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Abstract: Analyzing the photomicrographs of coal and conducting maceral analysis are essential steps
in understanding the coal’s characteristics, quality, and potential uses. However, due to limitations of
equipment and technology, the obtained coal photomicrographs may have low resolution, failing to
show clear details. In this study, we introduce a novel Generative Adversarial Network (GAN) to
restore high-definition coal photomicrographs. Compared to traditional image restoration methods,
the lightweight GAN-based network generates more explicit and realistic results. In particular, we
employ the Wide Residual Block to eliminate the influence of artifacts and improve non-linear fitting
ability. Moreover, we adopt a multi-scale attention block embedded in the generator network to
capture long-range feature correlations across multiple scales. Experimental results on 468 photomi-
crographs demonstrate that the proposed method achieves a peak signal-to-noise ratio of 31.12 dB
and a structural similarity index of 0.906, significantly higher than state-of-the-art super-resolution
reconstruction approaches.

Keywords: coal photomicrographs restoration; super-resolution; generative adversarial net; wide
residual block

MSC: 68T10; 97R40

1. Introduction

Coal is the mixture of organic macerals, including vitrinite, liptinite as well as iner-
tinite, and inorganic minerals [1,2]. Analyzing coal photomicrographs and conducting
maceral analysis provide valuable insights into the coal’s composition, quality, and poten-
tial applications. Advanced microscopy techniques, such as scanning transmission electron
microscope [3], enable the acquisition of high-quality photomicrographs. Nevertheless,
these precise instruments require skilled operators and often have limited availability in
most laboratories due to the high cost. Conventional microscopes or older photomicro-
graphs often suffer from limited resolution, particularly in laboratories with constrained
funding. Re-acquiring photomicrographs with advanced microscopes involves substantial
expenses and labor-intensive procedures, such as sieving, molding, and polishing. Recently,
with the rapid development of computer vision, machine learning methods were intro-
duced to identify maceral groups in given photomicrographs [4–6]. To effectively explore
these low-resolution photomicrographs, this study proposes a novel strategy to enhance
the resolution of low-resolution photomicrographs. The approach involves utilizing an
improved generative adversarial network (GAN) to obtain high-quality images, allowing
for precise maceral identification and analysis. This method presents a promising solution
to overcome the limitations of conventional techniques and improve the performance of
coal photomicrographs analysis.
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The purpose of super-resolution (SR) is to convert low-resolution image with coarse
details into corresponding high-resolution image with better visual quality and refined
details. Single-Image Super-Resolution (SISR) is an important branch of SR, which aims to
determine the mapping function between a low-resolution image and a high-resolution
image, and reconstruct the corresponding high-resolution image. Although promising
results have been achieved, it remains a challenging problem in computer vision. Filtering
approaches, such as linear, bicubic interpolation, and Lanczos re-sampling, are classical
methods of enhancing resolution, which can reconstruct images quickly and straightfor-
wardly. Freedman et al. introduced a filter based on local self-similarity observations to
search for similar patches, whereas its performance is suboptimal in clustered regions
with fine details [7]. These filtering methods tend to oversimplify the Single-Image Super-
Resolution (SISR) problem and result in a loss of image details [8]. Additionally, they may
lead to over-smooth texture in the reconstructed images.

With the rapid advance of machine learning, deep learning has attracted more and
more attention in computer vision and medical signal analysis, and is widely used in the
super-resolution field [9,10]. Super-resolution CNN (SRCNN) employs neural network
to solve SISR problem, which demonstrates strong capability of learning rich features
from big data in an end-to-end manner [8]. However, its shallow architecture restricts
its performance. Very Deep Super-Resolution (VDSR), with 20 residual layers, enhances
the performance of super-resolution image reconstruction, whereas it consumes much
more computational cost [11,12]. Fast Super-Resolution Convolutional Neural Network
(FSRCNN) has a relatively shallow network structure consisting of four convolution layers
and one deconvolution layer [13]. It was demonstrated to have faster speed and better
reconstructed image quality than the SRCNN. Although significant improvement in terms
of accuracy and reconstruction speed were achieved, one critical problem for that period
was that the resulted high-resolution images always have poor visual quality, especially
for the cases with large upscaling factors. In addition, the loss function of these methods
has largely focused on minimizing the mean squared error (MSE) between the restored
image and the ground truth. These methods aim to enhance the Peak Signal-to-Noise Ratio
(PSNR), and may ignore high-frequency information, leading to over-smoothed results.

