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Abstract: Three-dimensional reconstruction of the left myocardium is of great significance for the
diagnosis and treatment of cardiac diseases. This paper proposes a personalized 3D reconstruction
algorithm for the left myocardium using cardiac MR images by incorporating a residual graph
convolutional neural network. The accuracy of the mesh, reconstructed using the model-based
algorithm, is largely affected by the similarity between the target object and the average model. The
initial triangular mesh is obtained directly from the segmentation result of the left myocardium. The
mesh is then deformed using an iterated residual graph convolutional neural network. A vertex
feature learning module is also built to assist the mesh deformation by adopting an encoder–decoder
neural network to represent the skeleton of the left myocardium at different receptive fields. In this
way, the shape and local relationships of the left myocardium are used to guide the mesh deformation.
Qualitative and quantitative comparative experiments were conducted on cardiac MR images, and
the results verified the rationale and competitiveness of the proposed method compared to related
state-of-the-art approaches.

Keywords: 3D reconstruction of the left myocardium; residual graph convolutional neural network;
triangular mesh; point cloud

1. Introduction

As one of the most important organs of the human body, the heart plays an essential
role in the entire blood circulatory system. Among the various tissues of the heart, the
left myocardium is the most important because it pumps blood sent to the entire body
via the left ventricle. In addition, many cardiac diseases, such as cardiac hypertrophy,
directly manifest as structural abnormalities of the left myocardium. The study of the left
myocardium, therefore, holds important pathological significance [1]. Three-dimensional
(3D) reconstructions of the left myocardium can be used to accurately calculate the left
ventricular volume and other related functional parameters, offering doctors a real three-
dimensional sense to assist in the diagnosis and treatment of heart diseases, especially when
used with medical virtual reality (VR). However, 3D reconstructions of the left myocardium
present challenges due to individual differences and because the heart is constantly moving,
which is a personalized variable.

1.1. Related Works

For 3D modeling of the left ventricle, traditional methods can be roughly divided
into two categories. The first is the use of professional modeling software, such as Maya,
AutoCAD, etc., to perform 3D modeling of the heart. However, these methods require
modeling personnel to have professional knowledge of computer graphics. In addition,
the shape parameters of some irregular soft tissues are too small to be captured, and the
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accuracy of the model largely depends on the professional experience of the operator. The
second method is to perform 3D modeling on acquired two-dimensional cardiac slices (such
as CT images, MRI images, etc.) using a specifically designed reconstruction algorithm.
These algorithm-based modeling methods can be further subdivided into model-based
and non-model-based approaches. Model-based algorithms use a prior model to deform
and approximate the shape of the target object. The model is generally a statistical model
generated from many acquired data sets. The typical representative methods of this division
include the active shape model (ASM) [2] and the active appearance model (AAM) [3] and
their improvements. In the ASM model, the average model of the training data is obtained
through Procrustes analysis. The weight parameters are then changed so that the average
model approximates the surface of the target object. However, the disadvantage of the ASM
is that it does not consider the variations in gray levels across different images, whereas
the AAM is an improvement of the ASM, which not only considers the shape information
but also takes the gray-level information of the image into account [4]. In practice, the
accuracy of the model-based algorithms largely depends on how similar the shape of the
target object is to the average model, so a model reconstructed using these methods usually
lacks general applicability.

On the contrary, non-model-based methods do not rely on any prior shape information;
the reconstructed 3D model is completely dependent on the medical image data. Represen-
tative algorithms include contour reconstruction, finite element, and marching cubes (MC).
For example, Gonzales et al. [5] used a finite element algorithm to reconstruct the atrium
of the heart in 3D space, where 142 finite elements were used for the reconstruction of the
left atrium, and 90 finite elements were used for the reconstruction of the right atrium.
Nugroho et al. [6] reconstructed a 3D heart model using rendering technology and the MC
algorithm based on 2D cardiac CT images. The above algorithms consist of hand-designed
reconstruction rules. For some methods that cannot be expressed using mathematical
formulas, the generalization ability of the model is inevitably restricted. In addition, the
accuracy of reconstructed results also depends on the image data.

In recent years, the powerful representation and learning ability of deep learning
techniques have attracted researchers to apply them in the field of 3D reconstruction.
Eigen et al. [7] applied deep learning to the field of 3D reconstruction for the first time.
They directly estimated the depth of a single image with the help of a neural network. The
proposed network consists of two parts: one is used to estimate the overall structure of
the scene, whereas the other uses local information to refine the prediction results of the
first part. It then applies the scale-invariant error function as the loss function to train the
entire network.

According to the geometric representation of the reconstructed model, deep-learning-
based 3D reconstruction can be roughly divided into three categories: voxel-based, point-
cloud-based, and triangular-mesh-based. Voxel-based reconstruction algorithms directly
extend the correlation operations from 2D images to 3D voxels. For example, Choy et al. [8]
proposed a 3D-R2N2 model for 3D reconstruction from single or multiple 2D images. The
model consists of three parts: an encoder, a 3D LSTM, and a decoder. The final reconstruc-
tion results are represented by voxels. However, in order to improve the accuracy of the
reconstruction, it is necessary to improve the resolution of the reconstruction results, and,
accordingly, the amount of computation and storage also greatly increases. Compared with
voxels, point clouds have the advantages of relatively small storage and easier manipula-
tion. Based on these advantages, Fan et al. [9] pioneered the application of point clouds in
3D reconstruction using deep learning. They proposed a point cloud generation network,
training it using the Chamfer distance loss and earth mover’s distance loss. However, since
the points in a point cloud are discrete, they cannot fully express the surface information of
the object.

