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Abstract: Efficient routing is essential for the proper functioning of wireless sensor networks (WSNs).
Recent research has focused on optimizing energy and delay for these networks. Nevertheless, there
is a dearth of studies that have examined the effects of volatile settings, such as chemical plants, coal
mines, nuclear power plants, and battlefields, where connectivity is inconsistent. In such contexts,
sensor networks may face security incidents, and environmental factors such as node movement and
death can result in dynamic changes to the network topology. A novel design algorithm grounded on
Dynamic Minimum Hop Selection (DMHS) was introduced in this paper. The key principle behind
DMHS is to use a probabilistic forwarding decision-making process through a distributed route
discovery strategy that utilizes dynamically adjusted minimum hop counts of nodes. Simulation
results indicate that the life cycle of the DMHS algorithm increases by more than 12% over 700 nodes
when compared to the traditional energy-saving algorithm. Furthermore, our algorithm performs
better in the average delivery rate of node, and has a 10% to 21% improvement compared to the other
algorithms. Overall, the DMHS algorithm represents an important contribution to the development
of WSNs that can function robustly in high-risk and unstable environments.

Keywords: routing; unreliable links; dynamic programing; WSNS; black hole

1. Introduction

WSNs are a cost-effective and versatile solution for military, environmental, disaster
relief, and industrial safety applications. However, WSNs face significant challenges in
routing and energy consumption. While considerable research has addressed these issues
in the past decade, insufficient attention has been given to their robustness. Given the
intricate nature of the environments in which WSNs operate, they require not only energy
efficiency but also high levels of stability and resilience. To fully appreciate these challenges,
two aspects deserve attention.

In high-risk circumstances, WSNs are more prone to encounter “accidental holes”.
These are referred to as traditional WSN holes, where key nodes in sensor networks may
become exhausted due to overuse, resulting in the network’s “energy hole” or “black hole”.
Research has been focused on addressing the energy hole issue in WSNs by employing
power control [1–3] and topology control techniques [4–6]. This involves utilizing control
mechanisms based on perception models and implementing heterogeneous distribution
strategies to delay node failure and extend the overall network lifespan.

Additionally, some research has proposed black hole avoidance mechanisms in routing
algorithms, such as energy balancing algorithms [7–9], routing algorithms based on location
information [10], and planarization routing algorithms [11]. These algorithms can partially
solve the energy hole problem in WSNs. However, the potential for “event holes” has yet
to be fully considered. In other words, there may be emergency cases occurring such as
explosions in industrial environments, even if the odds of a calamity are low. Hence, it is of
paramount importance to formulate efficient strategies that encompass not solely the issue
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of energy holes in WSNs, but also encompass the possibility of unanticipated circumstances
that could potentially disrupt the network’s operational efficacy. By utilizing a combination
of strategies, the life of the WSN can be prolonged, thereby ensuring that data transmission
remains stable and reliable in critical circumstances.

In the event of a catastrophic incident, it is common for the network topology to
experience frequent changes. For instance, hazardous situations such as explosions, fires, or
radiation leaks can inflict extensive damage upon predefined nodes. To facilitate accident
response efforts, robots or unmanned aerial vehicles are deployed as temporary mobile
nodes at the incident site to acquire local data. The incessant modifications to the network
topology result in a proliferation of routing discovery packets, leading to data conflicts
and network congestion. This monitoring system typically operates on a low duty cycle,
with minimal data transmission during normal circumstances. However, once an accident
occurs, a significant volume of data needs to be transmitted, rendering the routing problem
more intricate due to the energy constraints imposed on the nodes, which distinguishes it
from a typical WSN system.

Therefore, it is imperative to devise an algorithm capable of deployment in hazardous
settings such as chemical plants, coal mines, nuclear power plants, and battlefields. In such
circumstances, sensor nodes are highly prone to failure, necessitating the development of a
novel routing algorithm to guarantee robustness.

There are scholars who have conducted research on routing algorithms for WSNs in the
context of unreliable links. These studies share similarities and differences with the applica-
tion scenarios of the current study. The similarity is that the scenarios involving unreliable
links are all a result of topology changes caused by energy exhaustion or node mobility,
known as Mobile ad-hoc networks (MANETs). For instance, El-Fouly, Fatma H et al. [12]
expound on the successful application of dynamic programming to address the issue of
unreliable links, which provides strong empirical support for our theory. In addition,
Poluboyina L et al. [13] evaluate the performance of various unicast routing protocols
through a simulated comparison in a high-risk environment. However, this paper focuses
on the routing strategy for safety monitoring WSNs operating in hazardous environments
where links are unreliable with sudden death at any time. Drawing upon the principles of
dynamic programming, a distributed routing discovery strategy is employed. Additionally,
a self-adaptive flooding optimization algorithm is proposed for WSNs, addressing the issue
of network load imbalance.

