
Citation: Deng, W.; Wei, H.; Huang,

T.; Cao, C.; Peng, Y.; Hu, X. Smart

Contract Vulnerability Detection

Based on Deep Learning and

Multimodal Decision Fusion. Sensors

2023, 23, 7246. https://doi.org/

10.3390/s23167246

Academic Editor: Hyoungshick Kim

Received: 21 July 2023

Revised: 15 August 2023

Accepted: 15 August 2023

Published: 18 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Smart Contract Vulnerability Detection Based on Deep
Learning and Multimodal Decision Fusion
Weichu Deng 1 , Huanchun Wei 2,*, Teng Huang 1, Cong Cao 1, Yun Peng 1 and Xuan Hu 3,4

1 Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou 510006, China;
2112106114@e.gzhu.edu.cn (W.D.); huangteng1220@gzhu.edu.cn (T.H.); 2112206107@e.gzhu.edu.cn (C.C.)

2 School of Beidou, Guangxi University of Information Engineering, Nanning 530299, China
3 Information Security Research Center, CEPREI Laboratory, Guangzhou 510610, China
4 Key Laboratory of Ministry of Industry and Information Technology, Guangzhou 510610, China
* Correspondence: whc191021@163.com

Abstract: With the rapid development and widespread application of blockchain technology in recent
years, smart contracts running on blockchains often face security vulnerability problems, resulting
in significant economic losses. Unlike traditional programs, smart contracts cannot be modified
once deployed, and vulnerabilities cannot be remedied. Therefore, the vulnerability detection of
smart contracts has become a research focus. Most existing vulnerability detection methods are
based on rules defined by experts, which are inefficient and have poor scalability. Although there
have been studies using machine learning methods to extract contract features for vulnerability
detection, the features considered are singular, and it is impossible to fully utilize smart contract
information. In order to overcome the limitations of existing methods, this paper proposes a smart
contract vulnerability detection method based on deep learning and multimodal decision fusion. This
method also considers the code semantics and control structure information of smart contracts. It
integrates the source code, operation code, and control-flow modes through the multimodal decision
fusion method. The deep learning method extracts five features used to represent contracts and
achieves high accuracy and recall rates. The experimental results show that the detection accuracy
of our method for arithmetic vulnerability, re-entrant vulnerability, transaction order dependence,
and Ethernet locking vulnerability can reach 91.6%, 90.9%, 94.8%, and 89.5%, respectively, and the
detected AUC values can reach 0.834, 0.852, 0.886, and 0.825, respectively. This shows that our
method has a good vulnerability detection effect. Furthermore, ablation experiments show that the
multimodal decision fusion method contributes significantly to the fusion of different modalities.

Keywords: multimodal fusion; smart contract; vulnerability detection; deep learning

1. Introduction

A smart contract is the technical core of blockchain 2.0 [1], first proposed by computer
scientist Nick Szabo in 1995. It is a contract clause established in digital form, with self-
verification and automatic execution characteristics. Unlike traditional contracts, smart
contracts have high efficiency, low costs, and high security, and no “denial” occurs. Smart
contracts are designed to perform contracts securely and efficiently without a trusted
third party. Previously limited by technological developments, smart contracts have been
widely used with the rapid development of blockchains in recent years. Ethereum [2],
as the first blockchain platform to introduce smart contracts, supports the Turing-complete
programming language Solidity [3].

In essence, the smart contract is a piece of code that continuously runs on the
blockchain [4], which cannot be modified once deployed and is automatically executed
when a predetermined condition is triggered. Smart contracts running on the blockchain
can achieve reliable information exchange, value transfer, and asset management, so smart

Sensors 2023, 23, 7246. https://doi.org/10.3390/s23167246 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23167246
https://doi.org/10.3390/s23167246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4623-6241
https://doi.org/10.3390/s23167246
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23167246?type=check_update&version=1

Sensors 2023, 23, 7246 2 of 21

contracts are usually bound to assets. Once security problems occur, they can cause sub-
stantial economic losses [5]. Smart contract security problems have followed the increase in
smart contracts. According to statistics, 89% of smart contracts have security vulnerabilities.

The security of smart contracts [6] has also attracted the attention of hackers, who have
been stealing illegal assets by exploiting smart contract vulnerabilities. In 2016, attackers used
a re-entrant vulnerability in TheDAO’s crowdfunding contract to attack it, resulting in about
USD 60 million in losses [7]. In 2017, a vulnerability in the Parity wallet [8] contract led to USD
31 million in user losses. In 2018, hackers took advantage of the integer overflow vulnerability
in the Ethereum ERC-20 smart contract to transfer a large number of BEC tokens issued by the
United States Chain company out of thin air, resulting in its market value dropping to almost
zero [9]. According to statistics from SlowMist’s website [10], attacks against Ethereum smart
contracts have caused cumulative losses of more than USD 3.1 billion as of 2023.

With the frequent occurrence of blockchain security incidents and the increasing
number of assets involved in smart contracts, the vulnerability problem of smart contracts
has also attracted the attention of more scholars [11]. Due to the characteristics of smart
contracts being tamper-evident and automatically executed, stolen assets are difficult to
recover once security problems occur in smart contracts. Therefore, there is an urgent
need to detect potential security vulnerabilities before deployment to ensure the security of
smart contracts and the safety of the asset interests of each participant.

Current smart contract vulnerability detection methods [12] are mainly based on
traditional vulnerability detection methods of conventional programs (such as C++ and
Java), usually using static analysis [13] and dynamic execution techniques [14] to detect
vulnerabilities. This method often relies on expert experience and has problems such
as low automation, low efficiency, and insufficient flexibility. In recent years, with the
rapid development of deep learning, the use of deep learning technology for vulnerability
detection of smart contracts has become a research hotspot [15]. Detection technologies
based on deep learning can make up for the problems of low automation, low efficiency,
and dependence on expert knowledge in traditional detection methods. However, most
of the current methods based on deep learning [16] consider a single data feature and are
unable to fully mine the vulnerability information of smart contracts. Additionally, there
is poor scalability and a lack of consideration for multimodal characteristics.

1.1. Goals and Contributions

In order to address the above challenges, this paper proposes a smart contract vulner-
ability detection method based on deep learning and multimodal decision fusion, which
does not rely on expert knowledge and supports a wide range of vulnerability types. Firstly,
multiple features that can be used for vulnerability detection are extracted from smart
contracts. In this paper, the source code (SC) [17], operation code (OP) [18], and control-flow
graph (CFG) [19] of smart contracts are extracted. Secondly, the extracted features are used
to train the neural network classifier, and the decision of each modal data is obtained.
Finally, the decisions of these classifiers are integrated with the stacking-decision fusion
method as the final decision. This paper experimentally evaluates the proposed approach
on a publicly available dataset for four common vulnerability types. The experimental
results show that, compared with existing methods, the proposed method can achieve
higher accuracy and a higher AUC value, and better affects the vulnerability detection of
smart contracts. The approach presented in this paper covers a more comprehensive type
of smart contract vulnerabilities. The main contributions of this paper include:

• The proposal of a multimodal decision fusion vulnerability detection method for
smart contract vulnerability detection. Experiments show that the proposed method
is superior to other methods in detecting smart contract vulnerabilities.

• A comparison of the effectiveness of three modalities—source code, operation code,
and control-flow graph—on the vulnerability detection task, revealing the effectiveness
of the different modalities.

Sensors 2023, 23, 7246 3 of 21

1.2. Layout

This paper is organized as follows. Section 2 reviews the existing research, including
traditional vulnerability detection techniques for smart contracts, deep learning-based
vulnerability detection techniques, and multimodal fusion techniques. Section 3 describes
the flow of the proposed detection method for multimodal decision fusion vulnerability.
Section 4 presents the experiments and conclusions. Section 5 discusses the experimental re-
sults and the advantages and disadvantages of the proposed method. Section 6 summarizes
the work in this paper and presents the conclusion.

2. Review

This section compares and analyzes existing smart contract vulnerability detection
and multimodal fusion techniques, identifies the advances and shortcomings of the current
research, and further elaborates on the advantages of our approach.

2.1. Vulnerability Types

Smart contracts, as a piece of program code, are inescapably vulnerable, and these vul-
nerabilities continue to increase. The SWC vulnerability repository [20] alone has flagged as
many as 136 types of vulnerabilities. No single tool can cover all the known and unknown
vulnerabilities that may appear. Therefore, to verify the effectiveness of our proposed
approach, we experimentally validate it against several common and damaging vulnerabil-
ities. These include arithmetic [21], re-entrant [22], transaction-ordering dependence [23],
and locked-ether [24] vulnerabilities. In this paper, these vulnerabilities are, respectively,
abbreviated as follows for ease of representation: ARTHM, RENT, TimeO, and LE.

• ARTHM: Smart contracts are usually executed by virtual machines (such as EVMs),
where integers have a range of maximum and minimum values that they can represent
in the virtual machine. When an integer exceeds this range, an overflow occurs.
For example, if a number is stored as a uint8, it means that the number is stored as an 8-
bit unsigned number with values ranging from 0 to 28 − 1. Hackers exploit the integer
overflow vulnerability and make it easy for ordinary developers to make mistakes
when writing smart contracts, resulting in integer overflow in smart contracts.