As another representation of the reconstruction results, triangular meshes have the
advantages of being lightweight and preserving topology, in contrast to voxels. Further-
more, compared with point clouds, the points in triangular meshes are connected by edges,
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so the relationships among points are more compact, thus they can better represent the
surface information of the object. For example, Wang et al. [10] used an ellipsoid triangle
mesh as the initial triangular mesh. The constructed network is divided into two parts:
one part is used to extract image features, whereas the other is used to deform the triangle
mesh. According to the intrinsic matrix of the camera, the vertices of the triangular mesh
are projected onto the feature map of the image. The image features corresponding to
the vertices of the triangular mesh are then obtained to assist in the deformation of the
initial triangular mesh. In view of the advantages of triangular meshes, this paper also uses
triangular meshes to reconstruct the left ventricle from MRI slices.

Compared with traditional methods, a model constructed by deep learning usually
needs a large data set and complex training processes. Some methods tried to combine two
above categories. For example, Bhalodia et al. [11] proposed a general framework by com-
bining statistical shape modeling and deep learning, which can directly model raw images
in a 3D space. The network generates an M-dimensional vector from the original image
for subsequent reconstruction. This M-dimensional vector obeys a Gaussian distribution,
and correspondingly, there is an average value in the distribution. However, as mentioned
above, the accuracy of the reconstructed model by such model-based algorithms is affected
by the similarity of the target object to the average model [12]. Some other interesting
methods have also been proposed to generate meshes directly from 2D images [13].

1.2. Motivation and Contribution

Based on the above analysis, a non-model-based left myocardium 3D reconstruction
algorithm is proposed in this paper by designing an iterated residual graph convolution
neural networks. The initial triangular mesh is obtained directly from a coarse result
generated based on 3D segmentation images. The obtained mesh is then deformed using
a residual graph convolutional neural network. Meanwhile, a point feature extraction
module is proposed to extract the corresponding point cloud of initial triangular mesh to
obtain the characteristic point cloud. Feature fusion with the points in the mesh is then
performed to assist the mesh deformation. In an iterative manner, the triangular mesh is
adjusted for a better representation of the left myocardium.

Specifically, the main contributions of the proposed method are as follows.
(1) A deep-learning-based approach is applied to the left myocardium 3D reconstruc-

tion from MRI slices. The specific residual graph convolution neural network is designed
towards mesh deformation with iteration. In 3D reconstruction tasks, the mainstream
is based on explicit approaches such as marching cubes or implicit approaches such as
Poisson-based reconstruction. However, these methods do not incorporate the point’s
feature to guide the mesh deformation. The proposed model focuses on the deep feature
learning approach to drive the mesh deformation, making the reconstructed result robust
to a variety of shapes and sizes of the left myocardium across different subjects.

(2) A two-stage mesh generation is designed to build a personalized surface of the
left myocardium. In the coarse deformation step, the Cubify algorithm [14] is adopted
to generate the initial triangular mesh. Compared with the standard marching cubes
algorithm, the Cubify approach is simple and fast because it directly converts a voxel into
a triangular mesh with fixed triangular faces, edges and vertices. However, the initial
triangular mesh obtained by this algorithm is full of sharp edges and corners, and even
voxe-wise steps, which do not precisely reflect the real structure of the surface. Therefore,
in the fine deformation step, the initial triangular mesh is deformed using a residual graph
convolutional neural network to correct the position of each vertex in an iterated manner.

(3) A vertex feature learning module is built to assist the mesh deformation of the left
myocardium. The characteristics of the initial points are learned by an encoder–decoder
neural network to represent the skeleton of the left myocardium at different receptive fields.
In this way, the shape and local relationship of the left myocardium expressed by the deep
feature is helpful for subsequent mesh deformation. After that, the corresponding deep
feature associated with the vertices on the initial triangular mesh is fused with those on the
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input triangular mesh of each module in the residual graph convolutional neural network
to guide the mesh deformation.

The remainder of this paper is organized as follows. Section 2 describes the details of
the proposed framework, which includes initial mesh generation, vertex feature learning
and iterated mesh deformation modules using a residual graph convolutional neural
network. Section 3 presents the experimental results including data set, experimental
platform, evaluation metric, parameter settings, experimental results and discussion with
comparison to related state-of-the-art methods. Finally, Section 4 concludes this work and
offers its future research potential.

2. Proposed Method
2.1. Overview

The overall framework of the proposed 3D reconstruction of the left myocardium is
shown in Figure 1. The method is based on residual graph convolutional network with
deep feature learning and cascaded refinement. Specifically, the framework consists of
three modules as follows.

