN
and LSVM techniques

Step 1: Input: ECG signals dataset, D; Labels, L, Number of arrhythmia classes, n
Step 2: Output: Evaluated performance metrics
Step 3: Pre-process ECG signals to remove noise and make classes balance.
Step 4: TrainedClassifier = Residual-Dense-Network (n)
Step 5: Extract-features by Residual-based dense CNN model ()
Step 6: TrainedClassifier by linear support vector machine (LSVM, n)
Step 7: ClassifiedLabels = Predicted (TrainedClassifier)
Step 8: PerformanceMetrics = EvaluatePerformanceMetrics(ClassifiedLabels, TestingLabels)

return PerformanceMetrics
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Modern categorization methods include support vector machines (SVM). It has been
demonstrated to outperform their competitors in terms of accuracy and computational
benefits. It has been used to solve numerous biological categorization issues effectively. The
method operates as follows. Consider a collection of points that are individually assigned
to one of two classes and are shown in a high-dimensional environment. A hyperplane
that maximizes the margin between the two classes of samples is computed using an SVM.
The decision boundary is the best hyperplane. To make it multi-class problems, we have
used a one-versus-all approach.

Formally, let n training samples and their corresponding class labels be denoted by x1,
x2, . . ., xn and y1, y2, . . ., yn, respectively. Allow yi1, 1 to stand for the labels of two classes.
A linear classifier’s decision boundary may be expressed as wx + b = 0, where w and b
are model parameters. The margin d can be expressed as d = 2/||w||2 by rescaling the
parameters w and b. The hyperparameters for multiclass SVM are defined as Kernel: RBF,
Gamma: 1 × 10−4, and C is between 1 to 10.

3.7. Hyperparameter Tuning

Hyperparameters are the requirements for a model’s architectural design. The per-
formance of a machine learning or deep learning model depends on the choice of an
appropriate set of hyperparameters. Hyperparameter tuning is the process of selecting
the best hyperparameters. In this work, the tuning of the hyperparameters is carried out
using the Grid Search heuristic. It is a method that repeatedly searches through a set of
hyperparameters, testing out different combinations at random to obtain the best result.
The hyperparameters that produce the greatest values for accuracy are chosen. The model
can train on the best parameters without aliasing thanks to our use of the random search
strategy for hyperparameter selection. In order to compare the suggested framework’s per-
formance fairly, we tuned the hyperparameters of all the comparing techniques employed
in this study. After tuning hyperparameters, we have adjusted the following parameters as
displayed in Table 4.

Table 4. Hyperparameters Settings used by proposed RD-CNN architecture.

Configuration Value

Network Optimizer Adam

Maximum number of epochs 10

Network Batch Size 64

Model Learning rate 0.001

Batch normalization True

Activation function ReLU

Loss function Cross-entropy loss

Layer Drop out 5.00 × 10−1

Criteria of Early Stopping Monitor = val__loss, patience = 5

The optimal value for each hyperparameter is determined by maximizing accuracy
while minimizing computation time. Hyperparameters batch size of tested values (16, 32,
64, 128), optimized value (16), dropout Value-tested values (0.2, 0.3, 0.40) optimized value
(0.3), learning Rate test values (0.0001, 0.001, 0.01) optimize value (0.001), and Optimizer-
tested techniques (SGD, Adam) selected Adam. The Hyperparameter tuning process
was systematic through Grid search technique and aimed at finding the best trade-offs
between accuracy and computation time. These optimized hyperparameters enhanced the
performance of a Residual-Dense CNN model and allow it to better handle ECG data for
arrhythmia detection tasks.
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4. Experimental Analysis

We use our own experimental analysis to evaluate the performance of the proposed ar-
chitecture compared to state-of-the-art approaches. On every dataset specified in Section 3.1,
we conduct simulations, and we assess every evaluation measure mentioned in Section 3.2.
We conducted a comparison of many machine learning techniques. This aids in our com-
prehension of how well our strategy performs in comparison to other standard choices
in terms of machine and deep learning algorithms. We also conduct ablation research to
examine how our strategy performs when we apply other strategies.