• RENT: In Ethereum, since smart contracts can call external contracts or send ether,
these operations require the contract to submit external calls. Attackers can use these
calls outside the contract to cause attack hijacking, allowing the attacked contract
can be re-executed at any location. This bypasses the restrictions in the original code,
resulting in re-entrant attacks. A re-entrant vulnerability triggered the DAO attack [25].
Ethereum was forced to implement a hard fork to recover the damage, and due to the
anonymity of the Ethereum network, the attackers are still at large.

• TimeO: A race condition vulnerability occurs when the outcome of a contract’s opera-
tion depends on the order of transactions submitted to it. In Ethereum, transactions are
grouped into blocks, and the block confirmation time is approximately 17 s. After receiving
the transaction request, the miner selects the transaction to be included in the block based
on who has paid a high enough gas price. So, miners can anticipate which transactions
will occur before they are finalized. For example, in a smart contract of the information
reward type, the contract will reward the person who submits the answer first. In this
case, a malicious node running an Ethereum client intercepts the reward by submitting a
request at a higher price after receiving a transaction request from another node.

• LE: A locked-ether vulnerability means that ether is at risk of being frozen. The reason
for ether locking is that smart contract developers do not consider the transfer function
of ether when developing smart contracts. They only consider the receive function of
ether. This will result in the smart contract account being able only to receive ether
and not being able to transfer it out, resulting in the received ether becoming frozen.

Sensors 2023, 23, 7246 4 of 21

2.2. Smart Contract Vulnerability Detection

From the perspective of technology-driven development, smart contract vulnerability
detection can be divided into traditional methods and deep learning methods, where
traditional methods are driven by expert experience in development. In contrast, deep
learning methods are driven by data.

2.2.1. Traditional Methods

Traditional methods for detecting vulnerabilities in smart contracts draw heavily from
conventional methods for detecting vulnerabilities in programming languages such as
C\C++ and Java, which typically use static analysis and dynamic execution techniques
to detect vulnerabilities. For example, Maian [26] uses a symbolic execution approach,
which detects vulnerabilities by exploring the invocation paths of the contract; however, the
number of paths to be explored grows exponentially with the branching state. Securify [11]
and Zeus [27] propose a formal verification approach to vulnerability detection, achieving
a low false positive rate of detection; however, these methods rely on expert auditing. Con-
tractFuzzer [28] uses fuzzy testing for vulnerability detection and can successfully detect
the RENT vulnerability and Parity wallet vulnerability that led to the DAO contract event.

Although traditional vulnerability detection methods are still widely popular today,
they generally suffer from low automation, low efficiency, and long detection times due
to their reliance on expert experience, and detecting smart contract vulnerabilities is still
time-consuming and labor-intensive.

2.2.2. Deep Learning Methods

In recent years, with the rapid development of deep learning, vulnerability detection
of smart contracts using deep learning techniques has become a hot research topic. Based
on the data-driven deep learning approach, the key to the effectiveness of vulnerability
detection for smart contracts lies in the extraction of features and the amount of data
used for training. For example, Gao et al. [29] proposed an automated method based on
word embedding to learn the features of smart contracts in Solidity. Zhang et al. [30] pro-
posed a vulnerability detection method that combines information graphs and integrated
learning using information graph embedding to extract features from smart contracts. Send-
ner et al. [31] proposed the first migration learning-based vulnerability detection method
for smart contracts, which uses a generic feature extractor to learn the bytecode semantics
of smart contracts and uses independent branches to learn the features of each vulnerability
type. Zhuang et al. [32] first proposed a contract graph to represent the syntactic and
semantic structures of smart contracts and then used graph convolutional neural networks
to analyze vulnerabilities built on top of the contract graph.

Vulnerability detection technologies based on deep learning can address the problems
of low automation, low efficiency, and dependence on expert knowledge of traditional
detection methods. However, most of the current methods based on deep learning consider
limited data characteristics, are unable to fully mine the vulnerability information of smart
contracts, have poor scalability, and lack consideration for multimodal characteristics.

2.3. Multimodal Fusion

A modality is a description of something from a particular perspective. Multimodality
usually contains two or more modalities and refers to a description of things from multiple
perspectives. Usually, to utilize data from multiple modalities, it is necessary to fuse these modal
data. According to the different fusion stages, multimodal fusion techniques can be divided
into feature-based, decision-based, and hybrid fusion approaches. Currently, multimodal data
fusion is one of the most effective ways to efficiently utilize large amounts of multisource data.

2.3.1. Feature-Based Fusion

The process of feature-based fusion is shown in Figure 1a. Feature-based fusion usually
involves extracting features from different modalities and then fusing them directly, which

Sensors 2023, 23, 7246 5 of 21

is suitable for cases where there is a high correlation between modalities. Yang et al. [33] used
feature-level fusion for audio and video features for speech recognition, but it suffers from the
deficiency of challenging feature extraction. Besides deep learning-based feature extraction,
the fuzzy inference method and generative rule method are standard methods for feature-
level fusion. The generated high-dimensional feature vector limits feature-based fusion,
and the method cannot model complex relationships because of the difficulty in obtaining the
cross-correlation between different features by directly fusing multiple modal features.

Output

Model

Feature fusion

modal 1 ...modal 2 modal n

(a)

Output

Model

Decision fusion

...

feature feature feature

Model Model

...

...

modal 1 modal 2 modal n

(b)

Output

Model

Decision fusion

...

feature

Model

...

...

Feature fusion

modal 1 modal 2 modal n

(c)

Figure 1. Comparison of the three fusion methods. (a) Feature-based fusion. (b) Decision-based
fusion. (c) Hybrid Fusion.

2.3.2. Decision-Based Fusion

The process of decision-based fusion is shown in Figure 1b. Decision-based fusion [34]
considers the variability of different modalities by using the features extracted from differ-
ent modalities to train sub-models individually After obtaining decisions based on each
modality, a combination of these decisions (e.g., vote, sum, average, etc.) is used as the final
result. Decision-based fusion is a way to fuse the local decision information obtained from
the data after further evaluation or inference [35], and each fusion modality is assumed to
be independent of the others. Decision-based fusion is commonly used in human–computer
interaction scenarios [36] such as emotion recognition [37]. Makiuchi et al. [38] proposed a
new cross-representational speech model for emotion recognition. The model is based on a
Transformer model to extract features and uses a CNN model to make decisions. Finally,
based on the results from speech and text, the two modalities are fused using a fractional
fusion approach, resulting in good outcomes. Xie et al. [39] fully exploited the similarity
information between graphical texts and used a multilayer semantic decision-level fusion
model to classify the sentiment of graphical texts in social media. Decision-based fusion
can fuse heterogeneous data but suffers from the drawback of easy information loss.

2.3.3. Hybrid Fusion

The process of hybrid fusion is shown in Figure 1c. The hybrid fusion approach
combines feature- and decision-based fusion. As a compromise between the two fusion
methods, the limitations of feature- and decision-level fusion are improved by considering
the modality’s characteristics and the learning task’s impact. Lin et al. [40] used feature- and
decision-level fusion for audio and video, respectively, applied to a sentiment analysis study,
and demonstrated that multimodal fusion outperformed unimodal fusion. Additionally,
the decision-level fusion results were slightly better compared to the feature-level fusion
results. Although hybrid fusion combines the advantages of feature- and decision-level
fusion, it also makes the model more complex and makes learning more difficult.

2.3.4. Discussion

Figure 1 shows the flows of the three fusion methods. Each of the three fusion methods
has advantages and disadvantages. Feature-based fusion captures the relationship between
features better but is prone to overfitting. Decision-based fusion is less prone to overfitting,
and different modalities have less influence on each other, but it does not allow the classifier

Sensors 2023, 23, 7246 6 of 21

to train all the data simultaneously. The hybrid fusion method is flexible to use, and while
it synthesizes the advantages of both, it also increases the model’s structural complexity
and training difficulty.

In real-world smart contract vulnerability detection, the data distribution of vulner-
ability samples is often unbalanced [40]. On unbalanced datasets, the method based on
feature fusion is more likely to overfit. In addition, when it is unclear whether a modality is
suitable for smart contract vulnerability detection, the feature-based fusion method needs
to consider the impact that adding features of a modality may have on the overall detection
performance. In contrast, the decision-based fusion method can use all possible experiment
modalities. The correlation between the three modalities of smart contracts used in this
paper is small, and all modalities can be independently applied to the vulnerability detec-
tion of smart contracts. Therefore, the feature-based fusion method is not considered to
avoid interference between different modalities. Last but not least, decision-based fusion
methods are more interpretable.

We compared the scope and examples of applications of these three modal fusion
approaches. The results of this comparison are shown in Table 1.

Table 1. Comparison of the three fusion methods.

Method Stages Scope of Applicability Examples

Feature-based Early Emotion recognition [41–43]
Decision-based Terminal Emotion recognition [44,45]
Hybrid Fusion Early and Terminal Event detection [46–48]

3. Our Method

This section describes the proposed approach, including the general structure and
specific process.