To address this concern, the researchers mainly improve the reconstruction perfor-
mance from the prospective of loss function and network structure. Ledig et al. developed
a novel framework for Super-Resolution based on the Generative Adversarial Network
(SRGAN), and proposed perceptual loss function instead of traditional MSE loss [14]. It
calculates the difference between the generated and real images in feature space based on
pretrained VGG, thus preserving more realistic details and textures. The experimental re-
sults indicate that SRGAN achieved finer texture details even with large up-scaling factors
in comparison with SRCNN. The core concept of Multi-Agent Diverse GAN (MAD-GAN)
involves simultaneous training of multiple generators, wherein each generator is tasked
with producing a set of related yet not entirely consistent samples, thus facilitating more
efficient data processing [15]. During the training process, the discriminator assesses the
images generated by the generators and assigns a reward score to each generator, which
serves as an indicator of the quality of the generated samples. Consequently, the optimiza-
tion objective for the generators encompasses not only the minimization of differences with
real samples but also the maximization of diversity among the generated samples. This char
acteristic endows MAD-GAN with the ability to not only generate high-quality samples
but also maintain sample diversity, effectively preventing the generation of excessively
similar samples. Wang et al. made significant improvements to the key components of
SRGAN by introducing residuals in the dense blocks. This facilitates the flow of fine-detail
features to deep layers of the network. Additionally, they further preserved the details’
information by removing batch normalization [16]. Compared with SRGAN, the proposed
enhanced SRGAN (ESRGAN) achieved better perceptual quality with more realistic and
natural textures for the visual sense. RFB-ESRGAN emerged as the winning solution for the
image super-resolution reconstruction task in the NTIRE 2020 challenge [17]. It effectively
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integrates the distinctive traits of the RFB-Net and ESRGAN models, while introducing
receptive field blocks into the feature extraction network to enhance the capture of global
and local features within the images. This incorporation of receptive field blocks notably
benefits the handling of objects or textures at various scales.

While deep learning models have shown remarkable performance in Single-Image
Super-Resolution (SR), the networks proposed recently for general images are not suitable
for the reconstruction of coal photomicrographs. The deep neural networks proposed
in this research perform well with common images, such as those in the DIV2K and
Flickr2K datasets [18]. DIV2K is the foremost dataset extensively employed for training
super-resolution reconstruction models, renowned for its high quality. It encompasses
800 training images, 100 validation images, and 100 test images. On the other hand, Flickr2k
constitutes a vast extended dataset with 2650 2K images originating from the renowned
image-sharing platform Flickr, a subsidiary of Yahoo. However, their application to coal
photomicrographs can lead to the undesired presence of artifacts, causing performance
issues. Coal photomicrographs predominantly consist of black and gray colors. Although
they do exhibit differences across various macerals, the level of complexity in terms of
details and textures is not as high as that found in natural images. Considering the unique
characteristics of coal photomicrographs, we specifically designed a novel framework based
on improved GAN to enhance the resolution of these images without unwanted artifacts.

The developed super-resolution model is trained with faster speed and fewer parame-
ters in comparison with the state of the art. The main contributions of the proposed method
are as follows:

1. Given the unique characteristics of coal photomicrographs, which set them apart from
traditional images, we have specifically designed a lightweight generative adversarial
network to enhance the resolution of these photomicrographs. Experimental results
indicate that the proposed method surpasses state-of-the-art GAN-based methods.

2. We propose a novel residual block called the Wide Residual Block (WRB), designed to
enhance the neural network’s non-linear fitting ability and feature extraction capabil-
ities while minimizing computational load. By integrating WRBs into the network
architecture, the modified network is able to produce smoother and more continuous
restoration effects without introducing artifacts, outperforming networks utilizing
traditional residual blocks.

3. We utilize a pyramid attention block that can be seamlessly integrated into existing
super-resolution networks. This block significantly improves the performance of
super-resolution models by enhancing their capability to capture important feature re-
lationships across multiple scales. The related codes and dataset are publicly available
at the following website: https://github.com/Jackson-LIMU/SR-IGAN (accessed on
30 January 2023).