Figure 1. Overall framework of proposed 3D reconstruction of the left myocardium from MR images.

(1) Initial mesh generation module: It builds an initial mesh of the left myocardium
using an UNet++ 2.5D segmentation and the Cubify algorithm on the stacked 2D segmented
images.

(2) Vertex joint feature learning module: The encoder–decoder neural network is
designed to extract the joint deep features of the point cloud and multiple CNN feature
maps corresponding to the initial triangular mesh to obtain a skeleton of vertices.

(3) Mesh deformation module: An iterated residual graph convolutional neural net-
work is designed to gradually deform the initial triangular mesh. Meanwhile, the hybrid
deep features obtained in the vertex joint feature learning module are added to enrich the
features of vertices in each intermediate triangular mesh for obtaining a better reconstruc-
tion. As a result, the mesh is rapidly refined with each iteration.

In the following subsections, the details of these modules are presented.
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2.2. Initial Mesh Generation Module

The geometric structure of the left myocardium varies widely across different people.
Even in the same subject at diverse time points of cardiac motion, the shape of the left my-
ocardium muscle changes remarkably. To handle this challenge, the structure of triangular
meshes instead of voxels from the 2.5D segmentation results of the left myocardium was
suitable to represent the surface.

Typical segmentation methods include traditional multi-atlas label fusion or deep-
learning-based methods. Since our work focuses on the 3D reconstruction of the left
myocardium, we directly applied the well-known UNet++ based algorithm [15] to produce
the segmentation result. Considering the computational burden of 3D convolution in the
network, we adopted a (2 + 1)D convolution strategy that focuses on the image to be
segmented but with the addition of the two nearest slices in the stack. In this way, the
obtained reconstruction results were specific to the individual’s anatomy. In order to obtain
the initial triangular mesh faster and easier, the Cubify algorithm [14] was adopted to
convert each voxel into a triangular mesh with 12 triangular faces, 18 edges and 8 vertices.
Post-processing on the mesh to simplify the triangular facets was then performed according
to the following rules: Common faces of adjacent triangle meshes were deleted, common
vertices were merged into one vertex, and common edges were merged into a single edge.
After that, deformation of the obtained initial triangular mesh was undertaken to obtain
the refined reconstruction result.

2.3. Vertex Feature Learning Module

The initial triangular mesh obtained by the Cubify algorithm can interpret the shape
characteristics of the object; however, it is difficult to accurately recreate the surface of the
left myocardium because the mesh contains many abrupt edges and corners. To solve this
problem, we propose to optimize the initial surface using a mesh deformation technique
based on a graph convolutional neural network. To deform the shape of triangular mesh in
the correct direction, it is essential to learn the approximate three-dimensional structural
features of the object from its corresponding point cloud of the initial triangular mesh.

Compared to data with regular structure such as images, point cloud data have
some undesirable characteristics: irregularity, disorder, and permutation invariance [16–18].
These features all bring difficulties to the processing (e.g., feature extraction, object classifi-
cation) of point cloud data. To handle this, Huang et al. [19] converted point cloud data
into voxels, then fed the resulting voxel data into a 3D fully convolutional neural network
for voxel-level segmentation. After that, it was assumed that the points located in the
same voxel have the same category, thus obtaining the characteristics of each point in the
point cloud. However, such methods are limited by the resolution of voxel data and easily
introduce artifacts during the voxelization process. High-resolution voxel data require
more storage and more computation cost, while lower resolution lead to loss of accuracy.

On the other hand, Lawin et al. [20] used a virtual camera to project point cloud data
onto a two-dimensional plane from different angles so as to obtain multiple image data
in different angular directions. After that, an image segmentation network was used to
process the obtained image data. Finally, the image segmentation results of different angles
and directions were fused to obtain the features of each point in the 3D point cloud data.
Unfortunately, such methods cannot fully exploit the underlying geometric and structural
features of 3D point cloud data, resulting in information loss.

To overcome the limitations above, we introduce an encoder–decoder neural network
to learn the features in point cloud. The flowchart is depicted in Figure 2. The idea is to
learn the features of the skeleton of the left myocardium at different receptive fields. Since
the network uses a set of key points in the point cloud to represent the shape of the left
myocardium, it exhibits good robustness to the noise in the point cloud, the absence of
some points in the point cloud, etc. In the encoder layer, the initial vertices of mesh are
regarded as a point cloud, and the key points and their features are extracted step by step
through hierarchical downsampling, which is used to represent the significant features of
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the left myocardium. In the decoder layer, the key points restore the point cloud to the
number of original vertices through interpolation processing and spread the key point
features back to the original point set based on jump connections for generating the depth
feature of the vertices, which contains the multilevel receptive field information of the
triangular mesh to guide the mesh deformation effectively in the subsequent process.

Our vertex feature learning is similar to the encoding method of PointNet++ [21],
which is an improved version of the PointNet network [16]. It can directly process the
3D point cloud and fuse the local and global features for object classification, component
segmentation, scene segmentation and other tasks. Specifically, the learning structure
consists of several point set abstraction levels. At each level, a set of points is extracted
and abstracted to produce a new set with fewer elements by utilizing three key layers: a
sampling layer, a grouping layer and a PointNet layer.