3.1. Overview
3.1.1. Structure

The overall structure of the proposed approach is shown in Figure 2, and the whole
process is divided into subclassifier learning and multimodal decision fusion. The subclas-
sifiers make decisions based on the characteristics of the different modalities of the smart
contract and determine whether there is a vulnerability. On the other hand, multimodal
decision fusion takes each subclassifier’s decision output as input and learns decision
fusion strategies based on the decision output and the true labels.

OP

SC

1.PUSH1

2.PUSH1

3.MSTORE

4.DUP1

CFG

Y1 Y2 Y3

Y/NClassifier

Decision Features Extraction

Stacking

N-gram

GCN

Word2Vec

Fasttext

Modality

Word2Vec

Y1

Y2

Y3

Figure 2. Multimodal fusion vulnerability detection scheme graph. Source code is the initial form
in which a smart contract is written out and stored as a sequence of text. The operation code is the
product of the compiler’s compilation and records each EVM operation step when executing the
contract. The control-flow graph shows how each code block is invoked when the contract is running.

Sensors 2023, 23, 7246 7 of 21

3.1.2. Procedure

As shown in Figure 3, the procedure of our method is divided into four stages accord-
ing to the order of execution.

start

end

Modal generation

Feature extraction

Subclassifier
train & predict

Decision fusion

Figure 3. The procedure of our method. Our method is divided into four main stages: modal
generation, feature extraction, subclassifier training and prediction, and decision fusion.

1. Modal generation. This stage generates different modal representations of the smart
contract data based on the source code. This stage inputs the source code and outputs
both the OP and CFG modalities.

2. Feature extraction. This stage extracts different features from the modalities for deep
learning model training. This stage inputs the modal data and outputs multiple features.

3. Subclassifier training and prediction. The features extracted from each modality are used
to train a deep neural network classifier to make a decision for a particular modality.
This stage inputs the features of the modality and outputs the predicted values.

4. Decision fusion. This stage uses the stacking method to fuse the outputs of the indi-
vidual subclassifiers. A final classifier is trained using the outputs of the subclassifiers
as features. This classifier outputs the final prediction.

3.1.3. Discussion

This subsection discusses the feasibility of our proposed methodology. The source
code contains the most primitive information about the smart contract [49] and is the
primary basis for identifying vulnerabilities [50]. Compared with the source code, the op-
eration code records more detailed operations of the EVM [51] when executing smart
contracts, and contract violations can be detected through the operation code. The op-
eration code records semantic information about the contract, whereas the control-flow
graph records structural information about the contract. Some vulnerabilities tend to have
anomalous structures. Table 2 shows the application of the three modalities for smart
contract vulnerability detection.

Table 2. Examples of the three modalities used for vulnerability detection.

Modality Author Year Outcome

Source code
Jiang et al. [52] 2022 High detection performance
Gao et al. [29] 2020 Semantic clone detection
Jeon et al. [53] 2021 High detection performance

Operation code
Albert et al. [54] 2022 Smart contract optimization
Zhang et al. [55] 2023 Short detection time

Ashizawa et al. [56] 2021 Detects both code clones and vulnerabilities

Control-flow graph
Liu et al. [57] 2023 High detection performance

Agarwal et al. [58] 2022 High detection accuracy rates
Liu et al. [59] 2023 Enables fine-grained vulnerability detection

Sensors 2023, 23, 7246 8 of 21

In summary, the three modalities are feasible for smart contract vulnerability detection.

3.2. Modality Generation

The complete life cycle of a smart contract, from writing to execution, can be divided
into three layers: the source code layer, build layer, and execution layer. This paper
corresponds to these three layers using three modalities for vulnerability detection: source
code (SC), operation code (OP), and control-flow graph (CFG). The features of the different
modalities of smart contracts are first extracted. Then, different classifiers are trained using
these features to make good use of the attributes of a single modality for vulnerability
detection. Since the modal data of the smart contract’s operation code and control-flow
graph are usually not directly available, the operation code and control-flow graph need to
be generated based on the source code.

3.2.1. Operation Code Generation

The operation code records the specific operation of each step of the virtual machine
when the smart contract is executed, which is equivalent to a system instruction. Common
operation codes and their corresponding meanings are shown in Table 3.

The solc compiler usually generates the operation code for smart contracts. A frag-
ment of operation code generated using the example contract 0x0ce6d5a093d4166237c7a9-
f f 8e0553b0293214a1.sol is shown in Figure 4.

PUSH1 0x80 PUSH1 0x40 MSTORE PUSH8

0xDE0B6B3A7640000 PUSH1 0x0 SSTORE PUSH10

0x3F870857A3E0E3800000 PUSH1 0x1 SSTORE PUSH1

0x0 PUSH1 0x2 SSTORE CALLVALUE DUP1 ISZERO

Figure 4. An operation code fragment.

Table 3. Operation codes and their meanings.

Type Name Meaning

Stack operations

PUSHx Push x-byte values on the stack
POPx Pop x-byte values on the stack
SWAPx Swap the top of the stack with the value of the xth position

Logic commands
AND Logical operations: AND
OR Logical operations: OR
NOT Logical operations: NOT

Arithmetic commands
ADD Arithmetic operations: ADD
MUL Arithmetic operations: MUL
SUB Arithmetic operations: SUB

Address and wallet commands
ADDRESS Obtains the address
BALANCE Obtains the balance
ORIGIN Obtains the execution start address of the current contract

Predictable variable commands
TIMESTAMP Obtains the timestamp
NUMBER Obtains the block number
DIFFICULTY Obtains the mining difficulty

Given that the meaning of the operation code is independent of the address, the oper-
ation code needs to be normalized to prevent the extracted features from having too large a
dimension. The processing method used in this paper is as follows:

• The instructions PUSH1-PUSHx, POP1-POPx, etc., are unified as PUSH and POP;
• Remove the operands 0x80, 0x40, 0x0, etc.;

Sensors 2023, 23, 7246 9 of 21

• Remove the operation addresses, such as 0xDE0B6B3A7640000.

The processed operation codes are shown in Figure 5, and the normalized operation
codes proceed to the next stage of feature extraction.

PUSH PUSH MSTORE PUSH PUSH SSTORE PUSH

PUSH SSTORE PUSH PUSH SSTORE CALLVALUE

DUP ISZERO

Figure 5. An operation code fragment specification.

3.2.2. Control-Flow Graph Generation

The control-flow graphs record the variables and functions that each part of the system
calls when the EVM executes a smart contract. This paper uses the Slither [60] tool to
generate the control-flow graphs. Control-flow graphs generated using the sample contract
0x00000000000da14c27c155bb7c1ac9bd7519eb3b.sol are shown in Figure 6.

As can be seen in Figure 6, the control-flow graph of a smart contract is a kind of
directed acyclic graph, where the nodes of the graph are the various functions/variables
in the contract, and the edges of the graph represent the invocation relationships between
the functions or variables. The control-flow graphs show the structural information of the
smart contract.

registerDepositAddress

DepositAddressRegistrar

constructor fallback

hasAttribute setAttributeValue

Registry [Solidity]

require(bool,string)

Figure 6. Example of a control-flow graph. The source code for this contract can be found in
Appendix A. Combining the control-flow graph with the source code clearly shows the relationship
between the code calls.

3.3. Modal Features Extraction

In Section 3.2, we obtained three different modal representations of the same smart
contract. In this subsection, we extract features from these modalities to obtain a more
computationally friendly form and to remove redundant information.

3.3.1. Source Code Embedding

The source code of a smart contract consists of lines of characters that cannot be used
directly in a machine learning model and must be transformed into a numerical vector,
i.e., text embedding. Keywords and variables with linguistic information from the smart
contract in the source code are embedded into the high-dimensional space by performing
text embedding on the source code. This paper embeds the source code using the Word2Vec
model [61] and the Fasttext model [62].

Word2Vec is the process of mapping a sparse word vector of one-hot form into an n-
dimensional dense vector using a single implicit layer, where words with similar meanings
are mapped to similar positions in the vector space. Using neural networks allows flexible
modeling of context, and it is one of the most popular approaches to text embedding.
Word2Vec is based on the idea that the context of a word determines the semantics of

Sensors 2023, 23, 7246 10 of 21

that word. According to the semantic decision, Word2Vec is divided into the CBOW and
Skip-gram models. Among them, the CBOW model predicts the central word based on the
words around it, whereas the Skip-gram model predicts the surrounding words based on
the central word.

Fasttext is a Facebook open source word vector and text classification tool that provides
a simple and efficient method for learning text classification and representation with high
performance and speed. The Fasttext model is a word vector-based text classification
model. It uses character-level n-gram-based features to represent words in the text, thus
avoiding the traditional bag-of-words model, which must consider all possible word
sequences. In Fasttext’s training process, each word is represented as a fixed-length vector.
These vectors are combined into a vector representation of the text, and finally, a softmax
activation function is used for classification.