The main contributions of this paper are summarized as follows:

1. This paper presents a robust routing algorithm for extreme environments, such as
petrochemical plants, field scout facilities, and disaster relief operations. The algorithm
selects the minimum number of hops based on dynamic programming principles.
It utilizes a distributed routing discovery strategy that incorporates probabilistic
forwarding decisions and dynamically adjusts the minimum hop selection of nodes.
Simulation results demonstrate that this algorithm enhances network stability and
reliability in high-risk environments, even when a large number of nodes become
invalid, resulting in a massive black hole in the network.

2. In contrast to conventional routing algorithms, the method presented in this paper
can be applied to sensor networks that lack a location system and have a three-
dimensional structure. Examples of such networks include atmospheric monitoring
in space and underwater WSNs. Furthermore, experimental results from a designed
instance demonstrate that the method exhibits enhanced flexibility and robustness in
the presence of unreliable links.

In Table 1, we make a comparison of the more commonly used algorithms, pointing
out their advantages and disadvantages.
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Table 1. Comparison of previously used algorithms.

Routing
Algorithms

Delivery
Ratio

Energy
Efficiency

Geographic
Information Robustness Time

Complexity

DMHS high high unnecessary high O(n ×m)
TPGF middle high required middle O(n)
MHR low low unnecessary low O(n + E)

Dijkstra middle middle unnecessary high O(n2)

2. Related Works

The routing problem in WSNs entails determining the most efficient route from
the monitoring region to the sink node. This route is essential for timely detection and
monitoring of regional data, as well as for conducting associated processing. The optimal
path takes into consideration not only the shortest Euclidean distance but also factors such
as minimal energy consumption or minimal transmission delay for data. Each edge in
the network is assigned a non-negative constant weight that represents its importance.
Consequently, finding the optimal path is tantamount to identifying the shortest path.

Currently, there are several types of shortest path algorithms available, including
the Dijkstra algorithm [14], matrix algorithm [15], greedy algorithm [16], and Floyd algo-
rithm [17]. The Dijkstra algorithm is a well-known single-source shortest path algorithm.
While it can yield the optimal solution for the shortest path, its efficiency is relatively low
due to the extensive calculations required for node traversal, resulting in a time complexity
of 2O(n). On the other hand, the matrix algorithm can solve the shortest path between
all pairs of nodes, but it necessitates significant computation, making it more suitable for
computer-based calculations. Its typical time complexity is 3O(n). The greedy algorithm,
although simple and feasible, only provides a local optimal solution in terms of routing
and decision-making. As for the Floyd algorithm, it is primarily utilized in directed graphs
and can compute the shortest distance between any two nodes. Nonetheless, its high time
complexity of 3O(n) makes it unsuitable for large-scale data calculations.

As WSNs are increasingly being applied in various real-world scenarios, the reliability
of these networks has become a key concern. Therefore, the robustness of a routing
algorithm is an important performance metric to consider, alongside factors such as energy
consumption and communication delay. In high-risk environments such as petrochemical
plants, a leakage incident can potentially lead to explosions. Sensor nodes are constantly at
risk of failure, which can result in the formation of a “black hole”. Although algorithms
such as Two-Phase Geographic Greedy Forwarding (TPGF) can partially bypass these
holes, they are often prone to becoming stuck in local minima, as illustrated in Figure 1.
Excessive node failure necessitates each node to repeatedly search for new paths, resulting
in energy wastage.
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To solve the routing problem in harsh environments, a considerable amount of research
has been carried out during the last decade. Kavra R et al. [18] propose a planarization
routing algorithm based on GG and RNG at the worst case. The findings indicate that
within certain planar topology control schemes, it is feasible to recover from a failure in
greedy routing without needing to switch between any adjacent faces. Guo S et al. [19]
introduced an opportunistic flooding approach specifically designed for low-duty-cycle
networks characterized by unreliable wireless links and predetermined working schedules.
The main concept involves making probabilistic forwarding decisions at the sender based
on the delay distribution of next-hop nodes. In recent years, considerable research efforts
have been devoted to tackling the routing problem in demanding environments. Among
the notable contributions, a noteworthy study conducted by Sateesh Gudla et al. [20]
put forth a genetic algorithm-based approach for energy-efficient data collection. This
algorithm effectively mitigated the issues of excessive data transmissions, high energy
consumption, and network packet delivery delays, while also extending the network’s
lifetime. Moreover, the study demonstrates the efficacy of the proposed method through the
evaluation of essential parameters such as energy consumption, network lifetime, number
of data transmissions, and average delivery delay, thus providing comprehensive evidence
of its effectiveness.