The computer language Python was used exclusively to implement the code. To sup-
port the experimental investigation, we employed a number of Python packages, including
sklearn, TensorFlow, NumPy, Pandas, etc. Additionally, we used a few GitHub repositories
that were open to the public. On a laptop equipped with an Intel i7 11th generation CPU,
32 GB of RAM, and a graphics card, all the simulations were carried out.

4.1. Evaluation Metrics

We outline the numerous assessment measures we utilized in this part to judge the
effectiveness of the job we had in mind. We have employed a few common assessment
indicators for this study. The different assessment measures are briefly described here.
1. Accuracy (ACC) indicates whether the classifier correctly assigned the data points to
the appropriate classes. Formally, it may be expressed as the proportion of all samples
that were properly categorized to all samples. Equation (4) can be used to describe it
mathematically.

Accuracy (ACC) =
T P + T N

T P + T N + F P + F N
(4)

Sensitivity (SE) is crucial when the consequences of missing positive cases (false
negatives) are significant, such as in medical diagnosis. A high sensitivity indicates that the
model is effective at detecting true positives as calculated by Equation (5).

Senstivity (SE) =
TP

TP + FN
(5)

Specificity (SP) is important when the consequences of misclassifying negative cases
(false positives) are significant. High specificity indicates that the model is good at avoiding
false positives and it is calculated by Equation (6) as:

Speci f icity (SP) =
TN

TN + FP
(6)

The f 1 − score is another important metric used to evaluate the performance of classi-
fication models, particularly when dealing with imbalanced datasets. It combines precision
and recall (sensitivity) into a single value and provides a balance between the two. The F1
score is calculated by Equation (7) as:

f 1 − score = 2 × Precision × Recall
Precision + Recall

(7)

where Precision (PR) and Recall (RE) are calculated by Equations (8) and (9) as:

Precision(PR) =
TP

TP + FP
(8)

Recall (RE) = Senstivity =
TP

TP + FN
(9)

In the examples above, True Positive (TP) stands for heartbeat samples that were
classified as heartbeat, False Positive (FP) for non-heartbeat samples that were classified
as correct heartbeat, True Negative (TN) for non-heartbeat samples that were classified



Sensors 2023, 23, 7204 16 of 25

as non-heartbeat, and False Negative (FN) for heartbeat samples that were classified as
non-heartbeat samples.

Kappa, also known as Cohen’s Kappa, is a statistical metric that assesses the level of
agreement between the predicted classifications of a model and the actual classifications. It
takes into account the agreement that might occur by chance, making it a valuable metric,
especially for cases where the distribution of classes is imbalanced or when assessing
inter-rater reliability. The Kappa coefficient is calculated using the formula:

Kappa =
Po − Pe

1 − Pe
(10)

where Po is the observed agreement, i.e., the proportion of cases where the model’s predic-
tions match the actual classes. The parameter Pe is the expected agreement, representing
the agreement that would be expected purely by chance. The Kappa coefficient can range
from −1 to 1.

Both the original dataset utilized in the proposed model and our resized dataset were
used in the experiments. The cross-entropy loss function and metrics during model training
are shown in Figure 5 for the RD-CNN model. In practice, cross-entropy loss for the classi-
fication of cardiac health patterns is a common and effective approach. Cross-entropy loss,
also known as log loss, is a suitable choice for classification tasks, including those related to
diagnosing cardiac health conditions based on patterns in medical data. The performance of
the CNN network on the heartbeat dataset is shown graphically in (a) loss values (training
and validation) and (b) accuracy graphs (training and validation) with respect to epochs. In
addition, the overall AUC curve is also displayed in Figure 6. On average, this AUC curve
shows the overall achievement of the proposed RD-CNN architecture.
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4.2. Comparison with Various Systems