The process of embedding source code using the Word2Vec and Fasttext models is as
follows. The first step is to clean the text. It may contain various characters unrelated to
the code’s semantics (e.g., comments), so the source code text needs to be cleaned before
training with the model, including removing deactivated words, comments, and useless
punctuation. The next step is model training. After obtaining the text of the source code
after text cleaning, the text is processed into a suitable form for the input of the Word2Vec
and Fasttext models, and then the model is trained using the text. The final step is text-
vector generation. The trained model performs text embedding for all contracts to obtain
text vectors containing semantic information and supporting mathematical operations.

3.3.2. Operation Code Vectorization

Before the smart contract runs, the source code must be compiled into the form of
operation code, which contains the basic operations of the program’s execution (such as
pop stack, push stack, take operand, etc.). Compared to the source code, the operation
information contained in the operation code is more detailed and accurate. Similar to the
source code, operation code sequences cannot be directly applied to machine learning
models. This paper uses simultaneous N-gram and Word2Vec models to vectorize the
operation code.

N-gram is an algorithm based on a statistical language model [63]. The basic idea is to
process the content within the text using bytes within a sliding window of size N, forming
a sequence of byte fragments of length N. Each byte fragment is called a gram, and the
frequency of all grams is counted and filtered according to a pre-set threshold to form a
list of crucial grams. This list constitutes the vector feature space of this text, with each
kind of gram in this list representing a feature vector dimension. In order to prevent the
generated vector dimensions from becoming too large, this paper uses a sliding window
of N = 2 to extract features from the normalized operand sequence, ultimately generating
5183-dimensional features through experimentation.

The process of vectorizing operand sequences using the Word2Vec model is similar
to the embedding process of the source code. First, the text is pre-processed to obtain the
training corpus for the Word2Vec model. Then, the Word2Vec model is trained using the
corpus, and the text vectors of individual characters are computed sequentially after the
training is completed. Finally, the text vectors in all operands are summed to obtain the
operand vectors of the whole contract.

3.3.3. Graph Convolution of Control-Flow Graphs

The graph neural network, a deep learning-based graph data processing method
with good performance and interpretation, is widely used in various fields. The graph
convolution network (GCN) [64] is a feature extractor similar to convolutional neural
networks, except that its object is graph data. The graph convolution generally consists of
three processes:

Sensors 2023, 23, 7246 11 of 21

1. Send: Each node sends its feature information to its neighbor nodes after transforma-
tion. This step involves extracting and transforming the feature information of the
nodes.

2. Receive: Each node aggregates the feature information of neighboring nodes. This
step involves fusing the local structure information of the nodes.

3. Transform: Perform nonlinear transformation after aggregating the previous informa-
tion to increase the expressiveness of the model.

In this paper, the features of the control-flow graph are extracted using a graph
convolutional neural network, and the final experiment generates 64-dimensional features
that are used in later classifier decisions.

3.4. Multimodal Decision Fusion

After obtaining the features from the different modalities, a neural network classifier
is trained for each modality, and this classifier is used to apply the features of the different
modalities. After obtaining the decisions from the neural network for each modality,
stacking is applied to fuse the decisions and obtain an optimal decision that considers all
the modalities.

The stacking decision fusion uses the output of each subclassifier as input. Suppose
the classifiers obtained from each modality training are {L1(x), L2(x), . . . , Ln(x)}, and the
corresponding decision outputs are {y1, y2, . . . , yn}. Then, the single input of the fusion
model is {y1, y2, . . . , yn, Y}, where Y is the true label. Various machine learning models can
be used as the decision-fusion model, but this paper uses logistic regression as the fusion
model. The reasons are as follows:

• There are not many kinds of modalities, and the dimensionality of the input of the
fusion model is not large, so it is not easy to overfit by using simple models.

• The logistic regression model is highly interpretable, and the importance of each
modality on the final decision can be obtained to judge the effectiveness of each
modality on contract vulnerability detection.

In this paper, we use the binomial logistic regression model. As a classification
model, the binomial logistic regression model is represented by a conditional probability
distribution P(Y = 1 | x). The random variable X takes the value of a real number, and
the random variable Y takes the value of {0, 1}. The logistic regression model is defined
in Equation (1). In the logistic regression model, the log odds of the output Y = 1 form a
linear function of the input x. In model learning, for a given dataset T, the parameters of
the model can be estimated using the maximum likelihood method.

log
P(Y = 1 | x)

1− P(Y = 1 | x)
= w · x (1)

In Equation (1), x ∈ Rn+1 is the input, Y ∈ {0, 1} is the output, and w ∈ Rn+1 is the
parameter known as the weight.

The basic idea of using stacking decision fusion in this thesis is to combine the decisions
from each modality to form the optimal decision. Assuming that the effect of a particular
modality is insignificant and the decision holds no value, it is also possible to set voting
weights, etc., so that the final decision of that modality has the lowest impact on the final
decision. The worst effect of decision-level fusion will not be lower than the effect of the
best single modality.

4. Experiments

In this section, we empirically evaluate our proposed approach using a publicly avail-
able dataset. In order to evaluate the performance of the proposed method, the following
research questions were designed:

Sensors 2023, 23, 7246 12 of 21

• RQ1: Can the proposed method effectively detect common vulnerabilities in smart
contracts, and is its vulnerability detection better than that of existing methods?

• RQ2: Does adding new features within the same modality help improve model
performance?

• RQ3: Do different strategies of cross-modal fusion affect model performance?

The following experiments address each of these research questions.

4.1. Experiment Settings
4.1.1. Dataset

In this section, we conduct tests on a publicly available dataset and analyze the
effectiveness of the proposed approach from multiple perspectives. We used the ScrawID
dataset [65], a real Ethereum smart contract dataset with vulnerability tags, to test against
four common contract vulnerability types: ARTHM, TimeO, LE, and RENT. We employed a
crawler to obtain the source code of the corresponding contracts from Ethscan. Considering
the unbalanced nature of the data, we resampled a few classes of categories using the
ADASYN algorithm [66]. A total of 9252 smart contract data were used in the experiments.

4.1.2. Experiment Environment

The vulnerability detection model proposed in this paper mainly consists of four parts:
modal generation, which compiles source code into an operation code and generates a
control-flow graph; feature extraction, which is used to extract the features of each mode;
a neural network classifier, which is used to classify samples according to each modal
feature; and decision fusion, which is used to fuse the output of each modal classifier.
The modal generation tools were mainly implemented using Python and SIF tools [67].
Feature extraction was implemented through text embedding and graph convolution
models. The neural network classifiers and decision fusion were implemented using
Pytorch and SkLearn. The system environment versions included Ubuntu 18.04, Python
3.10, Scikit-learn 1.2.2, and Pytorch 1.13.1.

All experiments were conducted on a computer equipped with an Intel Xeon Gold
6240R CPU @ 2.6 GHz, GPU Tesla V100S-32 GB, and 64 GB RAM.

4.1.3. Parameter Setting

The input type of the graph convolutional neural network contained the following
three parts: the dimensionality of each node in the graph (uniformly coded as 128 dimen-
sions in this paper), the representation of the adjacency matrix corresponding to the nodes
in the graph, and the label corresponding to the graph. The output was the number of graph
categories. The hidden layer was 128× 128× 128× 128× 128× 64, and the batch size was
set to 256. The neural network classifier was a fully connected feedforward network with
200× 100× 100× 50 hidden layers. There is no straightforward method for determining
the number of layers of the neural network, and we determined a better layer configuration
based on experience and experiments.

The activation function of both networks was Relu, a binary cross-entropy loss func-
tion. The Relu activation function is nonlinear and less prone to gradient vanishing.
The network parameters were adjusted using the Adam optimizer, which is commonly
used in deep learning. The learning rate for the graph convolutional neural network was set
to 0.005, and the learning rate of the fully connected feedforward network was set to 0.001.
A lower learning rate prevents neural networks from converging to local optimal points.

Decision fusion was implemented using a logistic regression model, and to prevent
overfitting, L2 regularization was applied to constrain the model parameters. A grid search
method was applied to explore the optimal regularization parameters within the range of
[0.001, 20], with 500 equidistant points. L2 regularization was chosen because there were
fewer features, and L2 regularization prevents overfitting.

Sensors 2023, 23, 7246 13 of 21

We randomly selected 70% of the dataset as the training set and the remaining 30% as
the test set. and report the average results from multiple training runs.

4.1.4. Evaluation Metrics

We applied the following four widely used evaluation metrics to measure the effective-
ness of our method against other methods. Accuracy (ACC) is the percentage of all samples
correctly detected. Precision (P) is the ratio of correctly detected vulnerable samples to all
detected vulnerable samples. Recall (R) is the ratio of correctly detected vulnerable samples
to all vulnerable samples. The F1 score (F1) is the summed average of precision and recall,
used as a score to measure the overall effectiveness. The AUC value (i.e., the area under
the ROC curve) can be used to compare the performance of different classifiers. The exact
formulas for the evaluation metrics are as follows:

ACC =
TP + TN

TP + FP + TN + FN
(2)

R =
TP

TP + FN
(3)

P =
TP

TP + FP
(4)

F1 = 2× P× R
P + R

(5)

4.2. Comparison Experiment (Addressing RQ1)

In order to verify the effectiveness of the proposed method, a comparative test was
conducted using existing smart contract vulnerability detection tools on the same dataset.
These tools included Mythril [68], Smartcheck [69], and Slither [60]. In addition, we
selected TMP [32] as a similar method for comparison. Table 4 shows the comparison of
these methods and our proposed method, these methods are described as follows:

• Mythril: A free security analysis tool provided by the Ethereum open source commu-
nity. Mythril, one of the most well-known smart contract security tools, can detect
security vulnerabilities in Solidity smart contracts and perform in-depth analysis.
Mythril is a static vulnerability analysis tool that relies simply on symbolic execu-
tion [70] and the SMT method to perform vulnerability detection. It currently supports
the detection of vulnerabilities including integer-overflow, timestamp-dependency,
and re-entry attacks.