The sampling layer selects a set of points from input points, which defines the cen-
troids of local regions. Considering the geometric character of the left myocardium, we
use geometric subsampling instead of uniform sampling (such as iterative farthest point
sampling) to choose a subset of points. The key idea of geometric subsampling is to pay
more attention on the region with larger curvature. It consists of three steps. The first step
is the pseudo-curvature estimation. The kNN neighborhood is built for each point and
the angle between the center point and its neighbor is calculated. The larger the curvature
in a region, the bigger the angles, so the angles can be taken as a coarse representative of
curvatures in this region. The second step is region separation. Each point in the whole
region is divided into two parts according to their angles. If the angles are larger than a
threshold (such as 5 degrees), the corresponding points are put into a geometric region;
otherwise, the points are put into a flat region. The third step is the respective uniform
sampling in these regions. In comparison to iterative farthest point sampling, our proposed
geometric subsampling can offer more points in the regions with significant geometric
structure, while uniform sampling can be performed in local regions according to the
requisite of the sampling number. Additionally, this sampling shows high stability and
computational efficiency in comparison to pure curvature estimation and sampling.

The grouping layer intends to construct local region sets by adding local supportive
features around each point in the subsampling set. For example, suppose K is the number
of points in the neighborhood of a centroid point; after grouping, the size enlarges by K
times, while each group corresponds to a local region.

The PointNet layer adopts a mini-PointNet to encode local region patterns into feature
vectors. In this layer, each local region in the output is abstracted by its centroid and
local feature that encodes the centroid’s neighborhood. In practice, the point-to-point
relationship in the local region is captured by using relative coordinates together with point
features. This kind of relationship can be used to guide the mesh deformation of the left
myocardium.

After this hierarchical point set abstraction processing, the network extracts deep
features on the sampling points with better coveragence of the entire point set given the
same number of centroids (shown as red points in Figure 2). By concatenating the original
point information, the vertex feature learning module outputs representative features
associated with each point (shown as cyan points in Figure 2).
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Figure 2. Schematic of the vertex feature learning.

2.4. Iterated Mesh Deformation Module
2.4.1. Residual Graph Convolution Network

Triangular mesh data can be regarded as a kind of graph-structured data set because
the complex data dependencies exist among multiple entities or activities. It can therefore be
organized and operated in a manner related to processing graph-structured data [10,22,23].
Recently, graph convolutional networks (GCNs) have been proposed to work on graph-
structured data within the deep neural network paradigm [24,25]. The residual graph
convolution operation [26,27] is also introduced to process the triangular mesh in our
model. The basic formula of the graph convolution operation is

fnew
k = ReLU(w0fk + ∑j∈N(k) w1fj), (1)

where fk is the feature of the kth vertex in the triangular mesh, N(k) is the neighborhood set
of the kth vertex, fnew

k is the learned feature of the k-th vertex after the graph convolution
operation, and w0 and w1 are the parameters to be learned.

The structure of the residual graph convolution network in our model is shown in
Figure 3. The key idea relies on borrowing feature support in the neighborhood. Specifically,
each vertex in the triangular mesh propagates its own features along the edges to the
points in its neighborhood and borrows the features of the vertices in its neighborhood
to refresh its own features, like the convolution operation in image data processing [28].
The neighborhood of each vertex in the triangular mesh is equivalent to the receptive
field of each pixel in the feature map obtained by the image convolution operation. In the
processing of image data, to obtain a more abstract feature map and obtain better results,
the receptive field of each pixel in the map enlarges when increasing the depth of the neural
network, so that the underlying features are more abundant. The convolution of the graph
also adopts a similar strategy.

Increase in the depth of the graph convolutional neural network causes the features
of each vertex in the triangular mesh to become more abundant. It can obtain better
reconstruction results because the mapped underlying triangular mesh has more structural
features. However, in image data processing, deepening the network structure is prone
to gradient explosion. This problem can be solved by introducing skip layer connections
into the network structure to form a residual structure. Motivated by this, a residual
graph convolution by introducing skip layer connections based on the graph convolution
structure is utilized in the proposed module. Specifically, as shown in Figure 3, the feature
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learning of the input triangular mesh is carried out by using the two-level convolution
of graphs to update its vertex features, and then the updated triangular mesh features
are connected with the input mesh features by residual convolution so as to obtain more
abundant triangular mesh structural features.

Figure 3. Flowchart of the residual graph convolutional network (ResGCNet).

2.4.2. Iterated Deformation Module

The residual graph convolution network designed in this paper includes three mod-
ules, each of which is composed of three residual graph convolutions and one graph
convolution in series. The deformation result of the previous module is used as the input
of the next module. To constrain the deformation of the triangular mesh so that the shape
structure of the deformation result has little deviation from the left myocardium, the en-
coded features extracted by the vertex feature learning module from the initial triangular
mesh is fed to each iterated deformation module. After that, the skeleton point cloud is
up-sampled to obtain a feature point cloud with the same number of points as the initial
triangular mesh vertices. In the experiments, the feature of each point in the point cloud
is 128 dimensions. The feature point cloud is then fused with the vertices in the input
triangular mesh of each module to obtain better deformation results. The composition
of the deformation module is shown in Figure 4, where P represents the feature of each
point in the mesh vertex set obtained by the vertex feature learning module; Vi−1, Fi−1
are the position and feature of each vertex of the output triangular mesh in the (i− 1)th
deformation module, respectively, and Vi, Fi are their corresponding refined position and
feature in the ith deformation module.