On the MIT-BIH and PTB ECG datasets, we compare the performance of our suggested
Residual-Dense-CNN with a number of recent standard state-of-the-art approaches in this
section. Table 4 tabulates the findings acquired in terms of the 5-fold cross-validation
test. As can be seen from Table 5, our suggested Residual-Dense-CNN approach performs
much better than the other state-of-the-art techniques in terms of the values attained for
parameters, accuracy, AUC, kappa, and F1 score. We have compared the RD-CNN model
with other techniques such as AlexNet-SVM [13], CNN-filtering [16], SVM [21], CNN-
LSTM [24], RNN-LSTM [31], DeepCNN [33], and CNN-Pool [34]. Compared to other
approaches, as mentioned in Table 1, we have selected these studies because they are easy
to implement and because these techniques detect multiclass heart disease.

Table 5. Comparison with some CNN networks and proposed RD-CNN model based on
acquisition datasets.

Model Params Accuracy Sensitivity Specificity AUC Kappa F1-Score

AlexNet-SVM [13] 144M 0.877 0.777 0.677 0.803 0.331 0.877

CNN-filtering [16] 149M 0.865 0.678 0.805 0.812 0.347 0.879

SVM [21] 24.9M 0.878 0.771 0.821 0.873 0.323 0.877

CNN-LSTM [24] 26.6M 0.875 0.870 0.872 0.836 0.387 0.875

RNN-LSTM [31] 6.9M 0.862 0.760 0.800 0.870 0.369 0.862

DeepCNN [33] 37M 0.874 0.864 0.854 0.832 0.386 0.866

CNN-Pool [34] 33M 0.869 0.834 0.850 0.689 0.102 0.862

Proposed RD-CNN 6.4M 0.981 0.975 0.988 0.991 0.538 0.982

We have implemented these techniques as described in the corresponding studies.
The AlexNet-SVM [13], CNN-filtering [16], SVM [21], CNN-LSTM [24], RNN-LSTM [31],
DeepCNN [33], and CNN-Pool [34] techniques are used for comparison to detect and
classify in similar training and testing configurations. The different variants of these studies
have been implemented according to the methodology designed for the given dataset.

Table 5 provides a comprehensive overview of the comparative performance results,
and it is evident that our RD-CNN model demonstrates a clear advantage over the other
evaluated techniques. These results back up the idea that combining residual and dense
connections in the RD-CNN architecture makes it much easier to spot arrhythmias. This is
shown by higher AUC values, more stable Kappa statistics, and better F1 scores.

Overall, the presented results firmly establish our Residual-Dense Convolutional
Neural Network as a promising advancement in the field of ECG-based arrhythmia detec-
tion. The comparative analysis highlights the RD-CNN’s superiority in terms of multiple
evaluation metrics, validating its potential to enhance the accuracy and efficiency of ar-
rhythmia detection in clinical settings and indicating its capacity to outperform existing
state-of-the-art techniques.

To compare the models, we used the same implementation as described in the cor-
responding papers. The deep-learning algorithms outperform traditional classification
methods like SVM by a small margin. However, they continue to perform poorly when
compared to our suggested RD-CNN approach. We see that the Residual-Dense-CNN
strategy once again outperforms the competition in terms of accuracy for the ECG datasets.
While it is the best performer for the F1 score. The analysis shown above demonstrates
that our suggested Residual-Dense-CNN approach beats a number of standard machine
learning algorithms.

