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Abstract: Federated learning has attracted much attention in fault diagnosis since it can effectively
protect data privacy. However, efficient fault diagnosis performance relies on the uninterrupted
training of model parameters with massive amounts of perfect data. To solve the problems of model
training difficulty and parameter negative transfer caused by data corruption, a novel cross-device
fault diagnosis method based on repaired data is proposed. Specifically, the local model training link
in each source client performs random forest regression fitting on the fault samples with missing
fragments, and then the repaired data is used for network training. To avoid inpainting fragments to
produce the wrong characteristics of faulty samples, joint domain discrepancy loss is introduced to
correct the phenomenon of parameter bias during local model training. Considering the randomness
of the overall performance change brought about by the local model update, an adaptive update is
proposed for each round of global model download and local model update. Finally, the experimental
verification was carried out in various industrial scenarios established by three sets of bearing data
sets, and the effectiveness of the proposed method in terms of fault diagnosis performance and data
privacy protection was verified by comparison with various currently popular federated transfer
learning methods.
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1. Introduction

With the rapid development of digital intelligent manufacturing, data-driven deep
learning methods have made significant progress [1,2]. Various deep learning networks, in-
cluding computer vision, natural language processing, and autonomous driving, continue
to emerge in an endless stream [3,4]. These advancements not only enhance the reliability
of equipment utilized in intelligent manufacturing but also improve work safety while
reducing maintenance costs [5]. Although deep learning methods alleviate the require-
ment for operator expertise, the high performance of the network often relies on feature
knowledge obtained from a large amount of high-quality training and testing data [6,7].

In practical scenarios, the majority of users in the industrial field possess private
condition monitoring data, and there exist analogous mechanical equipment configurations
among them [8]. Therefore, amalgamating the condition monitoring knowledge of multiple
users to construct a global model for intelligent fault diagnosis can effectively address
the issue of insufficient individual user data. However, the device data collected during
actual production often contains a significant amount of company-protected device privacy
information that is not shared with other users. Thus, centralized data management and
centralized fault diagnosis model training for each client are no longer viable [9,10]. In
recent years, a federated learning strategy has been proposed to address the issue of
collaborative diagnosis among multiple users, effectively mitigating the non-circulation
of diagnostic knowledge caused by data privacy concerns [11]. The concept of federated
learning was initially introduced by Mcmahan et al. [12], who pointed out that the central
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server is used to manage the model communication between each client, and the models of
each client are averaged. Li et al. [13] proposed a MOON network that leverages model
representation similarity to rectify the local training losses of each client, thereby presenting
a simplified federated learning framework that effectively addresses the challenge of image
heterogeneity adaptation across multiple users. Considering the inherent heterogeneity of
local data distribution, Marfoq et al. [14] propose a federated learning strategy for multi-
task learning that captures complex relationships among personalized networks through
penalty terms.

Despite the preliminary progress made in research on protecting data privacy through
federated learning, further advancements are necessary to fully address this issue [15].
Existing federated learning methods often assume that users conform to the same data
distribution, meaning that each user collects information on similar mechanical equipment
under comparable working conditions. However, in practical scenarios, due to diverse
project requirements and distinct operating conditions of industrial equipment, there exist
significant discrepancies in data distribution among customers, which pose challenges
for the generalization of conventional fault diagnosis methods [16]. Transfer learning
breaks the basic assumption that training data and test data must satisfy independent
and identical distribution, as it enables the transfer of labeled information from a source
domain to diagnose unknown target domain samples [17]. Chen et al. [18] proposed a dual
adversarial-guided unsupervised multi-domain adaptation network, which constructed
the edge confrontation module (EA-Module) to extract the common features of samples in
multiple sets of source domains and validated the method on the transfer task of a rotating
machinery dataset. Li et al. [19] proposed a novel joint attention feature transfer network to
address the issue of data imbalance in real-world industrial scenarios. Experimental results
on the gearbox dataset demonstrate its superior adaptability to sample scarcity.

The existing federated transfer learning model often assumes that each user has stored
relatively complete and perfect data sample information when solving multi-user fault
diagnosis tasks, which is not common in actual industrial scenarios. Simultaneously, the
federated learning strategy does not fully utilize the diagnostic knowledge learned from
each source client for other source clients after the global model communication link or
completely abandons the accumulated sample diagnostic knowledge of each source client
in the local client training link in the current research.