Specifically, the fusion features of the vertices of the input triangular mesh are sent to
the graph convolution layer in advance for feature learning, and then the three cascaded
residual graph convolution layers are fed for depth feature extraction so as to update the
positions and features of the vertices of the triangular mesh. If only one deformation is
carried out, the reconstruction results are not satisfactory. Therefore, the idea of iteration to
take the current output triangular mesh as the next input is employed, and the result of
vertex feature extraction is fused in the module. Then, the next generation of deformation
with the new triangular mesh fusion feature as the input is performed. If this step is
repeated, the resulting triangular mesh becomes angled towards the actual result for
three-dimensional reconstruction of the left myocardium.

Figure 4. Composition of the ith mesh deformation module.
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2.4.3. Loss Function

It is difficult to directly compare the differences between two meshes. Therefore,
similar to the mesh generation method exploiting geometric structure for graph-encoded
objects [29], the same number of points in the reconstructed triangular mesh and mesh label
surface is taken, and their differences are calculated to represent the difference between
the meshes. Three loss functions are designed in this paper, namely the Chamfer distance,
the normal vector distance, and the shape regularization [10]. Among them, the Chamfer
distance is used to improve the similarity between point clouds, the normal vector distance
is to make the surface of the object smoother, and the shape regularization is to prevent
mesh degradation.

Suppose P and G are the point clouds sampled on the reconstructed grid and on the
corresponding grid label, np and ng are the normal vectors of point p ∈ P and g ∈ G, re-
spectively, then the Chamfer distance and the normal vector distance are defined as follows:

Lc(P, G) = ∑
(p,g)∈NP,G

‖p− g‖2/Ω(P) + ∑
(g,p)∈NG,P

‖g− p‖2/Ω(G), (2)

Ln(P, G) = − ∑
(p,g)∈NP,G

|np · ng|/Ω(P)− ∑
(g,p)∈NG,P

|ng · np|/Ω(G), (3)

where Ω(P) and Ω(G) represent the number of points in the point clouds P and G,
respectively. ‖p − g‖ and ‖g − p‖ both denote the distance between two points. For
∀p ∈ P, the closest g ∈ G has to be found and then the set of corresponding points in
P can be represented as NP,G. NG,P is defined in the same way. Specifically, NP,G ={
(p, arg ming ‖p− g‖) : p ∈ P

}
; NG,P =

{
(g, arg minp ‖g− p‖) : g ∈ G

}
, so the expres-

sion for shape regularization is

Le(V, E) = ∑
(v,v′)∈E

‖v− v′‖2/Ω(E), (4)

where E represents the edge set in the reconstructed triangular mesh, and Ω(E) is the
number of edges. The mesh deformation network has a total of several deformation
modules, and each deformation module has a corresponding loss function. The loss
function of the deformation modules is the weighted sum of the above three similarity loss
terms in each iteration:

Lloss(P, G) = Lc + λ1Ln + λ2Le. (5)

In our experiments, the two weighting parameters λ1 and λ2 were empirically set.

3. Experimental Results and Discussion
3.1. Data Set and Experimental Platform

The data set in this experiment consisted of cardiac MR volumes of 20 subjects obtained
from real clinical institutions. The acquisition equipment of these images included Siemens
(Munich, Germany) (Avanto 1.5T, Espree 1.5T, Symphony 1.5T) and Philips (Amsterdam,
The Netherlands) (Achieva 1.5T, 3.0T, Intera 1.5T). The image size ranged from 160× 288 to
512 × 512, and the number of slices along the z-axis of each subject ranged from 256 to 512.
For each subject, the left ventricular myocardium tissue was labeled from images by two
trained students. Their results were cross-validated by a clinical expert. The total labeling
process requires nearly 50 h. In our experiments, 10 cases were randomly selected as the
training data set and augmented to 80 cases by geometric operations such transformation,
scaling and rotation. The augmented data set was then divided as follows: 60 were used
for training, and the remaining 20 were used for validation. After these 10 subjects were
randomly selected from the original data set, the remaining 10 subjects were used as the
test data set.
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The experimental platform was an Ubuntu 64-bit PC with a 2.0 GHz Intel CPU and a
48 GB RAM. The GPU was NVIDIA RTX 2080Ti with 11 GB of memory. The programming
environment included Anaconda 5.0.1 (Python 3.6), TensorFlow1.4 and PyTorch1.2.0.

3.2. Evaluation Metrics

Because it is difficult to directly compare the difference between meshes, 90,000 points
are sampled on the reconstructed triangular mesh and mesh labels. The difference between
the two obtained point clouds is then used to represent the mesh difference. The point
cloud sampled on the reconstructed triangular grid is called the predicted point cloud,
while those sampled on the corresponding grid label are called the label point cloud. The
evaluation metrics used in the experiments include the Chamfer distance (Chamfer), the
normal consistency (Normal) and the F1τ score [30].