In the context of low-duty-cycle networks with unreliable wireless links and predeter-
mined working schedules, Cheng L et al. [21] proposed a new energy-efficient adaptive
forwarding technique called EEAF. It demonstrated the presence of path diversity in low-
duty-cycle WSNs, where routing for optimal delay and optimal energy consumption are
likely to follow distinct paths. In study [22], Tang J et al. introduce FlowerCast, a multicast
protocol that reduces multicast delay and improves the delivery ratio by quantifying com-
munication distance, constructing a delay-optimal multicast tree, and employing a hybrid
routing strategy to maximize the potential of overlapping links.

Sabri Y et al. [23] proposed a theoretical model that calculates the probability density
function of multi-hop broadcast latency in WSNs when employing probabilistic broad-
casting schemes. The study introduces a new probabilistic approach for directed data
transmission that eliminates the need for route discovery. The proposed model ensures that
each message reaches the base station (BS) successfully with a specified success probability.

In another study by Suma S et al. [24], the authors investigated the protocol un-
der consideration utilizes an energy-conscious routing algorithm to identify the most
efficient routing tree connecting the Cluster Heads (CHs) to the sink. This algorithm des-
ignates specific paths for data transmission towards the sink while periodically adjusting
them to ensure a balanced energy consumption among nodes and enhance the overall
network longevity.

3. Network Model and Problem Statement

In this section, we define the network model and assumptions related to our dynamic
minimum hop selection as follows.

3.1. Network Model

The objective of routing in WSNs is to pinpoint the most effective route from the
source node to the sink node. This challenging task is simplified by the application of
dynamic programming, which breaks down the compound multi-phase problem involving
N processes into individual single-phase problems. It bases its assumption on the logic that
optimizing every step independently culminates in the selection of the best N process as
the outstanding choice. Hence, dynamic programming proves to be an effective strategy to
address routing challenges in WSNs. A practical example is visualized in Figure 2, which
illustrates a dynamic programming routing model composed of an n + 1 level, drawing
reference from the study [25].
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Consider a WSN consisting of N sensor nodes, uniformly distributed across a square
plane region. This network is defined by the following characteristics: it contains a single
sink node, represented as v0. The sink node and the source node can both be arbitrarily
located within the WSNs. Moreover, each sensor node can fall under one of three states:
active, available, or non-functional. The WSNs under consideration can be represented as
a graph G(v, C), where v = {v1, . . ., vh+1} represents a finite set of sensor nodes with hop
count number of h, and nodes are identified by V0, V1, . . ., Vh+1 in every level. In order to
distinguish between each node in place at all levels, we used Vhi to express node i with
the minimal hop h. The V sets divide the path into h + 1 stages represent as P. The set
C = {C(11,0), . . ., C(h+1,hi)} is a finite set of edged links weight, which is determined by the
hops and remaining energy of nodes.

Di is defined as the set of adjacent nodes to a given node i. If node j ∈ Di and i ∈ Vh,
then it follows that Di ∈ Vk−1. The routing decision at node i is based on the metric between
i and the nodes in Di. During routing, only links that meet the minimum hops requirement
are evaluated, and the probability of selecting a node depends on its remaining energy.
This mechanism balances energy consumption and link robustness to ensure optimal
network performance.

3.2. Energy Modeling for Wireless Communications

The wireless communication of sensor nodes involves various aspects of energy
consumption, such as signal amplification energy, signal transceiver energy, and data pro-
cessing energy. In this paper, we utilize the more classical energy consumption model [26]
to evaluate the energy consumption of nodes.

In WSNs, the data transmission phase constitutes a significant energy consumption
component. The energy consumed for sending the same data packet theoretically varies
based on packet size. To minimize energy consumption during data transmission and
ensure the minimum energy is utilized for packet sending, this study use the optimal
packet size, denoted as Popt. The concept of Popt has been previously discussed in the
literature [27], and its calculation is presented in Equation (1):

Popt =

√
C2

0 −
4C0

ln(1−p) −C0

2
(1)



Sensors 2023, 23, 7223 6 of 18

where C0 = α + K2/K1, α denotes the packet header size (bit), K1 denotes the energy
consumed by the payload in communication, K2 denotes the energy consumed by the
node for the startup, and p denotes the bit error rate (BER) of the channel. Thus, the
energy consumed by the node to send and receive Popt bit data ETX and ERX are shown in
Equations (2) and (3), respectively:

ETX(Popt, x) = Popt × Eelec + Popt × εamp (2)

ERX(Popt) = Popt × Eelec (3)

where x denotes the distance between sensor nodes, Eelec denotes the energy consumed to
send or receive a unit bit, and εamp denotes the energy consumed to amplify the signal of
the transmitting node. Thus, the Popt bit sized packet is sent from send to receive and the
total energy consumed Etotal is shown in Equation (4):

Etotal = Popt × (2Eelec + εamp) + EDA (4)

where EDA denotes the energy consumed by the data during fusion at the cluster head
node. For simplicity, we do not consider the energy consumed by data fusion, so this EDA
we set to 0 in the simulation.