Referring to the aforementioned issues in current research, this study proposes a
federated transfer learning strategy based on data restoration (FTLS-DR). When faced
with data damage in the client, this strategy employs linear regression completion on the
damaged data as a preliminary step before utilizing it for source client network training.
To mitigate any negative transfer effects of broken data on the local model, an offset
optimization of the source client network is performed using a joint function composed of
maximum mean discrepancy (MMD) and Wasserstein distance (WD). Subsequently, the
central server dynamically evaluates the global model based on its performance in task
verification for each source client and builds a new round of each source client network by
adaptively weighting the global model download link. The main innovations in this paper
are as follows:

1. A novel federated learning strategy is proposed to solve the problem that the source
client lacks complete samples for network training, which rarely occurs in current
federated transfer learning research.

2. The joint function proposed for optimizing source-client networks in federated trans-
fer learning strategies employs Wasserstein distance and multi-kernel MMD to mea-
sure domain distances and effectively alleviates the model-negative transfer phe-
nomenon caused by distribution discrepancies through periodic training.

3. To address the challenge of diagnosing targets across different devices and under
varying working conditions, an adaptive global model update method is employed
by the central server. This approach ensures excellent fault diagnosis performance
while safeguarding source client data privacy.



Sensors 2023, 23, 7302 3 of 17

The subsequent sections of this article are structured as follows: Section 2 introduces
the related work studied in this paper, while Section 3 presents the network structure
and detailed training process of the proposed federated transfer learning strategy. In
Section 4, multiple sets of experiments are conducted to discuss the proposed scheme.
Finally, Section 5 concludes the entire paper.

2. Materials and Methods
2.1. Federated Learning

Federated learning was initially proposed as a solution to address the challenge of
safeguarding client data privacy in the realm of cross-device fault diagnosis [20]. The
framework is designed to facilitate the coordination of network model training among
independent parties while ensuring the protection of their respective data privacy [21].
As a distributed machine learning framework, federated learning is divided into three
categories: horizontal federated learning (HFL), vertical federated learning (VFL), and
federated transfer learning (FTL). Additionally, it mainly includes three sets of training
steps: First, the central server initializes the network structure and distributes it along
with initial parameter settings to each client. Subsequently, each client utilizes the received
network model to perform model training based on local data and uploads the final training
result to the central server. Finally, the central server summarizes the client network models
of all parties to build a global model with more complete diagnostic knowledge to improve
network performance as a whole.

The training process of the federated learning strategy is distributed to each client,
and finally, the aggregation of diagnostic knowledge is realized on the central server, which
not only ensures the privacy of all source client users but also promotes knowledge sharing
among clients [22,23]. For example, Lee et al. [24] introduced reinforcement learning
knowledge into the federated learning strategy and proposed a client selection scheme
based on a reward mechanism, which improves the learning efficiency of the network
while using fewer agents. Considering that the optimal design of federated learning
algorithms in edge computing systems needs to be solved urgently, Li et al. [25] proposed a
generalized federated learning strategy that uses the tricks of general inner approximation
and complementary geometric programming to iteratively explore the full potential of
federated learning. Although significant progress has been made in the aforementioned
federated learning methods, there are still numerous challenges that require resolution [26].
This paper further investigates the application of federated learning schemes in few-shot
fault diagnosis scenarios.

2.2. Transfer Learning

The data-driven deep learning model demonstrates efficient performance in diagnos-
ing faults based on a comprehensive analysis of monitoring data. However, establishing
an ideal data set for training deep learning models is challenging in real-world industrial
scenarios due to various factors [27]. The main reasons can be summarized in three points:
(1) Faults rarely occur under normal operation of mechanical equipment, which makes the
collected sample data mostly healthy and free of faulty sample information. (2) The cost of
obtaining fault sample information in simulated industrial scenarios within a laboratory
setting is relatively high. (3) The fault samples simulated in the laboratory are devoid of
environmental information present in real-life scenarios, thereby lacking authenticity.

Transfer learning, as a technique for utilizing diagnostic knowledge from known
datasets to address less strongly related fault diagnosis tasks, is highly beneficial for most
current domain adaptation methods [28]. For instance, Liu et al. [29] proposed a transfer
learning network based on confrontational discriminative domain adaptation to address
the fault problem of gas turbines. The approach involves transferring the model trained in
the source domain to target domain data, followed by adversarial training that adaptively
optimizes model parameters using information from both domains. He et al. [30] proposed
a multi-signal fusion confrontation network that integrates vibration and sound signals
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to diagnose common faults in axial piston pumps. The addition of a multi-signal fusion
module enables the re-weighting of each signal, enhancing the accuracy and reliability of
fault diagnosis. This study employs the data augmentation method in the transfer learning
strategy to enhance the generalization performance of the diagnostic model.