In addition to comparing the performance of our new Residual-Dense-CNN method-
ology with known modern methods for cardiac heartbeat identification from ECG data,
we also compare it with state-of-the-art techniques with our proposed preprocessing of
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ECG data. Results are mentioned in terms of the confusion matrix as displayed in Figure 7.
According to Figure 7, our suggested Residual-Dense-CNN strategy outperforms all other
methods for the ECG dataset in terms of accuracy. It performs compared to below: (a) shows
the CNN-LSTM [24], (b) represents the RNN-LSTM [31], (c) displays the DeepCNN [33],
and (d) shows the CNN-Pool [34] techniques. We find that our suggested method performs
better than every other modern method for the ECG Dataset in terms of accuracy and
precision. The explanation above shows that the technique we have suggested produces
accurate and consistent results across all performance indicators for both datasets.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 25 

suggested produces accurate and consistent results across all performance indicators for 

Figure 7. Confusion matrix of ECG heartbeat classification results for testing set with the inter-pa-

tient scheme in terms of 0: Normal Beat, 1: Supraventricular Premature Beat, 2: Premature Ventric-

ular Contraction, 3: Fusion of Ventricular and Normal Beat, and 4: Unclassifiable Beat. In this figure, 

(a) shows the CNN-LSTM [24], (b) represents the RNN-LSTM [31], (c) displays the DeepCNN [33],

(d) shows the CNN-Pool [34], (e) CNN-filtering [16] and (f) SVM [21] techniques.

Figure 8 provides the evaluation results of various machine learning (ML) algorithms 

applied to a classification task. Each algorithm’s performance is assessed using multiple 

metrics, offering insights into its effectiveness for the given task. Among the methods eval-

uated, “RD-CNN-AdaBoost” emerges as a standout performer in terms of accuracy, 

achieving an impressive score of 0.971. This indicates that the model made correct predic-

tions for a significant portion of the dataset. Additionally, this algorithm demonstrates a 

(a) (b) 

(c) (d) 

(e) (f) 
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(d) shows the CNN-Pool [34], (e) CNN-filtering [16] and (f) SVM [21] techniques.
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Figure 8 provides the evaluation results of various machine learning (ML) algorithms
applied to a classification task. Each algorithm’s performance is assessed using multiple
metrics, offering insights into its effectiveness for the given task. Among the methods
evaluated, “RD-CNN-AdaBoost” emerges as a standout performer in terms of accuracy,
achieving an impressive score of 0.971. This indicates that the model made correct predic-
tions for a significant portion of the dataset. Additionally, this algorithm demonstrates a
high level of sensitivity (0.965) and specificity (0.978), showcasing its ability to accurately
identify both positive and negative instances. The Area Under the ROC Curve (AUC)
value of 0.981 further confirms its strong discriminative power, while the F1 Score of
0.962 highlights a good balance between precision and recall. However, it is important to
note that the Kappa value of 0.438 suggests only a moderate level of agreement beyond
what could be expected by chance.
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Figure 8. Various machine-learning algorithms comparison with the proposed RD-CNN model to
recognize multiclass cardiac health.

Comparatively, the RD-CNN-ANN algorithm shows a lower accuracy of 0.855. Al-
though its sensitivity and specificity values are notably lower than those of the top-
performing algorithm, it still manages to achieve a relatively high F1 Score of 0.879, indicat-
ing that it balances precision and recall reasonably well. Its AUC value of 0.812 suggests
decent discriminatory ability. However, the lower Kappa value of 0.347 indicates a weaker
level of agreement compared to other methods. The RD-CNN-NavieBayes achieves an
accuracy of 0.854 with balanced sensitivity and specificity. Its AUC of 0.832 is reflective of
its ability to distinguish between classes. While the F1 Score of 0.866 indicates a fair balance
between precision and recall, the Kappa value of 0.386 suggests only moderate agreement.

The RD-CNN-RandomForest attains an accuracy of 0.879, with notable sensitivity and
specificity values. However, its AUC of 0.689 is comparatively lower, possibly indicating
room for improvement in terms of discrimination. The Kappa value of 0.102 suggests poor
agreement, which might raise concerns about its reliability beyond random chance. Lastly,
the RD-CNN-LSVM showcases remarkable results across the board. It achieves an accuracy
of 0.981 with high sensitivity (0.975) and specificity (0.988) values, implying a robust
ability to accurately classify instances. Its AUC value of 0.991 is indicative of outstanding
discriminative power. Moreover, the Kappa value of 0.538 signifies a substantial level of
agreement, strengthening its reliability.