3.3. Assumptions

In this section, we will outline a set of fundamental assumptions that a network
scheme must satisfy:

• The sink node is located at a fixed position within region A and has abundant energy. It
can retrieve the ID and hop count of each node. Additionally, each node can ascertain
its minimum hop distance from the sink node.

• All nodes have the same communication radius, and the links between them are symmetrical.
• Nodes may experience sudden death or massive failure due to energy depletion or

field accidents.
• Rescue nodes carried by drones or robots can join the WSNs at any time. These nodes

are referred to as mobile nodes.
• The communication radius of nodes is limited, and the convergence nodes can only

be reached through multi-hop networks. Only a few nodes can move and will not
move frequently.

3.4. Format of Data Packet

The routing protocol proposed in this study selects routes based on H value and
task-type, which necessitates modifications to the format of data packet. Table 2 presents
the modified routing table.

Table 2. The format of data packet.

Routing Table Entries

Head

ID ID number of this node
IDS ID number of previous node
IDD ID number of next node
H Current number of hops from the node to the sink

Flag Used to trace back the previous node

Body

Task-type Normal, emergency, join, and quite task type
Src Source node address

Dest Destination node address
Data Data to be transmitted

Checksum Used as error control
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The packet consisted of a head and body. The header of a packet consists of five parts,
as shown in Table 2. The ID represents the node number where the packet has already
arrived. The IDs and IDd represent the ID numbers of the nodes from which the packet is
forwarded and to which it is forwarded, respectively. The H field represents the current
hop count from the node to the sink, which is initialized to the minimum hop count. The
flag bit is used to trace back the previous node when all the next hop nodes fail. The field
of tasktype gives the types of tasks, and it consists of four kinds of normal, emergency,
join, and quite task type. Src and Dest refer to the source and destination, respectively,
indicating the initial source node ID and the ultimate destination node ID of the packet.
Due to the critical role of precise hop counting in wireless sensor networks for determining
the distance or proximity between nodes, any corruption or miscalculation of the hop count
can have detrimental effects on the algorithm’s performance.

The purpose of including the checksum field in the packet is to enable error detection
during transmission. The checksum field consists of two bytes, one of which uses parity to
reduce the likelihood of errors. The other byte is used to store the original H (hop count)
value of the node. If any corruption or miscalculation of the hop count occurs during
transmission, the H-value of the node is restored to its original value. Additionally, the
node broadcasts a frame to all its neighboring nodes, instructing them to update their
routing table. This ensures that the node can rejoin the network and resume normal
communication.

4. Methods and Design

The primary objective of this paper is to develop a routing algorithm for WSNs that
possesses robustness, low latency, and energy efficiency. This algorithm should be suitable
for deployment in high-risk environments. Specifically, our aim is to design a method that
can be utilized by a supervisory system during emergency situations, while also ensuring a
low packet loss rate and energy efficiency.

The decision-making process in routing includes determining the next hop and com-
prises three phases: establishing link weights, applying a dynamic selection algorithm for
minimum routing hops in emergency scenarios, and implementing inclusion and removal
mechanisms for nodes. The problem has been transformed into a set of static subproblems
by utilizing minimum hop paths determined through a status map. Previous research has
indicated that choosing routes with the least number of hops does not necessarily result
in minimal end-to-end delay. Thus, it is crucial to establish a standard for selecting subse-
quent hops in each stage. The DMHS routing model takes both robustness and low energy
consumption into consideration in order to achieve optimal transmission and maintain a
balance between routes with minimal costs.

4.1. The Initialization Link of the Weights

The initial step in this paper involves the configuration of initial weights for link
establishment. These weights are determined by the number of hops and remaining energy
available. The first phase involves establishing the minimum hop. The sink node initiates a
flooding packet to all neighboring nodes containing the hop count (H) between itself and
the sink node. Upon receiving the flooding packet, each neighbor compares its current hop
count (initialized to the maximum value) with the received H + 1 and assigns the smaller
value to its hop count. Nodes with the same hop count and next hop are stored in an array,
and the others are discarded to prevent a broadcasting storm. This paper provides further
details on this process in Figure 3.
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The probability mass function is a quantitative measure used to determine the proba-
bility of node selection for the purpose of energy balancing. In this paper, the probability is
not solely defined based on the lowest cost but also considers the tradeoff between energy
consumption and link robustness in the routing process. By considering the selections made
at each hop, we can establish a routing path from the source node Vh+1 to the destination
node V0. The objective of this paper is to identify a route that not only satisfies the energy
and latency requirements but also possesses strong robustness. In other words, our aim is to
find a route that optimizes the overall sum of Ck(j,i), represented as the optimal cost Copt(j,i).{