2.3. Random Forest

As a fusion strategy of decision tree and bagging methods, the random forest (RF)
algorithm constructs a set of low-bias and non-correlation trees (Ta, a = 1, . . . , Rtree) from the
predictions given by multiple sets of decision tree models [31,32]. The RF algorithm is often
used to solve multi-classification problems and regression problems. When tackling multi-
classification problems, the prediction outcomes of all decision trees will be aggregated
through voting, and the category with the highest number of votes will be deemed the
ultimate diagnostic result. When solving a regression problem, the final prediction will be
the mean of all decision tree outputs.

For regression, the mathematical expression of the predicted value given by random
forest is as follows [33,34]:

y(x) =
∑Rtree

a=1 h(x, θa)

Rtree
(1)

where h(x, θa) stands for the predicted output of the a-th decision tree, and Rtree represents
the number of decision trees in the random forest. This study introduces the random forest
algorithm into the federated learning strategy to solve the problem of data corruption in
client communication.

3. Proposed Federated Transfer Learning Scheme
3.1. Network Architecture and Training Initialization

The federated transfer learning strategy proposed in this paper consists of multiple
sets of local clients (i.e., multiple sets of source clients and a single target client) and a single
central server. To simulate fault diagnosis requirements in realistic scenarios, each source
client is assigned a unique diagnostic task that necessitates local data for resolution, while
the target client solely possesses target tasks without any training data. Specifically, the
local models within each source domain client share identical network configurations as
the global model residing on the central server, which is a 3-layer feature extractor and
2-layer classifier network.

Considering that client data privacy needs to be protected, source clients are only
allowed to share local model parameters with the central server. In the initialization phase,
each source client independently performs model parameter training and diagnostic knowl-
edge learning locally until the maximum set value of training is reached. Subsequently,
upon completion of training, the model parameters from each source client are uploaded to
the central server for evaluation. The central server then performs weighted aggregation
based on the evaluation results of each model to form global model parameters. The
federated transfer learning strategy proceeds with initialization until the global model
completes its first parameter update.

3.2. Source-Client Periodic Training

Considering that the training data contains a large number of diagnostic fault samples,
the damaged local training data will be repaired first and then used for the parameter
training of the model. The specific local training process and network architecture are
shown in Figure 1.

The random forest algorithm gradually learns the complete part of the training data
and performs regression-fitting predictions on the damaged part. In this study, the number
of decision trees in the random forest is set to 100, and the number of leaves is 5 groups.
At the same time, it is stipulated that the prediction rhythm of predicting 1 point for
every 15 points will gradually slip, and the fitting and repair of the damaged data will
be completed finally. It is worth noting that “broken data” refers to sample data that
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loses part of the fragmented information. The repaired time-domain training samples are
input to the feature extractor after undergoing a fast Fourier transformation, in which the
number of neurons is set to 1000, 800, and 1200. Additionally, the domain discrepancy
loss LW function is introduced to solve the problem that there is a significant distribution
discrepancy between the training samples and the final fault samples in the target domain. It
is worth noting that the Wasserstein Distance (WD) was chosen to evaluate the discrepancy
between the datasets [35]. The specific mathematical expression is as follows:

LW = inf
γ∈∏ (P,Q)

E(x,y)∼γ[‖x− y‖] (2)

where ∏(P, Q) is the set of all joint distributions of the two sets of distributions P and Q,
γ(P, Q) indicates the “mass” that needs to be transported from x to y in order to transform
the distributions P into the distribution Q.
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Figure 1. Schematic diagram of source client network architecture and training process. 
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Figure 1. Schematic diagram of source client network architecture and training process.

The Maximum Mean Discrepancy (MMD) is introduced as the feedback loss L f for
local models to optimize the model structure, aiming to mitigate the impact of erroneous
diagnostic information extracted from repaired data on network diagnostic performance.
Simultaneously, the cross-entropy loss is selected as the sample classification loss of the
Softmax classifier, as shown in Formulas (3) and (4):

L f → MMD(PS, PT)
2 =

1
n2

s

ns

∑
i=1

ns

∑
j=1

k(xs
i , xs

j )−
2

nsnt

ns

∑
i=1

nt

∑
j=1

k(xs
i , xt

j) +
1
n2

t

nt

∑
i=1

nt

∑
j=1

k(xt
i , xt

j) (3)

Lc(os, ys) = − 1
ns

ns

∑
i=1

C

∑
c=1

I[ys
i = c] log

exp(os
i,[c])

∑C
j=1 exp(os

i,[c])
(4)

where k is a mapping relationship that maps the original variable to the high-dimensional
space, os and ot represents the features extracted from the source domain and target
domain samples, I[·] represents the probability score of the sample fault type by the
softmax classifier.