The rest of this paper is organized as follows. Section 2 introduces the architecture
of the networks. Section 3 presents the details and evaluation metrics of the experiments.
Section 4 shows the experiment results of the proposed methods and comparison with
existing methods. Section 5 presents the conclusion of this paper.

2. Network Architecture
2.1. The Overall Structure of the Proposed Method

The standard GAN includes a generative module (G) and a discriminative module
(D), which are trained simultaneously with contradictory objectives [19,20]. The G tries
to generate new samples with the inputs, and the D aims to classify its inputs as real
or generated. These two modules are trained until the Nash equilibrium. In this work,
the generator tries to create a super-resolution image and fool the discriminator. The
discriminator is trained to distinguish whether the input high-resolution image is a real
image or an image generated by the generator. The overall architecture of the proposed
method is illustrated in Figure 1.

https://github.com/Jackson-LIMU/SR-IGAN
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Figure 1. The detailed architecture of the proposed generator and discriminator network.

The input low-resolution image is initially processed by a convolutional layer with
64 filters (kernel size: 9 × 9), followed by ReLu [21] as the activation function. Then, we
employ eight wide residual blocks (WRBs) to serve as the backbone of the generator, with a
pyramid attention (PA) block embedded after the fourth WRB. There are two up-sampling
blocks, where each one contains a convolution layer which enlarges the number of input
channels by four times, and a Pixel-Shuffle layer [22] as well as Parametric ReLU (PReLU).
The discriminator consists of eight convolutional blocks, and the number of channels
increases from 64 to 512, as in the VGG network. The convolutional layer is configured
with a stride of 2, leading to a downsizing of the output feature map. Each convolution
is followed by batch normalization and LeakyReLU (α = 0.2). A Global Average Pooling
(GAP) layer follows the final convolutional block, averaging the pixel values in a feature
channel. This output directly links to the final classification block. The GAP acts as a
regularizer, aiding in the mitigation of overfitting while also reducing the overall count of
parameters in the model. The final classification block contains two convolutional layers
and one LeakyReLU layer, where the channels are first changed from 512 to 1024 and end
up with one. The resulted feature map is processed by the sigmoid activation function
to classify the input image. Besides, the detailed architecture of the proposed network in
terms of the kernel size and padding specifications is shown in Table 1 (generator) and
Table 2 (discriminator).

Table 1. Generator framework details.

Layer Kernel Size

Conv-first 9 × 9 × 64, padding 4
WRB-pre (×4) 3 × 3 × 64, 7 × 7 × 64, 3 × 3 × 64, 7 × 7 × 64

PA /
WRB-post (×4) 3 × 3 × 64, 7 × 7 × 64, 3 × 3 × 64, 7 × 7 × 64

UpsampleBLock1 3 × 3 × 256
UpsampleBLock2 3 × 3 × 1024

Conv-last 9 × 9 × 3, padding 4
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Table 2. Discriminator framework details.

Layer Kernel Size and Stride

Convolution-1 3 × 3 × 64
Convolution-2 3 × 3 × 64, stride 2
Convolution-3 3 × 3 × 128
Convolution-4 3 × 3 × 128, stride 2
Convolution-5 3 × 3 × 256
Convolution-6 3 × 3 × 256, stride 2
Convolution-7 3 × 3 × 512
Convolution-8 3 × 3 × 512, stride 2

GAP /
Convolution-9 1 × 1 × 1024
Convolution-10 1 × 1 × 1

2.2. WRB Block

Deep network architectures typically possess superior feature learning capabilities and
often outperform shallow networks [23]. However, their training can be more challenging,
and they require a substantial volume of samples. Without adequate training data, these
networks may fail to generalize to the test set, despite performing well on the training set.
The residual network was introduced to tackle this issue. Its use of skip connections enables
the feasible design of very deep networks [24]. Furthermore, batch normalization (BN)
is typically applied immediately after the convolutional layer and prior to the activation
in the standard residual block. BN addresses the internal covariate shift problem by
normalizing layer inputs. Concurrently, it enhances the network’s generalization capability
and expedites the training process to some extent [25], as shown in Figure 2a. In the context
of image super-resolution, the output images are required to have same color, contrast,
and brightness as the input ones. However, batch normalization may inadvertently alter
the image’s contrast. When an image passes through a BN block, its color distribution is
normalized, potentially disrupting the original contrast information. Moreover, BN layers
can introduce artifacts in the case of a deep network trained under a GAN framework [16].