To calculate the score, the precision Vτ
precision and recall Vτ

recall between the predicted
point cloud and the labeled point cloud are first calculated. The accuracy rate Vτ

precision
refers to the percentage of points whose distance from the label point cloud is less than the
threshold τ in the predicted point cloud. The recall rate Vτ

recall refers to the percentage of
points whose distance from the predicted point cloud is less than the threshold τ in the
label point cloud. The F1τ score is the harmonic mean of precision between Vτ

precision and
recall Vτ

recall , as shown in the following equation:

F1τ =
2.0×Vτ

precision ×Vτ
recall

Vτ
precision + Vτ

recall + δ
, (6)

where δ is a small constant to stabilize the calculation (e.g., δ = 10−5 ). Among the above
evaluation indicators, for the Chamfer distance, the smaller the value, the better the results.
For the other two indicators, meanwhile, larger values indicate better results. However,
these evaluation indicators cannot fully reflect the quality of the 3D reconstruction results.
Therefore, to evaluate the quality of the reconstructed mesh more comprehensively, the
experimental results were further analyzed with a qualitative score.

3.3. Parameter Settings

The implementation of the proposed model basically followed the backbone of the
PointNet++ [21] and PointNet [16] networks. Although their tasks intrinsically differ from
those of our model (classification and segmentation vs. reconstruction), their models
present the graph convolutional neural network in a clear and efficient manner. The pre-
trained model of PointNet++ was partially applied and the parameters were set to be
as close as possible. Some key differences are stated as follows. In our experiments, the
number of epochs was set to 15 and the batch size was one during the training process;
that is, only one 3D segmentation result of the left myocardium was triangulated each
time and sent to the mesh deformation network. In the network’s backward propagation
computation, the Adam optimizer was used to update the parameters, in which the initial
value of the learning rate was set to 5.0× 10−5, and the updating method of the learning
rate adopted a multi-step adjustment strategy.

Besides the parameters needed to be learned during the training, there are two key
parameters (the weight λ1 of normal loss term Ln(P, G) and the weight λ2 of shape reg-
ularization loss term Le(V, E)) in the total loss function. Since the Chamfer distance
loss function Lc(P, G) is taken as the reference, we computed their values in the valida-
tion data set to estimate the coarse ratio and then chose λ1 from the searching range of
{0.001, 0.005, 0.01, 0.015, 0.02} and λ2 from the searching range of {0.05, 0.1, 0.15, 0.2, 0.25}.
Figure 5 presents the Chamfer distances corresponding to different parameters and it is
shown that when λ1 is 0.01 and λ2 is 0.2, the Chamfer distance reaches its minimum, so
they were chosen as the parameters in the following experiments.



Sensors 2023, 23, 7430 11 of 19

Figure 5. Weight settings of normal loss term λ1 and shape regularization term λ2.

3.4. Experimental Results and Analysis
3.4.1. Overall Experiments and Analysis

To verify the effectiveness and characteristic of the proposed method, it was com-
pared with three classical reconstruction algorithms, namely the marching cubes (MC)
reconstruction algorithm [6,31], the Poisson surface reconstruction algorithm [32] and the
Hermite radial basis functions (HRBFs) surface reconstruction algorithm [33,34]. MC is a
well-known meshing algorithm to extract a polygonal mesh out of an isosurface from a
three- or two-dimensional scalar field. It is primarily used for 3D modeling because of its
simplicity. Considering that the original MC algorithm often produces many fragments of
isosurfaces, we adopted an improved version with an adjacent lookup table and random
sampling [35]. This serves as a baseline in our experiments.

The Poisson surface reconstruction algorithm is a famous implicit-function-induced
reconstruction approach that solves for an approximate indicator formulation of the in-
ferred solid whose gradient best matches the input normals. The output scalar function,
represented in an adaptive octree, is then iso-contoured using adaptive marching cubes. It
is a representative of fitting-based 3D reconstruction methods in our experiments.

The HRBF surface reconstruction algorithm is another well-known implicit-function-
based method for reconstructing surfaces from scattered Hermite data points. A recent
improved version is a closed-form formulation to construct HRBF-based implicitly by a
quasi-solution to approximate the exact solution [34]. It is taken from an overall comparison
for all these methods. This approach can automatically adjust the support sizes of basis func-
tions to hold the error bound of a quasi-solution and then to generate an implicit function
from positions and normals of scattered points without taking any global operation.

Table 1 reports the results of quantitative comparison among different reconstruction
algorithms, where “*” indicates there is difference in mean between the proposed algorithm
and the compared one in a t-test at a 95% significance level. The reconstruction effect of
the proposed method is better than that of MC and Poisson models in the five metrics. It
closes to that of Poisson in terms of the normal consistency (Normal), and HRBF in terms
of the Chamfer distance (Chamfer), F10.3 and F10.5 evaluation index, which indicates that
the proposed method is superior. From the number of vertices and the number of triangles
in the 3D reconstruction results, it can be seen that the number of vertices and triangles
in the reconstruction results of the Poisson algorithm and the HRBF algorithm is about
two times that of the reconstruction results of the proposed method. This requires larger
storage space and higher hardware performance.