During the initial phase of source client training, the domain discrepancy loss and the
feedback loss are jointly composed of the joint domain discrepancy loss. The local model
simultaneously optimizes the joint domain discrepancy loss and the sample classification
loss to minimize the domain discrepancy between the source and target domains in the
source client task while also utilizing them to rectify model hyperparameters caused by
inpainting data offset. The specific mathematical expression is as follows:

min
θe ,θc

Lc(os, ys) + δ1 · LW(xs, xt) + δ2 · L f
(
os, ot) (5)
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where δ1 and δ4 are empirical coefficients during model training.
The local training in the second stage cancels the optimization of the network param-

eters by the classification loss. The joint domain discrepancy loss is further optimized to
alleviate the negative transfer phenomenon of sample error features to network training
caused by random forest regression fitting, and the specific function formula is shown in
Equation (6).

min
θe ,θc

LW(xs, xt) + δ3 · L f
(
os, ot) (6)

where δ3 is the empirical coefficient during model training.
The local model is iteratively updated through the continuous joint training of the

three sets of objective functions until it reaches the initial preset value. The source client
ultimately acquires a set of feature extractors that can effectively capture the relevant
information from the fitting data, as well as a set of classifiers capable of distinguishing
incomplete feature samples, thereby enabling periodic training for the source client.

3.3. Federated Learning Dynamic Interaction

The dynamic interaction process of the federated transfer learning strategy proposed
in this paper mainly includes three links: the global model update link, the source client
task verification link, and the local model adaptive update link.

The local model parameters from each source client are initially transmitted to the
central server, as shown in Figure 2. The central server then assesses the diagnostic knowl-
edge contribution of each source client to the global model and weights and aggregates it
to form a new global model network. The functional description is as follows:

λi,j = (Ai,j
T + Ai,j

S )/
K

∑
i=1

(
Ai,j

T + Ai,j
S

)
(7)

θCen
E = λ1,j ∗ θClient1

E + λ2,j ∗ θClient2
E + · · ·+ λK,j ∗ θClientK

E (8)

θCen
C = (1/K) ·∑K

i=1 θi
C (9)

where λi,j represents the evaluation coefficient of the i-th client in the j-th round of federated

communication, Ai,j
T and Ai,j

S represent the final diagnosis accuracy and training accuracy
of the i-th client in the j-th round of source client training.

Following this, the updated global model is downloaded to each source client for
model validation. Specifically, the central server performs reverse verification on all source
client tasks one by one and obtains the corresponding sample diagnostic loss to optimize
the parameters of the local model, which can effectively improve the ability of the local
model to extract the cross-domain universal characteristics of fault samples.

[z1, z2, . . . , zK] = ∑K
i=1 globel(xi

t) (10)

∑K
k=1

[
θk

e , θk
c

]
← Lc−cen(label, M(x)) = −∑n

i=1 label(xi) log(M(xi)) (11)

where [z1, z2, . . . , zK] represents the distribution of diagnostic results of the global model of
K-group source client tasks, xi

t is the task verification sample of the i-th source client, M(·)
represents the diagnostic function of the global model, and Lc−cen is the diagnostic loss of
the global model for the source client task.
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Figure 2. Flowchart of federated transfer dynamic interaction. The red dotted line represents the flow
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In the local model adaptive update link, the parameter information of the global
model and the sample diagnostic loss of the source client task are used for a new round
of local model parameter updates. Considering the specificity of each source client task,
the local model parameters are not completely replaced by the global model. To enhance
the generalization performance of local models for cross-domain fault samples while
preserving the sample diagnostic knowledge of local tasks, the local model parameters of
each source client are adaptively updated, as shown in Formulas (12) and (13):

θk
e ← H ·

[[
θk

e , θCen
e

]
·
[

Ai,j
T /
(

Ai,j
T + Ai,j

cenT

)
, Ai,j

cenT/
(

Ai,j
T + Ai,j

cenT

)]]
(12)

θk
c ← H ·

[[
θk

c , θCen
c

]
·
[

Ai,j
T /
(

Ai,j
T + Ai,j

cenT

)
, Ai,j

cenT/
(

Ai,j
T + Ai,j

cenT

)]]
(13)

where Ai,j
cenT represents the verification diagnosis accuracy of the j-th round of the global

model for the i-th client task, H[·] represents the adaptive update function of the local
model parameters.