The RD-CNN-AdaBoost and “RD-CNN-LSVM” algorithms outperform the others in
terms of accuracy, sensitivity, specificity, AUC, and Kappa, making them strong candidates
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for this classification task. The RD-CNN-ANN, RD-CNN-FisherFace, RD-CNN-KNN, and
“RD-CNN-DecisionTree exhibit competitive but varied performances, with differences in
precision-recall trade-offs and agreement levels. “RD-CNN-NavieBayes” and “RD-CNN-
RandomForest” demonstrate moderate results overall, with notable strengths and areas
for improvement. Due to the high computational time of the RD-CNN-AdaBoost classifier,
we have used a linear support vector machine (LSVM) in this paper to recognize multiple
classes of heart diseases.

4.3. Ablation Study

In this part, we conduct an ablation research to examine how the various elements of
our suggested approach affect the outcomes. In our suggested paradigm, we investigate
the impacts of denoising and data imbalance based on five-classes of cardiac heart diseases.

We assessed different outcomes for the following settings: residual-dense-CNN with-
out denoising and class-imbalance; residual-dense-CNN without denoising; residual-
dense-CNN without class-imbalance; residual-dense-CNN without denoising; and pro-
posed residual-dense-CNN (with denoising). The results, which were obtained using both
datasets, are shown in Figure 9 for both ECG datasets, such as PTB and MIT-BIH. The
results show that, when compared to the other approach versions, the suggested Residual-
Dense-CNN, which combines denoising and class-imbalance, performs the best. For the
ECG dataset, Residual-Dense-CNN without denosing and Residual-Dense-CNN without
class-imbalance produce poor results when just one component is removed. This demon-
strates the importance of the class-imbalance technique’s complementary impact when
used with denoising. The performance of our approach suddenly declines when all two
components are taken away, demonstrating the significance of these parts. The description
above highlights the relative significance of each element, their interdependence, and their
value in attaining the best outcomes for arrhythmia diagnosis from the ECG data.
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Figure 9. Predicted ECG signals related to four categories of heartbeat such as (a) Normal Beat,
(b) Supraventricular Premature Beat, (c) Premature Ventricular Contraction, (d) Fusion of Ventricular
and Normal Beat, and (e) Unclassifiable Beat.
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Table 6 presents a comparison of the results obtained from three different models for
recognizing five classes of heart diseases, focusing on their utilization of dense and residual
blocks. The models evaluated are the RD-CNN, Dense-CNN, and the newly proposed
RD-CNN. The RD-CNN model, with 25.4 million parameters, achieves an accuracy of
86.0%. It demonstrates a sensitivity of 82.0%, specificity of 84.2%, an AUC of 0.816, a
Kappa coefficient of 0.287, and an F1 Score of 0.835. The Dense-CNN model, comprising
7.9 million parameters, achieves an accuracy of 84.0%. It displays a sensitivity of 77.3%,
specificity of 85.2%, an AUC of 0.860, a Kappa coefficient of 0.379, and an F1 Score of 0.872.
The proposed RD-CNN, featuring 6.4 million parameters, stands out with remarkable
performance, achieving an accuracy of 98.1%, sensitivity of 97.5%, specificity of 98.8%,
an AUC of 0.991, a Kappa coefficient of 0.538, and an F1 Score of 0.982. These results
collectively indicate that the proposed RD-CNN model outperforms the other two models
in terms of accuracy and other crucial evaluation metrics, making it a promising candidate
for accurate heart disease classification.

Table 6. Comparison with proposed RD-CNN model in terms of dense and residual blocks to
recognize five classes of heart diseases.