Figure 2. The comparison between (a) traditional residual block with batch normalization and
(b) wide residual block, which replaces BN with a subresidual module.

In this study, we propose a novel wide residual block without a BN layer to address
these concerns, as illustrated in Figure 2b. We replace the BN layers in the standard
residual block with two subresidual modules to widen the feature extraction network.
Each subresidual structure comprises only one convolutional layer, with no inclusion of
an activation function or batch normalization. This approach reduces the computational
load of the convolutional layer, thus further enhancing the network’s training speed. The
mathematical expression for the subresidual module is presented as follows:

R(a) = C1(a) + a (1)
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where a represents the input to the subresidual module, R(a) denotes its output, and C1
represents the subresidual convolution, whose kernel size is set to 7 × 7 and the padding is
set to 3 in this study.

The wide residual module employs a combination of long and short connections.
Specifically, the input of the wide residual block is directly linked to that block’s output,
enabling subsequent blocks to directly access the input information of the preceding layer.
Long connections typically serve to fuse high-level semantic information with low-level
detail information. Meanwhile, the short connection in the wide residual block directly
links the input and output of the subresidual structure, further expanding the model’s
receptive field. In addition, this structure aids in extracting deeper image features while
preserving the input information, thereby enhancing the representation of deep semantic
information. Suppose b represents the input to the WRB module and WRB(b) denotes the
output of this module. The mathematical expression of the WRB module is as follows:

WRB(b) = R(C2(σ(R(C2(b))))) + b (2)

where R represents the subresidual module mentioned earlier, σ represents the Rectified
Linear Unit (ReLU) activation function, and C2 denotes a convolution layer with a kernel
size of 3 × 3 and padding of 1.

2.3. Pyramid Attention Module

The self-similarity that small but similar patterns tend to occur at different locations
and scales is widely explored via non-local operations in image restoration field. Although
deep-learning-based SR methods have made great progress, many of them fail to fully
exploit the self-similarities, since the self-attention modules process information at the same
scale. The pyramid attention network (PAN) was first proposed to increase the receptive
field and improve the accuracy in classifying small objects in semantic segmentation [26].
It was demonstrated to be capable to capture the global contextual information and exploit
long-range dependence from a multi-scale feature pyramid [26,27]. In this work, we
introduce a pyramid attention module (PAM) to evaluate correlation among features across
multiple specified scales by searching over the entire pyramid target and regions. The new
response from fusing non-local multi-scale information intuitively contains richer and more
credible information than single-scale information.

The pyramid attention captures correlations across multiple scales in a bottom-up
manner, as shown in Figure 3, where Scale Agnostic (SA) attention is applied to two
adjacent scale features successively. Unlike classic non-local attention, which computes
pixel-wise feature correlation, SA attention is a self-attention operation of block-wise
matching which is able to generate better restoration images. The main reason is that block-
matching introduces an extra constraint on nearby pixels, and thus, is able to differentiate
highly relevant correspondences while suppressing unrelated ones. Specifically, we employ
bicubic interpolation to build feature pyramids with five different scales. The four bicubic
interpolations for scaling are at sizes of 0.9 times, 0.8 times, 0.7 times, and 0.6 times the
dimensions of the original input image. The multi-scale attention architecture is able to
capture non-local feature correspondences across multiple specified scales without scale
restriction. In addition, it fuses adjacent scale information, which contributes to extracting
context features more precisely. In addition, region-to-region matching imposes additional
similarity constraints on the neighborhood, and thus, the module is able to effectively pick
out highly correlated dependencies.

The schematic diagram of the SA attention structure is depicted in Figure 4, where
x1 represents the feature map output from the previous SA module and x2 is obtained by
down-sampling x1 through bicubic interpolation. Initially, x1 is input to a convolutional
layer denoted as θ, where the output channel is half of the input channel, resulting in
ω1. Subsequently, x2 was input to two separate convolutional layers denoted as θ and θ′,
where θ′ has the same number of input and output channels. The resulting feature maps
ω2 and ω3 are utilized for feature reconstruction and feature transformation, respectively.
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Moreover, ω2 acts as the kernel weight for performing convolution with ω1 after the unfold
operation. The kernel size for the unfold operation is 3 × 3, and the dilation rate is 1 × 1.
The output ω4 is input into the deconvolutional layer with kernel weight of the unfolded
ω3, resulting in the final output y.