• Smartcheck: A scalable static analysis tool for detecting vulnerabilities or code issues
in Solidity smart contracts. Smartcheck converts smart contracts into a structured
XML form and then identifies smart contract vulnerabilities by matching Xpath pat-
terns. Although Smartcheck is a simple and efficient tool for detecting smart contract
vulnerabilities, the types of vulnerabilities supported for detection are limited.

• Slither: The first open source static analysis framework for the Solidity language.
Slither can find vulnerabilities within seconds as a tool dedicated to the security
analysis of Solidity smart contracts. Slither is user-friendly and provides numerous
APIs for developers to use. However, the tool suffers from underreporting of severe
issues, such as not being very sensitive to detecting integer-overflow vulnerabilities
and requiring manual code auditing.

• TMP: A novel temporal information propagation network that learns vulnerability
features in a normalized contract graph using graph convolution. A contract graph is
a graph that represents data and control dependencies between program statements.

Sensors 2023, 23, 7246 14 of 21

The comparison experiments were performed on the same dataset using tools in-
cluding Mythril, Smartcheck, Slither, TMP, and the method proposed in this paper. The
experimental results are shown in Table 5. As can be seen from the experimental results,
the method proposed in this paper can support more types of vulnerabilities because it
does not rely on expert knowledge. Compared to existing mature, smart contract vul-
nerability detection tools, the method proposed in this paper achieved higher detection
accuracy and AUC values on various types of vulnerabilities, as well as better overall
detection performance.

Table 4. Comparison of existing methods and our proposed method.

Method Year Technical Category Vulnerability Types

Mythril 2017 symbolic execution medium
Smartcheck 2018 static analysis few

Slither 2019 static analysis few
TMP 2020 deep learning many

Our method - deep learning many

The traditional approach relies on expert experience and requires constant updating
of the characteristics of smart contract vulnerabilities. Often, even experienced experts
make mistakes and omit some vital information that can be used for vulnerability detection,
which is the root cause of the poor effectiveness of this type of smart contract vulnerability
detection method. TMP is a vulnerability detection method based on the concept of contract
graphs that was proposed in [32]. The graph-based detection method is often suitable
for security vulnerabilities caused by contract inter-call. In Table 5, it can be seen that
TMP achieved the best detection accuracy for the RENT vulnerability. At the same time,
vulnerabilities such as ARTHM may appear in a line of code and cannot be represented
graphically. Traditional and deep learning-based approaches use limited information about
the characteristics of contracts.

Our method uses as much contractual characterization information as possible and
combines this information organically. Therefore, our method’s vulnerability detection is
better than existing methods.

Table 5. Experimental comparison with other methods.

Method
ARTHM RENT LE TimeO

ACC AUC ACC AUC ACC AUC ACC AUC

Mythril 0.681 0.689 0.716 0.843 - - 0.879 0.5
Smartcheck 0.564 0.5 - - 0.925 0.798 - -

Slither - - 0.729 0.851 0.927 0.804 - -
TMP 0.628 0.561 0.745 0.669 0.841 0.507 0.772 0.684

Our method 0.916 0.834 0.909 0.852 0.895 0.825 0.948 0.886
The “-” symbols in the table mean that the vulnerability detection tool does not support this type of contract.

4.3. Ablation Experiments

In this subsection, we verify the effectiveness of each part of the proposed method.
Firstly, an experimental comparison between features within a single modality and feature
fusion is performed. Secondly, the effectiveness of cross-modal fusion is verified.

4.3.1. Comparison between Features within a Single Modality and Feature Fusion
(Addressing RQ2)

After extracting the features from the modalities using the feature extractor, the neural
network classifier was trained directly, and the effects were compared. The ARTHM
vulnerability was used as an example to compare the effectiveness of different types of

Sensors 2023, 23, 7246 15 of 21

features within the different modalities for vulnerability detection, and the experimental
results are shown in Table 6.

In Table 6, it can be seen that the addition of new features of a modality can effectively
improve the performance of the training model in cases where the detection performance
of the original single intra-modal feature is poor.

Table 6. Intra-modal compar. Using ARTHM as an example.

Modal Feature ACC AUC R P F1

SC
FastText 0.741 0.739 0.724 0.674 0.699

Word2Vec 0.839 0.824 0.728 0.871 0.793
Merge 0.851 0.844 0.787 0.861 0.823

OP
N-gram 0.858 0.846 0.758 0.898 0.822

Word2Vec 0.847 0.835 0.741 0.887 0.807
Merge 0.856 0.843 0.74 0.914 0.818

CFG GCN 0.745 0.733 0.648 0.730 0.687

4.3.2. Comparison of Inter-Modal Features and Multimodal Decision Fusion (Addressing RQ3)

Based on the information in Section 4.3.1, the neural network classifier was trained
using the features obtained through intra-modal feature fusion, and the experimental
results of the different modalities were compared. Table 7 shows the experimental results
of the different modalities for four vulnerability types, where Concat indicates that the
features of these modalities were stitched together to form a new feature and used as the
input of the neural network classifier. In Table 7, it can be seen that the features of the
OP outperformed those of the CFG and SC on the vulnerability detection task. The direct
fusion of cross-modal features resulted in a slight performance improvement compared to
the optimal modality.

Table 7. Inter-modal comparison.

Type Use_Data AUC ACC P R F1

ARTHM

CFG 0.727 0.735 0.704 0.667 0.685
OP 0.837 0.840 0.815 0.814 0.815
SC 0.781 0.790 0.785 0.710 0.745

Concat 0.829 0.829 0.785 0.832 0.808

LE
CFG 0.703 0.738 0.371 0.647 0.472
OP 0.817 0.846 0.553 0.772 0.644
SC 0.644 0.770 0.383 0.447 0.413

Concat 0.823 0.839 0.535 0.798 0.641

RENT

CFG 0.703 0.601 0.207 0.836 0.332
OP 0.885 0.867 0.469 0.909 0.619
SC 0.775 0.722 0.278 0.845 0.418

Concat 0.876 0.871 0.476 0.881 0.618

TimeO

CFG 0.703 0.601 0.207 0.836 0.332
OP 0.885 0.867 0.469 0.909 0.619
SC 0.775 0.722 0.278 0.845 0.418

Concat 0.876 0.871 0.476 0.881 0.618

We obtained the decision outputs from each modality, and the results of decision
fusion using logistic regression are shown in Table 8. The modalities corresponding to the
weights are OP, SC, CFG, and Concat. The magnitude of the weights of logistic regression
can be regarded as the importance of the influence of the different modalities on the results,
and the positive and negative signs can be interpreted as the decision propensities of
the modalities.

Sensors 2023, 23, 7246 16 of 21

As shown in Table 8, the performance improvement of sampling for unbalanced
samples was significant, especially for the ACC and AUC values. However, the improve-
ment in the accuracy rate was not significant and can make the model more inclined to
classify the samples into a few categories. Figure 7 further visualizes the results shown in
Tables 7 and 8.

Table 8. The multimodal decision fusion results.

Type Sampling AUC ACC P R F1 Weights

ARTHM 0 0.843 0.904 0.834 0.808 0.82 7.663, −2.486, 1.420, 4.740
1 0.834 0.916 0.779 0.853 0.814 3.622, −1.596, 0.018, 4.876

LE 0 0.816 0.908 0.729 0.689 0.708 8.361, 0.390, 1.643, 2.933
1 0.825 0.895 0.556 0.788 0.652 4.483 , −1.898, 2.285, 3.356

RENT 0 0.636 0.884 0.560 0.290 0.382 5.451, −1.134, 2.180, 2.675
1 0.852 0.909 0.280 0.890 0.426 2.016, 1.390, 1.050, 5.184

TimeO 0 0.844 0.948 0.64 0.745 0.688 13.704, 3.089, 3.664, 1.858
1 0.886 0.948 0.507 0.888 0.645 7.540, 0.767, 1.707, 1.727

AUC ACC P R F1

0.2

0.4

0.6

0.8

1.0

Sc
or

es

ARTHM

CFG
OP
SC
Concat
Stacking

(a) ARTHM

AUC ACC P R F1

0.2

0.4

0.6

0.8

1.0

Sc
or

es

LE

CFG
OP
SC
Concat
Stacking

(b) LE

AUC ACC P R F1

0.2

0.4

0.6

0.8

1.0

Sc
or

es

TimeO

CFG
OP
SC
Concat
Stacking

(c) TimeO

AUC ACC P R F1

0.2

0.4

0.6

0.8

1.0

Sc
or

es

RENT

CFG
OP
SC
Concat
Stacking

(d) RENT

AUC ACC P R F1

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Average

CFG
OP
SC
Concat
Stacking

(e) Averaged

Figure 7. Performance evaluation of different modalities for different types of vulnerability detection.
In the figure, the OX-axis represents the different evaluation indicators; the OY-axis represents the
score of a particular evaluation indicator, which takes a range of 0∼1. In addition to the AUC,
the other indicators can also be interpreted as percentages. (a–d) Experimental results for different
vulnerabilities. (e) Averaged results.