Figure 6 illustrates left myocardium reconstruction results of four individuals using the
four compared algorithms. It is seen that they can all well express the geometric structure
of the left myocardium as a whole. It can be seen that MC builds a much coarser result
than other methods, especially on the second and fourth individuals: the surfaces have
many parts full of non-smoothness that never appear in real cardiac tissues. In contrast,
the Poisson and the HRBF appear more reasonable in these cases and their surfaces are
remarkably smooth without sharp corners. However, in terms of the preservation of
local geometric structure, our proposed method presents advantages. For instance, in the
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reconstruction of the third individual, the right part of the left myocardium by our method
smoothly expresses the geometric variety while the other three methods produce some
convex closure.

Table 1. Quantitative comparison of the reconstruction results of different algorithms.

Method Chamfer Normal F10.1 F10.3 F10.5 Ω(V) Ω(F)

MC
0.164 * 0.718 * 34.654 * 83.717 * 92.665 * 43,431 86,822
±0.034 ±0.05 ±1.478 ±1.319 ±1.344 ±1348 ±2712

Poisson 0.137 * 0.770 * 36.904 * 85.167 * 94.249 * 178,821 357,628
±0.001 ±0.007 ±0.691 ±0.589 ±0.842 ±17,985 ±35,984

HRBF 0.136 0.766 * 37.486 * 85.852 95.489 271,478 107,455
±0.001 ±0.007 ±0.95 ±0.768 ±0.791 ±40,197 ±49,747

Proposed
0.133 0.789 39.362 86.058 95.834 45,769 91,078
±0.004 ±0.005 ±0.848 ±0.915 ±0.682 ±1416 ±2547

F1τ : The harmonic mean of precision between Vprecision and recall Vrecall with a threshold τ. Ω(·): The number of
points in a point cloud.

Figure 6. Examples of 3D left myocardium reconstruction results on four different individuals by
compared algorithms, where the blue arrows denote the better reconstructed regions by our method.
C: Chamfer distance; N: Normal value.
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3.4.2. Ablation Experiments and Analysis

The proposed method includes multiple functional modules such as deformation,
point deep feature extraction and residual graph convolution networks. To verify the
rationality and functionality of each module, three variant methods were built by removing
the deformation, deep feature learning and residual connection in ResGCNet modules
independently. Three ablation experiments were then carried out under identical experi-
mental conditions.

Table 2 reports the quantitative comparative reconstruction results of these three
variant methods and the proposed one. The proposed method has the smallest Chamfer
distance, followed by Variant3 that removes the residual graph convolution network
module, and the worst is Variant2 that removes the deformation module. Regarding the
Normal score, the proposed method obtains the largest measure, while Variant2 obtains
the smallest, indicating that the deformation module can guide the deformation of the
triangular mesh.

Table 2. Quantitative comparison of the reconstruction results of three variants and the proposed
method.

Method
Module

Chamfer Normal F10.1 F10.3 F10.5

Deformation Deep Feature ResNet

Variant1 % X X
0.804 0.606 7.285 31.37 54.06
±0.056 ±0.007 ±0.235 ±1.174 ±1.206

Variant2 X % X
2.011 0.578 6.269 25.737 46.191
±0.173 ±0.03 ±0.34 ±1.188 ±1.359

Variant3 X X %
0.294 0.637 30.499 80.285 89.135
± 0.07 ±0.027 ±1.339 ±1.681 ±1.175

Proposed X X X
0.133 0.789 39.362 86.058 95.834
±0.004 ±0.005 ±0.848 ±0.915 ±0.682

Figure 7 further illustrates the 3D reconstruction results of the three variants and
the proposed one. It can be seen that after removing the point deep feature extraction
module, the reconstruction result cannot maintain the complete shape and structure of
the left myocardium well. This module processes the point cloud of the initial triangular
mesh to obtain the skeleton feature of the point cloud, which has better robustness to the
lack of points in the point cloud and external noise. Since the point cloud of the initial
triangular mesh can roughly express the three-dimensional structural features of the left
myocardium, the skeleton feature of point cloud can be used to constrain the deformation
of triangular mesh, so that the deformation does not cause a large deviation. To obtain a
better reconstruction result, the obtained result after removing the deformation module is
the initial triangular mesh. Since the initial triangular mesh is directly obtained from the
3D segmentation result of the cardiac images, it has the shape and structure characteristics
of the left myocardium. However, the initial triangular mesh does not reflect the surface
information of the left myocardium with great fitness, which is also a disadvantage of using
voxels to represent the 3D reconstruction results.