Figure 3. Pyramid attention captures multi-scale feature correspondences by employing a series of
Scale Agnostic attention.

Figure 4. The SA attention structure.

2.4. Loss Function

The loss function is employed to measure the difference between the reconstructed
images and high-resolution (HR) ground truth, and optimize the model iteratively. The
Mean Squared Error (MSE) loss function is a commonly-used loss function to evaluate the
pixel-wise matching in previous super-resolution studies, which is calculated as follows:

LMSE =
1

WH

W

∑
w=1

H

∑
h=1

(Iw,h
HR − G(ILR)

w,h)2 (3)
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where IHR and ILR represent high-resolution and low-resolution images, respectively,
W and H are the width and height of the high-resolution image, and G represents the
generator. The variables w and h represent the pixel coordinates of corresponding positions
in the image.

Although being widely used in the previous studies, the MSE loss based on pixel
difference between reconstructed image and ground truth cannot wholly represent the
quality of super-resolution reconstruction [28]. The methods based on MSE loss are able
to provide high PSNR, whereas the outputs always have over-smooth textures, leading
to perceptually unsatisfying solutions. In order to address this concern, Ledig et al. in-
troduced the VGG loss to measure the difference between the feature representation of
the reconstructed image and ground truth, avoiding the over-smooth results [14]. In this
paper, we utilize a pre-trained VGG19 neural network [29] to formulate the perceptual loss.
Pre-training VGG19 involves training the model on a large dataset (e.g., ImageNet) to learn
informative features from natural images before incorporating it as a component of the loss
function in a specific task, such as super-resolution. This loss function quantifies perceptual
similarity by extracting feature maps from both the real and reconstructed images, and
computing their Euclidean distance in feature space, which is calculated as follows:

LVGG =
1

WH

W

∑
w=1

H

∑
h=1

(Φ(Iw,h
HR)−Φ(G(ILR)

w,h)2 (4)

where Φ represents the feature extraction function corresponding to the first 16 layers of
the VGG19 architecture.

In the process of image restoration, a little bit of noise on the image may exert great
damage on the restoration result, since super-resolution restoration algorithms might
amplify the noise. To address this issue, we employ the total variation (TV) loss as the
regular item to maintain the smoothness of the image. The difference in the values of
adjacent pixels in the image can be resolved to a certain extent by reducing the TV loss. The
TV loss is defined as the following formula:

LTV = ∑
i,j
((xi,j−1 − xi,j)

2 + (xi+1,j − xi,j)
2)

β
2 (5)

where the difference between each pixel and the adjacent pixel is calculated on the right, as
well as the pixel beneath it. The β is set to be 2, by default.

In this study, a weighted sum of Mean Squared Error (MSE) loss, perceptual loss, and
Total Variation (TV) loss is used to create the content loss, which comprehensively evaluates
the quality of the reconstructed image from the perspectives of pixel, feature maps, and
noise, which is denoted as follows:

LSR
Content = LMSE + λ1LVGG + λ2LTV (6)

where λ1 and λ2 represent weight parameters. Inspired by SRGAN, we empirically set the
perceptual loss weight λ1 and the TV loss weight λ2 to be 0.006 and 2 × 10−8, respectively.

Furthermore, the adversarial loss [14] is employed to train the generator, thereby
fostering the generation of increasingly realistic samples to confound the discriminator.
The adversarial loss formula is represented by:

LSR
Gen =

N

∑
n=1
−logD(G(ILRn)) (7)

where N represents the total number of samples, n represents the n-th sample, and D
represents the discriminator.



Sensors 2023, 23, 7296 9 of 16

The final loss function LSR is composed of a weighted sum of the content loss LSR
Content

and the adversarial loss LSR
Gen:

LSR = LSR
Content + λ3LSR

Gen (8)

where λ3 represent weight parameter, which is set to be 0.001, drawing upon pertinent
experience.