Model Params Accuracy Sensitivity Specificity AUC Kappa F1-Score

RD-CNN 25.4 M 0.860 0.820 0.842 0.816 0.287 0.835

Dense-CNN 7.9 M 0.840 0.773 0.852 0.860 0.379 0.872

Proposed RD-CNN 6.4 M 0.981 0.975 0.988 0.991 0.538 0.982

Compared to other heart diseae patterns (Normal Beat, Supraventricular Premature
Beat, Premature Ventricular Contraction, and Unclassifiable Beats), the fusion of Ventricular
and Normal Beat are difficult to recognize and so, the classification accuracy is decreased
by the proposed method. Therefore, we would like to address this point of -view in future.

5. Discussions

The proposed work is based on the training of machine learning (ML) techniques to
annotate large and diverse datasets and is still very time-consuming and error-prone. In fact,
machine learning techniques whose training does not require extensive and well-annotated
datasets are gaining popularity. Consequently, it is feasible to correctly identify and classify
cardiac cycle abnormalities (e.g., uncommon cardiologic disturbances) using the limited
data available in ECG datasets. Due to the prevalence of cardiac diseases, the classification
of heartbeats from digital tracings of ECG signals containing imbalanced datasets is difficult.
This study looks at the common problems with classifying images by using a residual-
based CNN transfer learning paradigm to divide ECG heartbeats into five stages based
on supervised information. This study paper suggests a multichannel RD-CNN design
for classifying cardiac beats so that the effectiveness of the RD-CNN architecture can be
tested on a smaller dataset. The four-class classification performance of the suggested
architecture was satisfactory. The visualization outcomes further demonstrate that the
model is capable of differentiating between all classes. As a result, cardiologists can easily
classify the heartbeat classes with the use of this model. The following are the key causes
of this model’s superior performance:

1. The suggested design makes use of preprocessed photos rather than raw ones. As a
result, the suggested architecture lacks high-density regions like the pectoral muscle
and tags on mammograms, which are useful for improving classification accuracy.

2. To boost the caliber of training data, the suggested method employs preprocessing
steps to enhance the ECG signals.

3. To enable the network to concentrate on a wider range of features information from
ECG signals, the model incorporates residual and dense blocks to extract the signals.
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The suggested model has the potential to be used in clinical settings as a useful tool
to help cardiologists read and comprehend ECG heartbeat data. The classes of ECG heart-
beats taken into consideration in this study may be divided into five primary categories,
(a) Normal Beat, (b) Supraventricular Premature Beat, (c) Premature Ventricular Contrac-
tion, (d) Fusion of Ventricular and Normal Beat, and (e) Unclassifiable Beat. Future work
will include rebuilding the techniques used to operate with several classes (for example,
more than five different types of heartbeats), developing the work for real-time appli-
cation, and continually refining and improving it to boost accuracy. Additionally, the
same classification procedure may be applied to other dataset types, such as stress and
clinical datasets.

Several people die each year from cardiovascular problems, which are among the
most serious illnesses. The most common of these cardiac conditions is arrhythmia. This
serves as the justification for creating an automated and effective arrhythmia detection
method. In this paper, we offer a method for detecting different phases of arrhythmia from
ECG data using a deep learning Residual-Dense-CNN architecture and an LSVM-based
architecture. We begin by utilizing the IIR Notch filter and FIR filter to denoise the ECG
data. This reduces the extra noise that is caused by them for a variety of reasons, such as
instrument or recording faults, etc. Various data augmentation techniques use the denoised
signal to create a more balanced dataset and a more universal framework. Then, a deep
CNN architecture is used to extract features from the enhanced dataset. The deep-learning
technique is then applied to the retrieved features in order to eventually categorize the ECG
signals into the appropriate arrhythmia types. To get optimal performance, we properly
tune the hyperparameters. On several benchmarked datasets, we run extensive simulations
and assess a number of common performance indicators. We evaluate how well our
method performs in comparison to several baseline machine learning techniques and a
few current arrhythmia detection systems. To examine the impact of different elements
of our suggested technique’s components on its performance, we also conducted ablation
research. By applying more advanced signal processing techniques and identifying more
cardiac illnesses, this research may be furthered.