Copt(Vh+1, V0) = min{Ck(Vh, V0) + Ch+1(vh+1, vh)}, 1 ≤ k ≤ h
C1(V0, V0) = 0

(5)

where Ck(Vh,V0) represents the sub-routes from the sink node to any intermediate node,
which are determined in each node. This helps to avoid unnecessary computations and the
wastage of energy. Ch+1(vh+1,vh) is a link between Vh+1 and Vh, and if its cost is optimal,
the link will be removed. The selection of the suitable node v_hi is a probability function
based on the remaining energy Ehi and Eh+1i, which we reformulate as follows:

pHi =
Ehi(h + 1− H) + αE(h+1)i(H − h)

∑ Eh + β∑ E(h+1)
i = 1, 2, . . . n (6)

where PHi is the selection probability of node Vi with the minimum hop of H, and the
candidates are elected from Vh and Vh+1, i.e., the value of H can be set to h + 1 or h, but
nodes are more prone to selecting node from Vh. Eh and Eh+1 is the remaining energy of
nodes in set Vh and Vh+1, and it represents energy of ith node with the subscript of i. The
parameter and, with the range from 0 to 1, are the weight coefficients of whether choosing
the child nodes or neighbors with same hops. The larger the value, the stronger can local
minima be avoided, but there must be a tradeoff between robustness and energy efficiency.

4.2. The Dynamic Minimal Hop Selection Algorithm

In this section, we will discuss strategies for ensuring network robustness during
emergency situations. During emergencies, sensor nodes are vulnerable to sudden failures,
which can lead to the creation of black holes. As these black holes expand, the availability
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of alternate routing paths diminishes. This expansion of black holes can ultimately result
in the formation of isolated islands and network disconnection.

While flooding is known for its robustness in sensor networks, it can cause network
congestion when multiple packets, including data and control signals, are transmitted
simultaneously. This congestion can result in delays in data transmission and ultimately
lead to network crashes.

To address these issues, this paper proposes a novel adaptive algorithm based on
dynamic programming that searches for optimal paths in real-time. The concept of opti-
mality in this context takes into account not only the shortest path, but also factors such as
energy balance and time delay. The specific steps of the dynamic minimum hop selection
algorithm for emergencies are as follows:

Step 1: Upon receiving emergency packets, the node responds with an ACK frame and
checks if the ID matches its own. If it does, the routing is completed. Otherwise, proceed to
step 2.

Step 2: Use heuristic functions to select a suitable next h − 1 hop node and wait for
the ACK signal after forwarding the packet. If the ACK is received in a timely manner, the
process can be completed. If not, proceed to step 3 in case of a timeout.

Step 3: The node experiencing a timeout checks if any other h − 1 nodes exist. If they
do, return to step 2. If not, proceed to step 4.

Step 4: Increment the node to h++ and send a broadcast message to its neighbors for
hop updating. Then, check if there are any h − 1 nodes. If there are, go to step 2. If not,
return to step 4.

By transforming the multi-step decision process into a distributed routing discovery
strategy through recursive calls from step 2 to step 4, the algorithm avoids infinite loops in
step 4. This is because after multiple increments of h++, there will always be at least one
node (its original h + 1 parent node) to return back to. Algorithm 1 presents the pseudo
code of the dynamic minimum hop selection algorithm.

Algorithm 1: The pseudo code of the dynamic minimal hop selection algorithm.

Input: Type of task, IDs (ID number of previous node), Dest (routing destination), h (hops to the
sink of this node), ID (node Identifier), Flag (the initial value is 0).
1: Return an ACK frame when an emergency task is received
2: If Dest /∈ Vh−1 then
3: Rec: if Vh−1 6= ϕ then
4: IDd← select a node from IDh and ID(h−1), IDs ← ID
5: forward frame, wait for the ACK
6: if timeout then
7: delete IDd from the of Vh−1, goto Rec
8: else
9: return IDd
10: end if
11: else if Flag 6= 2
12: Flag++, h++, broadcast the hop change frame
13: goto Rec
14: else
15: Flag← 0, drop the frame

16:
/* After two increments of h, there will always be at least one parent node to return to. If
there is no parent node present, it indicates the existence of a disconnected node or a
“lonely island”. In order to conserve energy, the frame is dropped. */

17: end if
18: else
19: IDd← Dest , return IDd
20: end if
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4.3. Joining and Exiting Mechanism

The joining and exiting mechanisms described in this paper pertain to the dynamic
updating of the topology of WSNs. When a new node, carried by either a robot or an
unmanned aerial vehicle (UAV), intends to join the network, the node broadcasts a join
frame to its neighboring nodes. The neighbors then respond by including their respective
identifiers (h1, h2, . . . hn) in the ACK_Join frame sent back to the node.

Afterwards, the identifier (h) of the new node is set at min(hn)+1. Subsequently, the
new node notifies its neighbors to update their routing tables and include the new node.