Sensors 2023, 23, 7246 17 of 21

The detection method using logistic regression models for multimodal models per-
formed better for the detection task of four common smart contract vulnerabilities. The ACC
and AUC values of the decision fusion model improved significantly compared to the
method that directly fused the features of each modality.

5. Results

The experimental results show that the smart contract vulnerability detection method
proposed in this paper outperforms existing methods, achieving high accuracy and a high
recall of vulnerability detection. Ablation experiments show that adding new features
within the same modality can improve the performance of the vulnerability detection model.
In the smart contract vulnerability detection task, the decision fusion of multiple modalities
contributes more to improving detection accuracy. In addition, using the resampling
method to address the dataset’s unbalanced vulnerability types can somewhat mitigate the
imbalanced category problem. However, the detection accuracy rate cannot be improved.
In the vulnerability detection task, losses from missed detections are often more significant
than those from false positives, so achieving a high recall rate is more important than a
high accuracy rate.

6. Conclusions

In this paper, from a multimodal perspective, three modalities—source code, operation
code, and control-flow graph—with five features were extracted for vulnerability detection
from the combined smart contract life cycle. The multimodal decision fusion approach
can fully utilize the semantic and structural features of smart contracts. The results of the
comparison experiments also verify the proposed approach’s effectiveness and superiority.

Compared with existing smart contract vulnerability detection tools, the proposed
approach has many advantages. Firstly, the method does not rely on expert experience
and is completely data-driven. Secondly, the method is highly flexible. Finally, the method
covers more types of vulnerabilities and achieves a higher inspection accuracy rate. The
method proposed in this paper can be used for the initial screening of smart contract
vulnerabilities to increase the efficiency of smart contract developers and auditors in
identifying smart contract vulnerabilities. Based on this paper, adding new modalities can
further improve the performance of vulnerability detection.

Some data imbalances in the experiment led to low detection accuracies. Future work
can consider using small samples and unsupervised learning to address this problem.
Furthermore, the lack of a standard unified smart contract vulnerability dataset remains an
urgent problem that needs to be addressed.

Author Contributions: Conceptualization, W.D. and T.H.; investigation, W.D. and C.C.; supervision,
T.H., Y.P. and H.W.; writing—original draft, W.D.; writing—review and editing, W.D., C.C., X.H. and
T.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (62002074),
NSF of Guangdong Province (2023A1515030273), and the Key Laboratory, Ministry of Industry and
Information Technology, China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 7246 18 of 21

Appendix A. An Example of Smart Contract Source Code

1 pragma s o l i d i t y ^ 0 . 4 . 2 3 ;
2
3 i n t e r f a c e Regis t ry {
4 func t ion s e t A t t r i b u t e V a l u e
5 (address who, bytes32 what , u int val) e x t e r n a l ;
6 func t ion hasAt t r ibute (address _who , bytes32 _ a t t r i b u t e)
7 e x t e r n a l view re turns (bool) ; }
8
9 c o n t r a c t Deposi tAddressRegistrar {

10 Regis t ry public r e g i s t r y ;
11 bytes32 public constant IS_DEPOSIT_ADDRESS
12 = " isDepositAddress " ;
13 event DepositAddressRegistered
14 (address regis teredAddress) ;
15 c o n s t r u c t o r (address _ r e g i s t r y) public {
16 r e g i s t r y = Regis t ry (_ r e g i s t r y) ; }
17
18 func t ion regis terDeposi tAddress () public {
19 address shif tedAddress = address (u int (msg . sender) >> 2 0) ;
20 requi re (! r e g i s t r y . hasAt t r ibute
21 (shiftedAddress , IS_DEPOSIT_ADDRESS) ,
22 " deposi t address already r e g i s t e r e d ") ;
23 r e g i s t r y . s e t A t t r i b u t e V a l u e
24 (shif tedAddress , IS_DEPOSIT_ADDRESS , u int (msg . sender)) ;
25 emit DepositAddressRegistered (msg . sender) ; }
26
27 func t ion () e x t e r n a l payable {
28 regis terDeposi tAddress () ;
29 msg . sender . t r a n s f e r (msg . value) ; } }

References
1. Deng, W.; Huang, T.; Wang, H. A Review of the Key Technology in a Blockchain Building Decentralized Trust Platform.

Mathematics 2023, 11, 101. [CrossRef]
2. Buterin, V. A Next-Generation Smart Contract and Decentralized Application Platform. White Paper 2014, 3, 1–36. Avail-

able online: https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_
application_platform-vitalik-buterin.pdf (accessed on 1 July 2023).

3. Dannen, C. Introducing Ethereum and Solidity; Springer: Berlin/Heidelberg, Germany, 2017; Volume 1.
4. Zheng, Z.; Xie, S.; Dai, H.N.; Chen, W.; Chen, X.; Weng, J.; Imran, M. An overview on smart contracts: Challenges, advances and

platforms. Future Gener. Comput. Syst. 2020, 105, 75–491. [CrossRef]
5. Zhao, P.; Li, C.; Fu, Y.; Hui, Y.; Zhang, Y.; Cheng, N. Blockchain-Enabled Conditional Decentralized Vehicular Crowdsensing

System. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18937–18950. [CrossRef]
6. Lin, S.; Zhang, L.; Li, J.; Ji, L.; Sun, Y. A survey of application research based on blockchain smart contract. Wirel. Netw. 2022, 28,

635–690. [CrossRef]
7. Atzei, N.; Bartoletti, M.; Cimoli, T. A survey of attacks on Ethereum Smart Contracts. Cryptology ePrint Archive, Paper 2016/1007.

2016. Available online: https://eprint.iacr.org/2016/1007 (accessed on 1 August 2023).
8. The Parity Wallet Hack Explained. 2023. Available online: https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-

405a8c12e8f7 (accessed on 1 August 2023).
9. Peng, K.; Li, M.; Huang, H.; Wang, C.; Wan, S.; Choo, K.K.R. Security Challenges and Opportunities for Smart Contracts in

Internet of Things: A Survey. IEEE Internet Things J. 2021, 8, 12004–12020. [CrossRef]
10. Slowmist. 2023. Available online: https://hacked.slowmist.io/ (accessed on 14 May 2023).
11. Tsankov, P.; Dan, A.; Drachsler-Cohen, D.; Gervais, A.; Buenzli, F.; Vechev, M. Securify: Practical security analysis of smart

contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON,
Canada, 15–19 October 2018; pp. 67–82.

12. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Systematic review of security vulnerabilities in ethereum blockchain
smart contract. IEEE Access 2022, 10, 6605–6621. [CrossRef]

http://doi.org/10.3390/math11010101
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
http://dx.doi.org/10.1016/j.future.2019.12.019
http://dx.doi.org/10.1109/TITS.2022.3166216
http://dx.doi.org/10.1007/s11276-021-02874-x
https://eprint.iacr.org/2016/1007
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7
http://dx.doi.org/10.1109/JIOT.2021.3074544
https://hacked.slowmist.io/
http://dx.doi.org/10.1109/ACCESS.2021.3140091

Sensors 2023, 23, 7246 19 of 21

13. Ghaleb, A.; Pattabiraman, K. How effective are smart contract analysis tools? evaluating smart contract static analysis tools
using bug injection. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Los
Angeles, CA, USA, 18–22 July 2020; pp. 415–427.

14. Wang, H.; Liu, Y.; Li, Y.; Lin, S.W.; Artho, C.; Ma, L.; Liu, Y. Oracle-supported dynamic exploit generation for smart contracts.
IEEE Trans. Dependable Secur. Comput. 2020, 19, 1795–1809. [CrossRef]

15. Qian, P.; Liu, Z.; He, Q.; Zimmermann, R.; Wang, X. Towards Automated Reentrancy Detection for Smart Contracts Based on
Sequential Models. IEEE Access 2020, 8, 19685–19695. [CrossRef]

16. He, D.; Wu, R.; Li, X.; Chan, S.; Guizani, M. Detection of Vulnerabilities of Blockchain Smart Contracts. IEEE Internet Things J.
2023, 10, 12178–12185. [CrossRef]

17. Hwang, S.J.; Choi, S.H.; Shin, J.; Choi, Y.H. CodeNet: Code-Targeted Convolutional Neural Network Architecture for Smart
Contract Vulnerability Detection. IEEE Access 2022, 10, 32595–32607. [CrossRef]

18. Huang, J.; Zhou, K.; Xiong, A.; Li, D. Smart Contract Vulnerability Detection Model Based on Multi-Task Learning. Sensors 2022,
22, 1829. [CrossRef] [PubMed]

19. Yadav, K.; Naval, S. CFG Analysis for Detecting Vulnerabilities in Smart Contracts. In Proceedings of the International Conference
on Smart Computing and Communication, Jaipur, India, 24–25 January 2023; Springer: Berlin/Heidelberg, Germany, 2023;
pp. 753–763.