The three sets of steps of the federation dynamic interaction cycle alternately: the
global model gradually masters the fault diagnosis knowledge of all source clients, and the
local model of each source client is optimized. Finally, the optimized global model will be
delivered to the target client for final verification of the target task.
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4. Experimental Verification
4.1. Dataset Description

In this section, three sets of bearing datasets (including a public dataset and two
laboratory simulation datasets) are utilized to validate the efficacy of the proposed method,
encompassing three health status categories: normal condition (NC), inner ring fault (IRF),
and outer ring fault (ORF). The data set information is shown in Table 1.

Table 1. Information of the three bearing experimental datasets.

Dataset Object Types Working Conditions Health Types No. of Samples
Code Load/Speed

CWRU SKF6205

A 0 hp/1797 rpm
1 Normal

3 Inner Race
3 Outer Race

100
3 × 100
3 × 100

B 1 hp/1772 rpm
C 2 hp/1750 rpm
D 3 hp/1730 rpm

MDS NU205EM
E 1000 rpm 1 Normal 100
F 1300 rpm 1 Inner Race 100
G 1500 rpm 1 Outer Race 100

GPTFS NU205EM

H 1000 rpm
1 Normal

3 Inner Race
3 Outer Race

100
3 × 100
3 × 100

I 1500 rpm
J 20 N/1500 rpm
K 2000 rpm
L 20 N/2000 rpm

4.1.1. CWRU

The CWRU Bearing Dataset from Case Western Reserve University comprises sample
data obtained by the Electromechanical Signal Analyzer at four distinct rotational speeds.
The damage diameters of the outer and inner ring faults are categorized as 0.1778 mm,
0.3556 mm, and 0.5334 mm, respectively. In the experiment, the vibration acceleration
signal collected by the sensor located at the 6 o’clock position of the motor drive end is
selected for research and discussion. Simultaneously, two groups of sampling frequencies
are set to 12 kHz and 48 kHz, respectively.

4.1.2. MDS

The Motor Drive Simulation (MDS) Experiment Dataset is collected by the LMS
vibration data acquisition instrument at a sampling frequency of 12.8 kHz and a three-way
acceleration sensor, specifically the PCB353B33 model. The damage sizes of the outer and
inner rings of the bearing are specifically artificial EDM cracks, each with a width and depth
of 0.5 mm. Additionally, sample information was collected on the health status of rolling
bearings at three different speeds: 1000 rpm, 1300 rpm, and 1500 rpm. The fault samples
collected in the time domain are subjected to Fast Fourier Transform (FFT) processing to
obtain frequency domain signal samples for training.

4.1.3. GPTFS

The Gear Power Transmission Fault Simulation (GPTFS) Experimental Dataset uses a
specially processed cylindrical roller bearing (NU205EM) for experiments and artificially
increases crack faults in the outer ring and inner ring of the bearing (i.e., EDM, the crack
size is 0.2 mm, 0.4 mm, and 0.6 mm). During the data collection process, the PCB315A
acceleration sensor was mounted onto the bearing base and set to a signal collection
frequency of 12.8 kHz, and the test bench is shown in Figure 3. Specifically, for the bearing
experiment, the data samples were collected from a control motor operating at constant
speeds of 1000 rpm, 1500 rpm, and 2000 rpm while also subjecting it to 0 N and 20 N motor
loads as per experimental requirements.
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4.2. Different Comparison Schemes

In order to demonstrate the superiority of the proposed federated transfer learning
scheme in addressing the few-shot learning problem, multiple sets of comparative experiments
with identical experimental configurations were conducted to validate its effectiveness.

Baseline: The baseline method [36], which does not incorporate any federated transfer
learning knowledge, is commonly employed as a reference group in experiments to assess
the reliability and efficacy of proposed schemes. Each source client model performs direct
diagnosis on the target task after local task training, and the final diagnosis result for the
target task is obtained by aggregating and averaging the results from all source clients.

FedAvg: The Federated Averaging (FedAvg) method [37] aims to centrally average the
locally trained models and aggregate them into a global model, which is then distributed
to each client device through training. This approach achieves the objective of training
a shared model with scattered data by employing two stages: local model training and
global model aggregation, which ensure diagnostic knowledge sharing while preserving
data privacy.