Alternatively, in situations where the energy of a node is insufficient, it has the capa-
bility to autonomously increment its identifier h to h + 1 and broadcast its hop count to
neighboring nodes. Subsequently, other nodes will automatically evaluate the hop count of
these nodes to determine if they should be avoided when making routing decisions.

1. In the event of a missing next hop node, a guaranteed return path can be established
within a worst-case scenario following two hop count iterations. The node’s “h”
value can be adjusted based on various factors, such as residual energy, link quality,
energy balancing, channel quality, node faults, and mobility, to achieve optimal
network performance.

4.4. Memory Requirements for the Routing Tables

1. The DMHS algorithm is a reactive routing protocol that establishes routes exclusively
when packets necessitate transmission. This characteristic results in relatively modest
memory requirements and low space complexity. However, the DMHS algorithm
places some strain on time complexity as it requires the maintenance of routing table
entries for active routes.

2. In the DMHS algorithm, each routing table entry solely includes the next-hop data
and the hop count towards the intended destination. Consequently, in a network with
s destinations, each node might need to store n routing table entries. This implies
that as the number of destinations in the network increases, the memory demand
on each node also rises. For the purposes of this paper, we will focus solely on the
scenario involving a single destination node. Moreover, because the DMHS algorithm
is dynamic, the routing table must be updated whenever there are changes in the
network topology, further escalating the memory requirements. Nonetheless, the
DMHS algorithm generally demands less memory than link-state or distance-vector
based routing algorithms since it excludes the need to store the topology information
of the entire network. This grants the DMHS algorithm an advantage in resource-
constrained wireless sensor networks.

4.5. Time Complexity Analysis

The implementation of the local flooding method provides the basis for establishing the
minimum hop gradient table. Each node in the network not only identifies its immediate
neighboring nodes as the next hop, but also stores information about adjacent nodes
at the same hop level and the preceding node. This approach significantly minimizes
the occurrence of latency and energy consumption caused by the frequent and transient
querying of neighboring nodes in response to changes in network topology. Furthermore,
when disseminating information, it is recommended to incorporate a random retreat period
to mitigate collisions and energy expenditure.

In the initialization phase of the DMHS algorithm, each node needs to be checked
and updated, so its time complexity is O(n*m) in the worst case for a graph containing n
nodes and an average of m neighboring nodes. This is because in the route initialization
phase, we need to find the node among the unvisited nodes that is 1 less than the current
hop count and update the temporary distance of its neighboring nodes. Thus, for n nodes,
the complexity of the algorithm is O(n). In addition, each neighbor needs to be considered
once when notified to update the H-value, so the number of neighboring nodes also has
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an impact on the time complexity of the algorithm, which is O(m). Thus, the total time
complexity is O(n*m).

Such complexity means the DMHS algorithm may face efficiency problems when
dealing with large-scale graphs, especially when the density of the graph increases or when
the communication radius increases, the number of neighbors may show a rapid growth.
In this case, considering both energy consumption and link quality, the node employs a
restricted flooding strategy to randomly select the h − 1 hop node as its A route can be
established in the network by flooding a limited number of packets, while simultaneously
addressing the broadcast storm problem and mitigating rapid failure through focused
path exploration. This also reminds us that when designing and analyzing algorithms,
in addition to their problem-solving ability, we should also consider their complexity to
ensure their feasibility in real-world scenarios.

5. Experiment Setup

A series of actual field deployment experiments were conducted to verify the feasibility
of the method proposed in this thesis. Due to limitations in the number of available sensors
and the conditions of the experimental field, a total of 26 wireless sensors were utilized, with
one serving as a sink node and another as a mobile node. For the beacon nodes, DMHS and
other reference protocols were implemented using the TinyOS platform. Figure 4 displays
a portion of the experimental setup. We arranged 24 of the beacon nodes outdoors, where
the nodes were not exactly in the same plane in order to simulate the real environment as
much as possible, and the batteries of the nodes were randomized and not purposely filled
for them. The sink node was positioned at the network’s edge to mimic a large multi-hop
sensor network, enabling testing with fewer sensors. It is important to note that all nodes
were operated without antennas during the experiments, and the communication radius
was approximately 10 to 15 m. If antennas are added, the sensor network can be deployed
over a much wider range.
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In order to visualize the routing process, we drew a schematic diagram based on the
actual results, as shown in Figure 5. In this network, the sink node is represented by a solid
black circle, and each node’s minimum hop distance to the sink is indicated by the number
within its circle. Suppose a node is transmitting data with a hop count of 5, following the
gradient of minimum hop counts shown in Figure 5a.
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the penultimate hop node does not work. (c) A new route is established. (d) When another node on
the new path is also out of work. (e) After iteratively adjusting the value of the relevant variable h,
a unique path connecting to the sink can be found as long as it exists. (f) Dynamic adjustment of
the optimal path. (g) Newly joined mobile nodes broadcast join frames. (h) A new path is finally
established.
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We simulate a node failure by turning off nodes with 1 hop, represented by the
disappearance of circles, as shown in Figure 5b, the node with a hop count of 2 may be
unable to locate its next node with a hop count of 1. In this case, the node will solve the
subproblem recursively by increasing its hop count to 3 and continuing to search for nodes
with a hop count of h − 1. As shown in Figure 5c, the 3-hop node successfully discovers
the node with a hop count of 2 among its neighbors. If the node cannot find such a node
(for instance, if the 2-hop node is also non-functional), it will further increase its hop count
to 4 and continue the search until it finds a 3-hop node, as depicted in Figure 5d. By
repeating this recursive process, the parent node with a hop count of 3 can ultimately solve
the subproblem and find the routing path at the network’s top after a limited number of
iterations. This algorithm is robust and effectively prevents the network from falling into a
local minimum.