20. Smart Contract Weakness Classification Registry. 2023. Available online: https://swcregistry.io/ (accessed on 30 May 2023).
21. CVE. 2023. Available online: https://nvd.nist.gov/vuln/detail/CVE-2018-10769 (accessed on 31 May 2023).
22. Ethereum Smart Contract Best Practices. 2023. Available online: https://consensys.github.io/smart-contract-best-practices/

attacks/reentrancy/ (accessed on 31 May 2023).
23. Medium. 2023. Available online: https://medium.com/coinmonks/solidity-transaction-ordering-attacks-1193a014884e (ac-

cessed on 31 May 2023).
24. Perez, D.; Livshits, B. Smart Contract Vulnerabilities: Vulnerable Does Not Imply Exploited. In Proceedings of the 30th USENIX

Security Symposium, USENIX Security 2021, Virtual, 11–13 August 2021; Bailey, M., Greenstadt, R., Eds.; USENIX Association:
Berkeley, CA, USA, 2021; pp. 1325–1341.

25. N’Da, A.A.K.; Matalonga, S.; Dahal, K. Characterizing the Cost of Introducing Secure Programming Patterns and Practices in
Ethereum. In Proceedings of the Trends and Innovations in Information Systems and Technologies, Budva, Montenegro, 7–10
April 2020; Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Orovic, I., Moreira, F., Eds.; Springer: Cham, Switzerland, 2020; pp. 25–34.

26. Nikolic, I.; Kolluri, A.; Sergey, I.; Saxena, P.; Hobor, A. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. In
Proceedings of the 34th Annual Computer Security Applications Conference, ACSAC 2018, San Juan, PR, USA, 3–7 December
2018; ACM: New York, NY, USA, 2018; pp. 653–663. [CrossRef]

27. Kalra, S.; Goel, S.; Dhawan, M.; Sharma, S. ZEUS: Analyzing Safety of Smart Contracts. In Proceedings of the 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San Diego, CA, USA, 18–21 February 2018; The Internet
Society: Reston, VA, USA, 2018.

28. Jiang, B.; Liu, Y.; Chan, W.K. ContractFuzzer: Fuzzing smart contracts for vulnerability detection. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, Montpellier, France, 3–7 September 2018;
Huchard, M., Kästner, C., Fraser, G., Eds.; ACM: New York, NY, USA, 2018; pp. 259–269. [CrossRef]

29. Gao, Z.; Jiang, L.; Xia, X.; Lo, D.; Grundy, J. Checking Smart Contracts With Structural Code Embedding. IEEE Trans. Softw. Eng.
2021, 47, 2874–2891. [CrossRef]

30. Zhang, L.; Wang, J.; Wang, W.; Jin, Z.; Zhao, C.; Cai, Z.; Chen, H. A Novel Smart Contract Vulnerability Detection Method Based
on Information Graph and Ensemble Learning. Sensors 2022, 22, 3581. [CrossRef] [PubMed]

31. Sendner, C.; Chen, H.; Fereidooni, H.; Petzi, L.; König, J.; Stang, J.; Dmitrienko, A.; Sadeghi, A.; Koushanfar, F. Smarter Contracts:
Detecting Vulnerabilities in Smart Contracts with Deep Transfer Learning. In Proceedings of the 30th Annual Network and
Distributed System Security Symposium, NDSS 2023, San Diego, CA, USA, 27 February–3 March 2023; The Internet Society:
Reston, VA, USA, 2023.

32. Zhuang, Y.; Liu, Z.; Qian, P.; Liu, Q.; Wang, X.; He, Q. Smart Contract Vulnerability Detection using Graph Neural Network. In
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence—IJCAI 2020, Yokohama, Japan, 11–17
July 2020; pp. 3283–3290. [CrossRef]

33. Choi, W.Y.; Song, K.Y.; Lee, C.W. Convolutional Attention Networks for Multimodal Emotion Recognition from Speech and Text
Data. In Proceedings of the Grand Challenge and Workshop on Human Multimodal Language (Challenge-HML), Melbourne,
Australia, 20 July 2018; pp. 28–34.

34. Tang, K.; Ma, Y.; Miao, D.; Song, P.; Gu, Z.; Tian, Z.; Wang, W. Decision Fusion Networks for Image Classification. IEEE Trans.
Neural Netw. Learn. Syst. 2022, 1–14. [CrossRef] [PubMed]

35. Gandhi, A.; Adhvaryu, K.; Poria, S.; Cambria, E.; Hussain, A. Multimodal sentiment analysis: A systematic review of history,
datasets, multimodal fusion methods, applications, challenges and future directions. Inf. Fusion 2022, 91, 424–444. [CrossRef]

36. Li, M. An analysis of multimodal emotional braincomputer interface. In Proceedings of the 2021 International Conference on
Intelligent Computing, Automation and Systems (ICICAS), Chongqing, China, 29–31 December 2021; IEEE: Piscataway, NJ, USA,
2021; pp. 407–411.

http://dx.doi.org/10.1109/TDSC.2020.3037332
http://dx.doi.org/10.1109/ACCESS.2020.2969429
http://dx.doi.org/10.1109/JIOT.2023.3241544
http://dx.doi.org/10.1109/ACCESS.2022.3162065
http://dx.doi.org/10.3390/s22051829
http://www.ncbi.nlm.nih.gov/pubmed/35270976
https://swcregistry.io/
https://nvd.nist.gov/vuln/detail/CVE-2018-10769
https://consensys.github.io/smart-contract-best-practices/attacks/reentrancy/
https://consensys.github.io/smart-contract-best-practices/attacks/reentrancy/
https://medium.com/coinmonks/solidity-transaction-ordering-attacks-1193a014884e
http://dx.doi.org/10.1145/3274694.3274743
http://dx.doi.org/10.1145/3238147.3238177
http://dx.doi.org/10.1109/TSE.2020.2971482
http://dx.doi.org/10.3390/s22093581
http://www.ncbi.nlm.nih.gov/pubmed/35591270
http://dx.doi.org/10.24963/ijcai.2020/454
http://dx.doi.org/10.1109/TNNLS.2022.3196129
http://www.ncbi.nlm.nih.gov/pubmed/35951567
http://dx.doi.org/10.1016/j.inffus.2022.09.025

Sensors 2023, 23, 7246 20 of 21

37. Hu, J.; Liu, Y.; Zhao, J.; Jin, Q. MMGCN: Multimodal Fusion via Deep Graph Convolution Network for Emotion Recognition
in Conversation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Virtual Event, 1–6 August 2021;
pp. 5666–5675.

38. Makiuchi, M.R.; Uto, K.; Shinoda, K. Multimodal Emotion Recognition with High-Level Speech and Text Features. In Proceedings
of the 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), Cartagena, Colombia, 13–17 December
2021; pp. 350–357.

39. Xie, H.; Mao, J.; Li, G. Sentiment classification of image-text information with multi-layer semantic fusion. Data Anal. Knowl.
Discov. 2021, 5, 103–114. [CrossRef]

40. Ling, S.; Zhang, X.; Guo, M.; Zhang, W. Method Research on Multimodal Emotion Recognition Based on Audio and Video. J.
Signal Process. 2021, 37, 1889–1898. [CrossRef]

41. Fan, W.; He, Z.; Xing, X.; Cai, B.; Lu, W. Multi-modality Depression Detection via Multi-scale Temporal Dilated CNNs. In
Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop, AVEC@MM 2019, Nice, France, 21–25
October 2019; Ringeval, F., Schuller, B.W., Valstar, M.F., Cummins, N., Cowie, R., Pantic, M., Eds.; ACM: New York, NY, USA,
2019; pp. 73–80. [CrossRef]

42. Yin, S.; Liang, C.; Ding, H.; Wang, S. A Multi-Modal Hierarchical Recurrent Neural Network for Depression Detection. In
Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop, AVEC@MM 2019, Nice, France, 21–25
October 2019; Ringeval, F., Schuller, B.W., Valstar, M.F., Cummins, N., Cowie, R., Pantic, M., Eds.; ACM:New York, NY, USA, 2019;
pp. 65–71. [CrossRef]

43. Ray, A.; Kumar, S.; Reddy, R.; Mukherjee, P.; Garg, R. Multi-level Attention Network using Text, Audio and Video for Depression
Prediction. In Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop, AVEC@MM 2019, Nice,
France, 21–25 October 2019; Ringeval, F., Schuller, B.W., Valstar, M.F., Cummins, N., Cowie, R., Pantic, M., Eds.; ACM: New York,
NY, USA, 2019; pp. 81–88. [CrossRef]

44. Meng, H.; Huang, D.; Wang, H.; Yang, H.; Al-Shuraifi, M.; Wang, Y. Depression recognition based on dynamic facial and vocal
expression features using partial least square regression. In Proceedings of the 3rd ACM international workshop on Audio/Visual
Emotion Challenge, AVEC@ACM Multimedia 2013, Barcelona, Spain, 21 October 2013; Schuller, B.W., Valstar, M.F., Cowie, R.,
Krajewski, J., Pantic, M., Eds.; ACM: New York, NY, USA, 2013; pp. 21–30. [CrossRef]

45. Gaw, N.; Yousefi, S.; Gahrooei, M.R. Multimodal data fusion for systems improvement: A review. IISE Trans. 2022, 54, 1098–1116.
[CrossRef]

46. Shalu, H.; P, H.; CN, H.S.; Das, A.; Majumder, S.; Datar, A.; MS, S.M.; Das, A.; Kadiwala, J. Depression Status Estimation by Deep
Learning based Hybrid Multi-Modal Fusion Model. arXiv 2020, arXiv:2011.14966.