FTLS-DPP: The Federated Transfer Learning Scheme based on Data Privacy Protection
(FTLS-DPP) method is a collaborative strategy designed to address the issue of industrial
data islands, with its training process being executed independently on each local client.
Specifically, the local model employs differential training to enhance the diagnostic accuracy
and generalization of the network, while the global model assesses the task contribution of
each local model for weighted aggregation. These two sets of training cycles alternate to
accomplish the target customer terminal task.
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4.3. Cross-Machine Federated Transfer Learning Tasks and Parameters Setting

The training process of each source client model is conducted independently in the
experiment, thereby ensuring the privacy of individual client data. The complete training
of the federated transfer policy does not involve any information regarding the target client
tasks, and the detailed experimental task settings are presented in Table 2. Specifically, K
sets of source clients and a group of target clients were established using bearing samples
collected by three sets of test platforms under various working conditions during the
experimental verification stage. Each set of clients contains unique fault diagnosis tasks
that are consistent with the final target, and there are notable differences in these tasks.

Table 2. Detailed information on diagnostic tasks.

Task Client #1 Client #2 Client #3 Target Client

Case 1
(3 types)

Source
C (CWRU-1750) F K C, I

(CWRU-1750 mixed
with GPTFS-1500)

Ideal Data Ideal Data Ideal Data
Client task B (CWRU-1772) G I

Case 2
(3 types)

Source
C F (MDS-1300) K

C, IRepair Data (25%) Repair Data (25%) Repair Data (25%)
Client task B G (MDS-1500) I

Case 3
(3 types)

Source
C F K (GPTFS-2000)

C, IRepair Data (37.5%) Repair Data (37.5%) Repair Data (37.5%)
Client task B G I (GPTFS-1500)

Case 4
(7 types)

Source
C K J (GPTFS-20/1500) D, J

(CWRU-1730 mixed
with GPTFS-20/1500)

Repair Data (25%) Repair Data (25%) Repair Data (25%)
Client task D (CWRU-1730) I L (GPTFS-20/2000)

Four groups of samples with missing information and client tasks were established
in this study to simulate diagnostic tasks under various working conditions. In the first
scenario, each source client sample set contains ideal sample data, and there are discernible
discrepancies in the diagnostic tasks of each source client. In the second scenario, not
only does the training data contain defects in each client diagnosis task, but it also ex-
hibits a 12.5% rate of sample damage. Furthermore, the federation strategy focuses on
more intricate cross-device and cross-type fault sample diagnoses in this scenario. In
the third and fourth scenarios, both cross-device and cross-model diagnostic tasks were
present in the target client, while load information was also integrated into the data of
each source client. By setting up four groups of federated diagnostic tasks, the proposed
diagnostic strategy is fully applied. To clarify the operation of the proposed federated
transfer learning strategy, the relevant parameter information is established based on the
requirements of the target task and presented in Table 3.

Table 3. Parameter settings for the proposed scheme.

Parameter Value Parameter Value

Source_input 1200 The number of decision trees Rtree 100
Target_input 1200 The number of leaves Rlea f 5
Classification_input 150 Rn_train 15
Sample_size 100 Rn_prediction 1
Label_1 7 The number of source clients K 3
Label_2 3 Experience coefficient δ1 0.5
Learning-rate 0.0005 Experience coefficient δ2 0.5
Sample_size Ndata 100 Experience coefficient δ3 4
Federation dynamic
interaction cycle Nr

20 Local training cycle nk 100
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4.4. Diagnosis Result and Discussion

The random forest algorithm is used to perform regression fitting on the damaged
training data in the source client, and the fitted data is directly applied to the training
process of the network. Figure 4 shows the comparison of the fitting curves of the training
samples for each health type of the three groups of source clients in Case 2. It can be clearly
seen from the figure that the predicted data for client 1 was constructed by using the CWRU
data set, and the real data met a relatively ideal fit, which shows that there are obvious
periodic fault characteristics in the data set. As more uncertain environmental interference
is mixed into the data set, the peaks of the fitting curves predicted in Client 2 and Client 3
begin to stagger from the real data, but the trend of the fitting curves is always consistent
with the real data.
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Figure 4. The comparison display of forecast data and real data in case 2: The blue curve represents
the predicted data. The red curve represents the real data.