3. Experimental Setup
3.1. Experiment Details

We acquired 468 high-resolution coal photomicrographs using the polarizing micro-
scope, and 48 of them were randomly selected as the validation dataset. The remaining
images were shuffled and divided as the training dataset and test dataset with a ratio of 8
to 2. The original size of photomicrographs is 2580 × 1944. Inputting whole images into
the network would significantly increase the computational resource requirements and
training time. Therefore, we perform random cropping on the coal photomicrographs to
obtain a corresponding small-sized image. The use of random cropping strategy ensures
that the feature information input to the network for the same original image may vary in
each epoch, which helps the model generalize well to new data. The evaluation metrics
are solely used to assess the super-resolution reconstruction performance of the cropped
images, i.e., the results for individual patches. As shown in Table 3,we experimented with
different patch size (e.g., 512 × 512, 256 × 256, 128 × 128, and 64 × 64), and found that while
larger patch sizes might enhance overall quality, they do not necessarily improve finer
details. Conversely, smaller patch sizes, such as 64 × 64, enhance finer details but limit the
receptive field. Therefore, we made a trade-off between the finer details and the receptive
field of the image, and set crop size to be 256 × 256 pixels.

Table 3. The performance metrics, PSNR and SSIM, were evaluated on the test set using images of
different sizes as inputs to our model.

Input Sizes PSNR (dB) SSIM

64 × 64 30.4171 0.9074
128 × 128 31.0275 0.9023
256 × 256 31.1210 0.9055
512 × 512 32.0591 0.8810

Then, we downsampled these patches four times via bicubic interpolation to obtain
low-resolution (LR) images. These LR images were fed into the generator and the re-
constructed SR images were fed to the discriminator. We employed the combination of
content loss and adversarial loss to update generator. The discriminator was updated by
adversarial loss. The training process is shown in Figure 5.

All the experiments were implemented on a workstation with NVIDIA RTX-3090-Ti
GPU. We trained the model for about 350 epochs with a batch size of 64, and each epoch
contains six iterations with a learning rate of 10−3. We employed Adam optimizer [30]
with β1 = 0.9 and β2 = 0.99 to optimize the generator and the discriminator networks
alternately.

3.2. Evaluation Indices

We employ two objective image quality assessment (IQA) indices [31], namely peak
signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM), to evaluate the
quality of the reconstructed photomicrographs, which are widely used in the filed of SR.
PSNR is a pixel-based metric of image quality and is defined via the maximum pixel value
(MaxValue) and the mean squared error between the reconstructed images and the ground
truth, as follows:
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PSNR = 10 log10
MaxValue2

MSE
(9)

where the MaxValue mostly equals to 255 provided the bit depth is 8 bits. It should
be mentioned that this quality metric is not enough because the SR image might not be
visually similar to that of the ground truth image, whereas PSNR is high. We introduce
the SSIM [32] to measure the structural similarity between images in terms of the contrast,
luminance, and structural details, defined as:

SSIM =
(2µSRµHR + C1)(σSRHR + C2)

(µ2
SR + µ2

HR + C1)(σ
2
SR + σ2

HR + C2)
(10)

where µSR and µHR represent the average gray value of the reconstructed SR image and
ground truth, respectively, σSRHR is the covariance of the reconstructed SR image and
ground truth, and σ2

SR and σ2
HR is the corresponding variance, respectively. In summary,

PSNR and SSIM evaluate the quality of a image in two aspects, namely computer vision
and human perception of structural information.

Figure 5. Training process for our modified GAN, which completely demonstrates how the network
works during each iteration.

4. Experiment Results
4.1. Qualitative Results

To reveal the training results intuitively, we show an illustrative example of the
reconstructed SR images generated by the proposed network after 0, 25, 50, 100, and
300 epochs. As we can see from Figure 6, the quality of an image gradually improves as
time goes on. In the first few epochs, the network converges quickly, which leads to a
visually obvious change in the output SR images. By the 100th epoch, the generated output
becomes similar to the ground truth. The training and validating curves are shown as
Figure 7. The training loss decreases with a rapid speed at the very first epochs and then
declines slowly.