Current Limitations

The Residual-Dense CNN (RD-CNN) model, as with any deep learning architecture,
has its own set of limitations that can affect its performance, particularly in the context of
ECG analysis. While the specifics of the RD-CNN model’s limitations depend on its design
and implementation, here are some limitations that could apply:

(1) Deep learning models, including RD-CNN, can be prone to overfitting, especially
when trained on small datasets or when model complexity is high. This can lead to
poor generalizations about new, unseen data.

(2) The model’s performance can be sensitive to hyperparameter choices, such as the
number of blocks, layers, filter sizes, learning rate, etc. Improper tuning of these
hyperparameters can lead to suboptimal performance.

(3) If the RD-CNN model is trained on a limited or biased dataset, it might not generalize
well to different types of arrhythmias or populations that were not well represented
in the training data.

(4) The RD-CNN model might struggle with noisy ECG signals, especially when noise
levels are high. The model’s performance could degrade in the presence of various
types of noise, such as motion artifacts or electrode contact issues.

(5) Training deep learning models like RD-CNN requires significant computational re-
sources and time, which might not be readily available to all researchers or
healthcare institutions.

(6) Depending on the architecture, the RD-CNN model might be computationally
expensive, making real-time processing or deployment on resource-constrained
devices challenging.
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(7) ECG signals can vary significantly due to differences in patient demographics, record-
ing conditions, and underlying medical conditions. If these variations are not well
represented in the training data, the model’s performance might decrease.

To specifically address the model’s performance in detecting certain types of arrhyth-
mias or under certain conditions, rigorous testing and validation are necessary. The
model’s limitations may vary across different arrhythmias. For example, certain rare
or complex arrhythmias might not be well captured by the model if they were under-
represented in the training data. Additionally, conditions that lead to significant signal
distortions, such as atrial fibrillation with rapid ventricular response, might pose challenges
for accurate detection.

6. Conclusions and Future Works

The proposed work is based on the training of machine learning (ML) techniques
to annotate large and diverse datasets and is still very time-consuming and error-prone.
In fact, ML techniques whose training does not require extensive and well-annotated
datasets are gaining popularity. Consequently, it is feasible to correctly identify and
classify cardiac cycle abnormalities (e.g., uncommon cardiologic disturbances) using the
limited data available in ECG datasets. Due to the prevalence of cardiac diseases, the
classification of heartbeats from digital tracings of ECG signals containing imbalanced
datasets is difficult. This study investigates the prevalent ECG signal classification problems
through a residual-based CNN learning paradigm to classify ECG heartbeats into five
stages using supervised information. A RD-CNN algorithm is then used to categorize
the ECG data for the various cardiac illnesses using the retrieved characteristics. On
two benchmarked datasets, we conducted extensive simulations and assessed several
performance measures. The effectiveness of our suggested method for detecting heart
disease from ECG data was compared with a number of recently presented algorithms.
On average, we have achieved an Accuracy of 98.5%, Sensitivity of 97.6%, Specificity
of 96.8%, and an Area under the receiver operating curve (AUC) of 0.99. The obtained
results demonstrate that it is lightweight and effective, which qualifies it for continuous
monitoring applications in clinical settings for automated ECG interpretation to support the
cardiologist. In addition, the effectiveness of the proposed framework was substantiated by
encouraging experimental results. This study will significantly advance ECG data mining
facilitated by machine learning towards intelligent medical decision support. In this paper,
we have optimized the model using the cross-entropy loss function. However, there are
several other approaches [35,36] that will be tested in the future.
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