In an extreme case where the crucial 2-hop node is disabled, Figure 5e illustrates
that the top portion of the network becomes disconnected. To bypass the black hole, the
routing path forms a loop, with the hop counts of the nodes being updated along the way.
Eventually, the path returns to the 3-hop node (actually a 5-hop node after two rounds of
updating) at the crossroads, allowing the route to the sink to continue despite the obstacle.
The annotation “+1” beside a node represents the number of updates, indicating how
frequently the node’s hop count was adjusted.

Through dynamic adjustments, the hop count of nodes that are unable to pass or face
difficulties in passing is increased. When the next packet arrives, it automatically selects
the optimal path to avoid obstacles and unnecessary routing. Figure 5f demonstrates that
when the next packet arrives, the source node directly chooses the more optimal path at
that moment. The packet continually weighs the two paths during the dynamic adjustment
process. Eventually, it becomes clear that the hop count of the source node needs to reach 8
for the path below to be ultimately determined. If some of the nodes in this path become
overloaded or experience excessive energy consumption, they will adjust their hop count
to achieve a balance in the optimal path.

Now let us consider the case where there are mobile nodes patching the network. In
extremely harsh environments, such as a bombing disaster, it is possible that all the paths
in the network fail, and it is necessary to use an unmanned aerial vehicle or a robot to
transport new nodes to patch the network. We place mobile nodes at the edges of the
network as shown in Figure 5g, where the mobile nodes are represented by blue pentagons.
Through the joining and exiting mechanism described above, the mobile node will publish
broadcast frames to notify the surrounding neighboring nodes to dynamically update the
hop count. After a similar process as above, a new green path is finally established as
shown in Figure 5h. Of course, this path may eventually run out of energy due to the large
amount of data forwarding, but it is worthwhile for high-risk environments to return large
amounts of live data in time.

6. Simulations and Performance Evaluation

Due to the limitations in the number of sensors and the site area, our practical deploy-
ment experiments only serve to verify the feasibility of the algorithms, and cannot provide
an evaluation of their actual performance under conditions with a large number of nodes.
Therefore, in the subsequent section, we will utilize simulation methods to assess and
compare the performance of various algorithms. The following method will be employed:

1. The impact of the number of nodes on network performance.
2. Compare the network lifetimes of DMHS, MHR, Dijkstra, and TPGF.
3. Investigate the effect of the percentage of failed nodes on network connectivity.
4. The impact of death rate to the average delivery rate.

6.1. Experiment Setup

In order to validate the aforementioned algorithm, we constructed a WSN scenario
measuring 1000 m × 1000 m using NS2. We compared the performance of our algorithm
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against the TPGF algorithm and the opportunistic flooding algorithm by varying the
number of nodes. The distribution of nodes in the simulation environment was randomized.
The sink had an ample power supply, and each node was initialized with a constant energy
value. As stated in [28], the energy consumption of nodes is dependent on the data length
(k) and distance (d).

Es(k, d) =
{

kEelec + kε f sd2 d < d0
kEelec + kεmpd4 d > d0

(7)

Due to the proximity of the sending and receiving nodes, the paper has chosen to utilize
the free space model (where d < d0). To align with previous work [29], the transmission
radius is set at 50 m. To simplify the analysis, we have converted the total energy into the
transmission of 2 M bits of data. Additionally, in each round, a node will be required to
send 1 k bits of original data every 5 min.