We further compare the proposed method over coal photomicrographs with both tradi-
tional and state-of-the-art super-resolution reconstruction methods, including Bicubic inter-
polation [33], SRCNN [8], SRGAN [14], EDSR [34], ESRGAN [16], and RFB-ESRGAN [17].
Two illustrative examples are shown in Figure 8. It is demonstrated that the proposed
method is able to generate more detailed textures in comparison to other methods. SRCNN
and EDSR fail to produce enough details, causing the blur of the reconstructed SR images
in comparison with GAN-based architectures. Although deeper networks tend to provide
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better performance in reconstructing common images (such as natural images), the models
with complex structures and enormous parameters, such as SRGAN and RFB-ESRGAN,
may generate overfitting results over the coal photomicrographs, since the textures and
details of photomicrographs are not as fickle as common images. The previously proposed
GAN-based models, such as SRGAN, may arouse unpleasant artifacts during the training.

Figure 6. Coal photomicrographs super-resolution images produced by 4× up-scales using our
proposed method at the 0, 25th, 50th, 100th, and 300th epoch. The last image is the ground truth.

Figure 7. Line chart of loss during training and validating process, represented by blue and yellow
curves, respectively.

4.2. Quantitative Results

We employ PSNR and SSIM as the evaluation indices to evaluate the performance
of various SR methods, and the higher values of them demonstrate better reconstruction
quality. We download the source codes of SRCNN, EDSR, SRGAN, ESRGAN, and RFB-
ESRGAN from the authors’ homepage and re-train/evaluate these networks with the
utilized dataset, including 336 photomicrographs. The results over the test set with 84 pho-
tomicrographs are shown in Table 4. As we can see from Table 4, the proposed method
outperforms others with the highest PSNR and SSIM of 31.1210 dB and 0.9055, respectively.
EDSR achieves the second-best PSNR of 30.4251 dB, while ESRGAN gets the second-best
SSIM of 0.8986. Compared with SRGAN, the ESRGAN employs a residual-in-residual
dense block without batch normalization and is able to generate more detailed structures,
and thus, with a higher PSNR of 30.2009. Shang et al. applied receptive field block (RFB)
to enhance the features’ discriminability and proposed the enhanced ESRGAN, namely
RFB-ESRGAN. The corresponding parameters are significantly increased from 3,028,931 to
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12,590,999, whereas the SSIM is decreased a bit from 0.8986 to 0.8910. The proposed method
has similar number of parameters as EDSR and SRGAN, while obtaining significantly better
performance, achieving a balance between the complexity of the network and performance.
Leveraging the benefit of a relatively compact model parameter size, this approach is highly
suitable for practical deployment, facilitating its seamless integration into web-based plat-
forms for efficient image reconstruction. It is worth noting that the model presented in
this study demonstrates an inference time of 0.125 seconds per image, which is lower than
RFB-ESRGAN but higher than SRGAN and ESRGAN. Nevertheless, this processing time is
in an acceptable range for the reconstruction of coal photomicrographs, where real-time
reconstruction is not a critical requirement. The primary objective of this study is obtaining
high-definition images with preserved details.

Figure 8. The reconstruction results of Bicubic interpolation, SRCNN, SRGAN, EDSR, ESRGAN,
RFB-ESRGAN and our method, and the corresponding reference HR image.

Table 4. Performance comparison in terms of the PSNR, SSIM, parameters, and inference time.

Methods PSNR (dB) SSIM Parameters
Inference

Time for Each
Image(s)

Bicubic [33] 29.1734 0.8254 None 0.071
SRCNN [8] 29.8132 0.8796 69,251 0.089
EDSR [34] 30.4251 0.8901 925,080 0.084

SRGAN [14] 29.9607 0.8897 734,219 0.104
ESRGAN [16] 30.2009 0.8986 3,028,931 0.090

RFB-ESRGAN [17] 30.4116 0.8910 12,590,999 0.148
The proposed method 31.1210 0.9055 760,328 0.125