Figure 5 shows the comparison between the fitting curve of the outer ring fault sample
of the GPTFS data set predicted in the selected case 3 and the real data. Although the
trend of the predicted data is basically consistent with the real data, there are still some
discrepancies in the magnitude of kurtosis. Given the complexity of the samples in the
dataset, the existing prediction bias is allowed during the training of the local model. In the
experimental section, a group of damaged fault samples in each case is selected to describe
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the results of random forest regression fitting. The detailed data restoration indicators are
shown in Table 4.
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Table 4. Repair evaluation index of the corrupted training data.

Client Task MAE MAPE MBE RMSE R2

Case 2
(25%)

Client 1
CWRU-NC 0.01684 0.03367 0.00084 0.02243 0.87892

CWRU-IRF3 0.08165 0.00211 0.00112 0.11341 0.98029
CWRU-ORF3 0.0298 0.01867 0.00195 0.0432 0.95764

Client 2
MDS-NC 0.21635 0.05039 0.02098 0.27182 0.73556

MDS-IRF3 0.49061 0.10457 −0.04878 0.37851 0.65363
MDS-ORF3 1.0169 0.0381 −0.04772 1.7058 0.84441

Client 3
GPTFS-NC 2.2796 0.068 −0.11896 2.867 0.66156

GPTFS-IRF3 2.7295 0.08345 −0.01088 3.8418 0.68568
GPTFS-ORF3 2.0915 0.10786 0.20306 2.7645 0.63849

Case 3
(37.5%)

Client 1
CWRU-NC 0.01631 0.02180 0.00057 0.02165 0.8835

CWRU-IRF3 0.08739 0.00142 −0.00014 0.11952 0.97492
CWRU-ORF3 0.02895 0.01 0.00262 0.03942 0.9602

Client 2
MDS-NC 0.30154 0.05548 −0.02627 0.42285 0.64347

MDS-IRF3 0.32726 0.06213 −0.00511 0.41679 0.60667
MDS-ORF3 1.1004 0.02657 −0.02394 1.7745 0.80962

Client 3
GPTFS-NC 2.2504 0.048 0.06712 2.8307 0.65488

GPTFS-IRF3 2.7417 0.0568 −0.031 3.7691 0.68315
GPTFS-ORF3 1.9348 0.0709 −0.0393 2.5791 0.6464

Case 4
(25%)

Client 1

CWRU-IRF1 0.05333 0.02967 −0.00562 0.08707 0.90167
CWRU-IRF2 0.01672 0.00638 0.00046 0.02179 0.96908
CWRU-ORF1 0.10435 0.00504 −0.00899 0.15351 0.97724
CWRU-ORF2 0.02529 0.02034 0.0025 0.03482 0.95266

Client 2

GPTFS-IRF1 2.9788 0.0828 0.13673 4.0143 0.69904
GPTFS-IRF2 2.9474 0.05992 −0.07722 3.6758 0.71246
GPTFS-ORF1 3.0049 0.06826 −0.1066 3.9895 0.68667
GPTFS-ORF2 2.0797 0.0932 0.09133 2.7262 0.67296

Client 3

GPTFS-NC/20N 1.1284 0.0719 0.00471 1.444 0.72461
GPTFS-IRF1/20N 3.4072 0.098 −0.05176 5.6176 0.60803
GPTFS-IRF2/20N 1.9464 0.06854 0.06075 2.5784 0.68535
GPTFS-IRF3/20N 1.825 0.06872 −0.00536 2.2947 0.70688
GPTFS-ORF1/20N 2.2651 0.07551 −0.0794 2.7943 0.68356
GPTFS-ORF2/20N 3.2422 0.04868 0.16 4.4067 0.77534
GPTFS-ORF3/20N 3.1238 0.06493 0.12395 4.1924 0.74757
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In the experimental phase, each diagnostic method was tested five times in each
scenario to ensure experiment reliability. The diagnostic accuracy rate and corresponding
standard deviation of these comparative experiments are presented in Table 5 and Figure 6.
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Figure 6. The diagnostic accuracy fluctuation display of each comparison method for the target task.
Figure (a) is the diagnosis details of the target task in case 1. Figure (b) is the diagnosis details of the
target task in case 2. Figure (c) is the diagnosis details of the target task in case 3. Figure (d) is the
diagnosis details of the target task in case 4.