The minimum energy threshold for nodes to enter protected mode has been set at 10%.
While in this mode, nodes are only permitted to send original data and are not capable of
forwarding any packets. To determine the average lifetime of networks, which is the rate at
which nodes die off by 50%, we analyzed the results of 100 simulations using 100 different
random seeds for network deployment. We varied the number of nodes from 100 to 1000
to obtain distinct values. The comparison of the lifetime achieved by the four algorithms is
displayed in Figure 6.
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6.2. Performance Comparison

Figure 6 demonstrates that, as the number of nodes increases, the network’s lifetime is
significantly extended. The DMHS algorithm necessitates more execution rounds when
compared to the other two algorithms, and this distinction becomes more evident as the
network grows. With over 500 nodes, the opportunity flooding algorithm fails to effectively
extend the network’s lifetime due to a broadcast storm. Additionally, it is clear that the
DMHS algorithm enhances the lifetime by more than 12% to 57% with over 700 nodes.
As the number of nodes increases, the network lifetime of the other algorithms does not
improve significantly beyond 500. This is because with the increase in the number of
nodes, the network becomes more complex and frequent packets need to be sent between
individual nodes leading to energy consumption. Once some of the nodes in the network
fail, it results in a large number of packets being forwarded centrally from certain preferred
nodes, which can progressively accelerate the death of the network. The DMHS algorithm
selects the next hop node by probabilistic forwarding. As the number of nodes in the
network increases, it will inevitably lead to an increase in the density of nodes, then the
choice of paths becomes a lot, which can make the residual energy of each node in the
whole network balanced.
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In order to accurately replicate a real-world explosive event, our team utilized a
network of 1000 nodes. By inducing the death rate of specific nodes through targeted
invalidation and manual creation of black holes, we were able to achieve a more precise
evaluation. Our primary metric for comparison purposes was the average delivery rate,
which included the percentage of nodes unable to route to the sink despite being active.
Our findings are presented in Figure 7 and demonstrate a clear correlation between the
number of invalidated nodes and the average delivery rate.
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The DMHS algorithm demonstrates improved average delivery rate performance
as the network expands, with this advantage becoming more prominent when the death
rate is between 50% and 70%. This is attributed to the algorithm’s ability to recursively
explore other nodes by adjusting its hop count when a route is lost, as long as there is
only one connected route to the sink. In contrast to traditional algorithms, the DMHS
algorithm overcomes limitations such as becoming stuck in local optimal solutions and
slower convergence. Consequently, it can be inferred that the DMHS algorithm exhibits
reduced energy consumption and a high level of robustness.

We statistically analyzed the above results, first we used the ANOVA method to
compare these four algorithms. The p-value for the ANOVA test is about 0.6817. The
test results show that there is no significant difference in the mean values between the
groups being compared. After analyzing the results, we believe that the reason for this
phenomenon is because when the network structure is complete and the number of dead
nodes is small, the various algorithms are able to achieve a better average delivery rate,
which cannot reflect the advantages of DMHS. In order to better compare the differences
in performance among algorithms, we use the sum of weighted average delivery rates
metric to measure the strengths and weaknesses of the algorithms. The main idea is to sum
the average delivery rates under all mortality rates multiplied by the mortality rate. The
purpose of this is to lower the algorithm’s score for average delivery rates at low mortality
rates, and the better it performs at high mortality rates, the higher the score. Figure 8 below
shows the scores of the individual algorithms, and it can be seen that the DMHS algorithm
has a 10% to 21% improvement compared to the other algorithms.
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7. Conclusions

This paper presents a robust routing approach that leverages dynamic programming
to address the challenges of unreliable links in WSNs. Designed for deployment in extreme
environments that are prone to explosions, the proposed algorithm employs dynamic
minimum hop selection to enable efficient routing without compromising battery life. By
avoiding the recalculation of hop status through iterative and recursive calls, the dynamic
programming method has low time complexity. Additionally, the algorithm’s dynamic
adjustment of hop stats ensures energy balance, overcomes the problem of local minimum
in traditional algorithms, and addresses the black hole problem.

Simulation results reveal that the proposed Dynamic Minimum Hop Selection (DMHS)
algorithm has a low routing cost and significantly improves delivery performance in
environments with unreliable links. The effectiveness and feasibility of the proposed
approach in dealing with routing issues in extreme environments make it particularly well-
suited for deployment in volatile settings. By employing probabilistic forwarding decision-
making and distributed route discovery, the algorithm addresses the unique challenges
posed by high-risk and unstable environments, enhancing the network’s lifespan and
delivery rate.

The potential for WSNs to operate efficiently and robustly in demanding contexts is
an essential requirement for critical applications in chemical plants, coal mines, nuclear
power plants, battlefields, and other hazardous settings. The DMHS algorithm serves
as a pivotal tool for such applications, providing a viable solution for ensuring efficient
and reliable communication in severely challenging environments. We notice that the
dynamic programming approach may encounter higher latency and complexity issues
when the node density increases and the number of neighboring nodes is large, especially
during initialization. Future research can investigate and address scalability challenges by
utilization of clustering strategies and sleep scheduling in large-scale networks to effectively
reduce node density.
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