4.3. Ablation Study

In order to explore the effect of each module in the proposed architecture, we gradually
modify the baseline model and evaluate its performance. For a fair comparison, the experi-
mental configurations are kept the same across the baseline model and its variants. The
overall comparison is illustrated in Table 5. We first replace the WRB with the conventional
residual block, shown in Figure 2a, and remove the PA module in the proposed network,
denoted as the baseline model. The baseline model achieves a PSNR of 29.9731 dB and SSIM
of 0.8902, and the performance is relatively low. Subsequently, we replaced the traditional
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residual blocks in the baseline model with WRB and observed a significant improvement
in PSNR and SSIM. This demonstrates the effectiveness of the proposed WRB. The WRB
enhances the network’s non-linear fitting ability with 2.42% more parameters. We further
evaluate the performance when the pyramid attention module is added on the baseline
model. The PSNR and the SSIM are improved by 1.1479 dB and 0.0153, respectively, in
comparison with the baseline model. It illustrates the effectiveness of PA module, which
is capable of extracting high-level features to guide the weighting of low-level features
without too much memory or computation burden. The proposed network with both WRB
and PA module obtains the best performance in terms of both PSNR and SSIM, with 3.56%
more parameters than the baseline model. Figure 9 demonstrates the super-resolution
reconstruction results of the baseline model and its variants.

Figure 9. Comparison of ablation experiment results of a sample image from the test dataset.

Table 5. The PSNR and SSIM results of different modifications to the network. We use WRB block
and PA block to confirm their effect.

Methods PSNR SSIM Parameters

Baseline 29.9731 0.8902 734,219
Use WRB Block 30.6882 0.8997 752,005
Use PA Block 30.4737 0.8917 742,408

Use WRB & PA Block 31.1210 0.9055 760,328

In addition, we consider three typical positions of PA module: after the first WRB
block, after the fourth WRB block (in the middle of the network), and after the last WRB
block. Table 6 demonstrates the performance in terms of PSNR and SSIM when the PA-net
is placed at different positions within the generator network. We can see that the best
performance is achieved by inserting the PA-net after the fourth WRB block.

Table 6. The PSNR and SSIM of different position of PA block to the module.

Position PSNR SSIM

after the first WRB 30.9437 0.9018
after the fourth WRB 31.1210 0.9055

after the last WRB 31.0836 0.9031

5. Conclusions

Macerals, organic components present in coal, represent different types of plant
materials transformed to varying degrees during coal formation. By analyzing coal pho-
tomicrographs and conducting maceral analysis, researchers and industry professionals
gain valuable insights into coal’s composition, quality, and potential applications. As a
result, coal photomicrograph analysis plays a critical role in assessing coal quality and
advancing environmentally friendly mining practices. However, obtaining high-resolution
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coal photomicrographs is a cumbersome and costly process. To effectively explore the
information from low-resolution photomicrographs, we propose a lightweight network
designed to enhance the resolution of coal photomicrographs using an improved GAN-
based super-resolution method. We propose a novel architecture called wide residual block
with subresidual modules to replace the BN layers in conventional residual block. The
removal of BN layers contributes to performance improvement, particularly in preventing
the distortion of the image’s contrast. In comparison with the recently proposed GAN-
based SR strategies, this architecture not only simplifies the generator network but also
avoids unpleasant artifacts introduced by BN. In addition, we embed a five-level pyramid
attention block in the middle of the generator to adaptively capture the long-range corre-
lations between features. The module is fully differentiable and can serve as a common
building block of SR networks to enhance image restoration performance. Moreover, we
introduce a global average pooling layer prior to the last second convolutional layer of
the discriminator to avoid the overfitting problem. We employ an additional loss function,
referred to as TV-loss, to suppress noise during the training process. Collectively, these
improvements contribute to the generation of images with more natural textures, finer
sharpness, and intricate details. We evaluate the performance of the proposed method
and the state of the art’s on 84 coal photomicrographs. The experimental results, both
quantitative and qualitative, validate the effectiveness of our proposed approach.

It should be noted that the proposed method still has a few limitations. The main
focus is on whether the high-resolution images generated by the generator comply with
the geological rules. In addition, more photomicrographs are required to evaluate the
generalization ability of the proposed method. All of these aspects require further validation
through real-world applications. To address these concerns, in the future, we plan to
invite experienced geologists to conduct subjective evaluation tests (MOS testing) on the
generated coal photomicrographs to assess their perceptual quality. Additionally, we
aim to incorporate domain knowledge into the super-resolution reconstruction network to
provide superior performance and ensure that the reconstruction results are comprehensible
to humans.
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