The FTLS-DR method proposed in this study outperforms other comparison methods
in terms of diagnostic accuracy and fluctuation range across all four cases. Specifically, in
the case of complete data training in case 1, the diagnostic accuracy of the proposed method
in each client task and target client task is higher than 98%, with a standard deviation
of 1.04%. Comparing the FedAvg method with the FTLS-DPP method, the diagnostic
accuracy is only 84.78% and 92.83%, and the standard deviation is greater than 7.21%.
The proposed method still demonstrates superior model generalization performance and
diagnostic accuracy, even in the presence of corrupted training data. Specifically, the
diagnostic accuracy for the unknown target client diagnosis task remains above 78.06%
when 25% of the training data is damaged. It can be inferred that the FTLS-DR method
proposed in this paper has better universal feature extraction capabilities for fault samples,
rendering it more suitable for diagnostic tasks in complex scenarios.

In order to demonstrate the distribution of features extracted from data samples and
validate the advantages of feature extraction using the proposed FTLS-DR method, the
high-dimensional features of the target client sample extracted in the final verification link
are visualized and displayed through dimension reduction [38], as shown in Figure 7. In
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cases 1 to 3, each group of clients encompasses three distinct bearing health states, while
in case 4, seven bearing health states are set for the problem of misclassification of fuzzy
fault samples. The proposed federated transfer strategy still shows satisfactory diagnostic
results in the face of fault sample diagnosis under unknown working conditions. From the
extracted sample features, it can be seen that the sample data features in each healthy state
are accurately extracted and perfectly classified. Except for a small number of fault samples
in the outer circle that were misclassified in case 2, there was a staggered phenomenon of
individual fault sample cluster boundaries in case 4. This further demonstrates that the
FTLS-DR method can still perform satisfactorily in the face of complex transfer tasks across
devices and bearing models.
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Table 5. Accuracy and standard deviation (%) of the diagnostic results.

Client Task Baseline FedAvg FTLS-DPP Proposed Method

Case 1

Client 1 88.3 (7.34) 94.36 (5.4) 100 (0) 100 (0)
Client 2 66.7 (11.67) 74.12 (9.58) 96.9 (3.46) 98.67 (0.2)
Client 3 54.3 (14.03) 63.66 (3.56) 80.01 (7.63) 100 (0)
Target 66.96 (1.66) 84.78 (14.76) 92.83 (7.21) 98.76 (1.04)
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Table 5. Cont.

Client Task Baseline FedAvg FTLS-DPP Proposed Method

Case 2

Client 1 40.27 (5.69) 62 (0.22) 75 (6.89) 81.65 (2.34)
Client 2 38.09 (2.32) 41.78 (2.81) 39.22 (0.74) 78.36 (1.2)
Client 3 48.45 (5.18) 62.89 (1.26) 65.89 (5.04) 78.44 (2.17)
Target 39.11 (6.15) 51.67 (13.33) 65.34 (2.14) 80.17 (3.14)

Case 3

Client 1 40.22 (1.59) 43.56 (2.96) 44.89 (5.41) 73.34 (2.48)
Client 2 61.44 (2.37) 62.67 (3.56) 60.89 (0.95) 67.76 (2.71)
Client 3 36.67 (4.89) 42.44 (13.92) 29.45 (11.18) 68.35 (3.14)
Target 57.27 (3.42) 56.44 (5.25) 57.89 (1.03) 78.06 (3.22)

Case 4

Client 1 57.62 (8.44) 58.42 (6.57) 76.28 (11.01) 99.71 (0.17)
Client 2 67.23 (14.79) 43.57 (21.33) 81 (6.84) 99.88 (0.1)
Client 3 59.09 (2.89) 71.47 (9.17) 87.14 (4.81) 99.86 (0.15)
Target 79.38 (0.38) 78.8 (1.06) 81.4 (3.12) 86.58 (2.06)

5. Conclusions

Aiming at the problem of data privacy protection in actual industrial scenarios, this
paper proposes a new cross-device fault diagnosis method based on repaired data. The
proposed federated transfer learning strategy is different from the traditional fault diag-
nosis method. The target client sample does not participate in the network training and
parameter updates from the initial training stage to the final target task verification process.
Multiple sets of diagnostic tasks are established on three sets of bearing datasets to simulate
engineering requirements in real-world scenarios. The results show that the proposed
federated transfer learning strategy effectively solves the problem of difficult diagnosis of
fault samples caused by the lack of complete local training samples. The proposed FTLS-DR
method not only effectively guarantees the privacy of client data but also achieves the best
diagnostic results among other comparison methods. In addition, the key indicators and
fitting accuracy of the restoration data were measured from multiple perspectives, and
the comprehensive evaluation proves that the method has a good prospect for practical
engineering diagnosis.
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