47. Alghowinem, S.; Goecke, R.; Cohn, J.F.; Wagner, M.; Parker, G.; Breakspear, M. Cross-cultural detection of depression from
nonverbal behaviour. In Proceedings of the 11th IEEE International Conference and Workshops on Automatic Face and Gesture
Recognition, FG 2015, Ljubljana, Slovenia, 4–8 May 2015; IEEE Computer Society: Washington, DC, USA, 2015; pp. 1–8. [CrossRef]

48. Morales, M.R.; Scherer, S.; Levitan, R. A Linguistically-Informed Fusion Approach for Multimodal Depression Detection.
In Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic,
CLPsych@NAACL-HTL, New Orleans, LA, USA, 5 June 2018; Loveys, K., Niederhoffer, K., Prud’hommeaux, E., Resnik,
R., Resnik, P., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 13–24. [CrossRef]

49. Shakya, S.; Mukherjee, A.; Halder, R.; Maiti, A.; Chaturvedi, A. Smartmixmodel: Machine learning-based vulnerability detection
of solidity smart contracts. In Proceedings of the 2022 IEEE International Conference on Blockchain (Blockchain), Espoo, Finland,
22–25 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 37–44.

50. Akter, M.S.; Shahriar, H.; Bhuiya, Z.A. Automated vulnerability detection in source code using quantum natural language
processing. In Proceedings of the Inernational Conference on Ubiquitous Security, Zhangjiajie, China, 28–31 December 2022;
Springer: Berlin/Heidelberg, Germany, 2022; pp. 83–102.

51. Wu, C.; Xiong, J.; Xiong, H.; Zhao, Y.; Yi, W. A review on recent progress of smart contract in blockchain. IEEE Access 2022, 10,
50839–50863. [CrossRef]

52. Jiang, F.; Cao, Y.; Xiao, J.; Yi, H.; Lei, G.; Liu, M.; Deng, S.; Wang, H. VDDL: A deep learning-based vulnerability detection model
for smart contracts. In Proceedings of the International Conference on Machine Learning for Cyber Security, Guangzhou, China,
2–4 December 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 72–86.

53. Jeon, S.; Lee, G.; Kim, H.; Woo, S.S. Smartcondetect: Highly accurate smart contract code vulnerability detection mechanism
using bert. In Proceedings of the KDD Workshop on Programming Language Processing, Virtual, 14–18 August 2021.

54. Albert, E.; Gordillo, P.; Hernández-Cerezo, A.; Rubio, A.; Schett, M.A. Super-optimization of smart contracts. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 2022, 31, 1–29. [CrossRef]

55. Zhang, H.; Zhang, W.; Feng, Y.; Liu, Y. SVScanner: Detecting smart contract vulnerabilities via deep semantic extraction. J. Inf.
Secur. Appl. 2023, 75, 103484. [CrossRef]

56. Ashizawa, N.; Yanai, N.; Cruz, J.P.; Okamura, S. Eth2Vec: Learning contract-wide code representations for vulnerability detection
on ethereum smart contracts. In Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical
Infrastructure, Hong Kong, China, 7–11 June 2021; pp. 47–59.

http://dx.doi.org/10.11925/infotech.2096-3467.2020.1159
http://dx.doi.org/10.16798/j.issn.1003-0530.2021.10.012
http://dx.doi.org/10.1145/3347320.3357695
http://dx.doi.org/10.1145/3347320.3357696
http://dx.doi.org/10.1145/3347320.3357697
http://dx.doi.org/10.1145/2512530.2512532
http://dx.doi.org/10.1080/24725854.2021.1987593
http://dx.doi.org/10.1109/FG.2015.7163113
http://dx.doi.org/10.18653/v1/w18-0602
http://dx.doi.org/10.1109/ACCESS.2022.3174052
http://dx.doi.org/10.1145/3506800
http://dx.doi.org/10.1016/j.jisa.2023.103484

Sensors 2023, 23, 7246 21 of 21

57. Liu, Z.; Jiang, M.; Zhang, S.; Zhang, J.; Liu, Y. A Smart Contract Vulnerability Detection Mechanism Based on Deep Learning and
Expert Rules. IEEE Access 2023, 11, 77990–77999. [CrossRef]

58. Agarwal, S.; Godboley, S.; Krishna, P.R. Cyclomatic Complexity Analysis for Smart Contract Using Control Flow Graph. In
Proceedings of the International Conference on Computing, Communication and Learning, Warangal, India, 27–29 October 2022;
Springer: Berlin/Heidelberg, Germany, 2022; pp. 65–78.

59. Liu, H.; Fan, Y.; Feng, L.; Wei, Z. Vulnerable Smart Contract Function Locating Based on Multi-Relational Nested Graph
Convolutional Network. J. Syst. Softw. 2023, 204, 111775. [CrossRef]

60. Feist, J.; Grieco, G.; Groce, A. Slither: A static analysis framework for smart contracts. In Proceedings of the 2019 IEEE/ACM 2nd
International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB), Montreal, QC, Canada, 27 May
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 8–15.

61. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the
1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, 2–4 May 2013.

62. Kuyumcu, B.; Aksakalli, C.; Delil, S. An automated new approach in fast text classification (fastText) A case study for Turkish text
classification without pre-processing. In Proceedings of the 2019 3rd International Conference on Natural Language Processing
and Information Retrieval, Tokushima, Japan, 28–30 June 2019; pp. 1–4.

63. Wang, H.; He, J.; Zhang, X.; Liu, S. A short text classification method based on N-gram and CNN. Chin. J. Electron. 2020, 29,
248–254. [CrossRef]

64. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017.

65. Sujeet Yashavant, C.; Kumar, S.; Karkare, A. ScrawlD: A Dataset of Real World Ethereum Smart Contracts Labelled with
Vulnerabilities. arXiv 2022, arXiv:2202.11409.

66. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings
of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),
Hong Kong, China, 1–6 June 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1322–1328.

67. Peng, C.; Akca, S.; Rajan, A. SIF: A Framework for Solidity Contract Instrumentation and Analysis. In Proceedings of the 2019
26th Asia-Pacific Software Engineering Conference (APSEC), Putrajaya, Malaysia, 2–5 December 2019; IEEE: Piscataway, NJ,
USA, 2019; pp. 466–473.

68. Mythril. 2023. Available online: https://github.com/ConsenSys/mythril (accessed on 31 May 2023).
69. Tikhomirov, S.; Voskresenskaya, E.; Ivanitskiy, I.; Takhaviev, R.; Marchenko, E.; Alexandrov, Y. SmartCheck: Static Analysis

of Ethereum Smart Contracts. In Proceedings of the 1st IEEE/ACM International Workshop on Emerging Trends in Software
Engineering for Blockchain, WETSEB@ICSE 2018, Gothenburg, Sweden, 27 May–3 June 2018; ACM: New York, NY, USA, 2018;
pp. 9–16. [CrossRef]

70. Baldoni, R.; Coppa, E.; D’Elia, D.C.; Demetrescu, C.; Finocchi, I. A Survey of Symbolic Execution Techniques. ACM Comput. Surv.
2018, 51, 50:1–50:39. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2023.3298048
http://dx.doi.org/10.1016/j.jss.2023.111775
http://dx.doi.org/10.1049/cje.2020.01.001
https://github.com/ConsenSys/mythril
http://dx.doi.org/10.1145/3194113.3194115
http://dx.doi.org/10.1145/3182657

	Introduction
	Goals and Contributions
	Layout

	Review
	Vulnerability Types
	Smart Contract Vulnerability Detection
	Traditional Methods
	Deep Learning Methods

	Multimodal Fusion
	Feature-Based Fusion
	Decision-Based Fusion
	Hybrid Fusion
	Discussion

	Our Method
	Overview
	Structure
	Procedure
	Discussion

	Modality Generation
	Operation Code Generation
	Control-Flow Graph Generation

	Modal Features Extraction
	Source Code Embedding
	Operation Code Vectorization
	Graph Convolution of Control-Flow Graphs

	Multimodal Decision Fusion

	Experiments
	Experiment Settings
	Dataset
	Experiment Environment
	Parameter Setting
	Evaluation Metrics

	Comparison Experiment (Addressing RQ1)
	Ablation Experiments
	Comparison between Features within a Single Modality and Feature Fusion (Addressing RQ2)
	Comparison of Inter-Modal Features and Multimodal Decision Fusion (Addressing RQ3)

	Results
	Conclusions
	Appendix A
	References