The reconstruction results by removing residual connections are similar to those
obtained from the full model, but there are still some differences. When deepening the
network structure, the use of residual connections can prevent exploding gradients. In
image data processing with regular structure, deepening the network structure can increase
the receptive field of a pixel and make the underlying features mapped by the pixel
more abundant so as to obtain better results. Here, by deepening the network structure,
the features represented by each vertex in the triangular mesh are more abundant, and
more structural features of the underlying triangular mesh are mapped to obtain better
reconstruction results. Meanwhile, a graph residual convolution module is added to the
network structure to avoid gradient explosion.
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Figure 7. Examples of 3D reconstruction results of the proposed method and three variants.

3.4.3. Qualitative Experiments on Surface Refinement

The proposed method can be coarsely regarded as an improvement of initial iso-
surface mesh by designing an iterated residual graph convolutional neural network to
drive the mesh deformation. To investigate the rationale of the proposed mesh deformation,
a qualitative experiment was further conducted to evaluate the difference between the initial
triangular mesh and the final mesh. Considering that the ground truth of reconstruction
is difficult to obtain, their distances were directly computed as a form of histogram and
displayed as different colors on the final mesh.

Figure 8 demonstrates the experimental results on four individuals. The initial recon-
struction surfaces in the left column are coarse and full of voxel-wise steps, while after the
mesh deformation processing by iterated residual graph convolution network, the final
surfaces look much more smooth and the geometric structures are well preserved. Their
difference in the right column is consistent in most regions, indicating that the proposed
method improves the mesh quality in a global way and has remarkable improvement on
the initial 3D reconstructed mesh.
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Figure 8. Examples of reconstruction difference between the initial mesh, the final mesh by proposed
method and their distribution of distances.

Figure 9 demonstrates an example of iterated deformation process from the initial
mesh by the proposed algorithm in another viewpoint. The shape of left myocardium
is hardly observed from the initial reconstruction mesh in the left column by the Cubify
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algorithm. The details are totally missing and only a rough outline can be inferred. After the
first iteration by the mesh deformation processing using iterated residual graph convolution
network, some regions have changed to present a similarity to the realistic surface; however,
there are many sharp and matte regions. During the second, third and fourth iterations,
the number of these regions is gradually decreasing, while the whole region becomes
increasingly smoother and the positions of vertices have more uniformity in comparison to
the results by the previous iterations. From this example, it can be seen that the vertices are
adjusted over iterations, and deep residual graph convolution network jointly with vertex
feature learning can greatly contribute to the final reconstructed shape.

Figure 9. Example of iterated deformation process from the initial mesh to the final shape by the
proposed method.

3.4.4. Computational Cost

The proposed method consists of several parts such as segmentation, Cubify, iterated
deformation and different parts that require different time to implement. During the
experiment, the computational cost of each part is performed under the same experimental
conditions as much as possible. The results of average test time by compared methods are
reported in Table 3:

Table 3. Average reconstruction time by the proposed method and compared algorithms (ms/subject).

Part of Proposed Method
MC Poisson HRBF Variant1 Variant2 Variant3

Segmentation Cubify Deformation

Test time 526 610 1478 6218 28,476 59,374 1427 2148 2295

As can be seen from the table above, the reconstruction speed of the proposed algo-
rithm achieved a leading advantage with 2614 ms and the iterated deformation taking
about 56.5% of the time. In particular, the Cubify initial reconstruction takes less than one
second than the improved MC algorithm that takes about 6200 ms. In traditional methods,
HRBF achieves more accurate performance than MC and Poisson, but with a computational
cost of nearly 59,000 ms, significantly longer than MC’s 6200 ms and Poisson’s 2800 ms.
The main reason for this expensive time cost is due to the HRBF interpolant. The perfor-
mance can be improved by using the compactly-supported RBFs that change the global
interpolation effect of the interpolant [33]. In contrast, the proposed algorithm has rather
high computational efficiency due to the intrinsic characteristic of deep residual graph
convolution learning technique. The three variant algorithms also require less time than
traditional methods, and Variant1 only requires almost 1400 ms to complete 3D reconstruc-
tion, remarkably less than the other two variants. However, its reconstruction quality is
much worse because it does not incorporate the iterated deformation module.

3.4.5. Limitations and Improvement Directions

In the vertex feature learning module, a feature extraction structure similar to Point-
Net++ is employed. Due to the difference in the structure of the left myocardium, there
may be uneven density distribution for the point cloud formed by the vertices of the input
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triangle mesh, which causes the important features of some key points to be lost during
the processes of sampling and grouping. In the future, adaptive density learning strategy
could be introduced to assign more suitable scale neighborhoods to key points in the
grouping process so as to achieve better feature extraction results. This will be beneficial in
guiding the deformation of the triangular mesh in subsequent steps to achieve better 3D
reconstruction results of the left myocardium.

4. Conclusions and Future Work

This paper presents a deep learning method for personalized 3D reconstruction of
the left myocardium from MRI images. To better handle the variety across individuals,
the algorithm directly obtains the corresponding initial triangular mesh from the 3D
segmentation results of left myocardium images. Then, a residual graph convolutional
neural network is designed to refine the initial triangular mesh in an iterated manner.
The learned vertex features that encode the local region are incorporated to the mesh
deformation network at each iteration so as to assist the deformation towards the right
direction. As a result, the reconstructed surface is a geometrically valid model meeting
the requirements of personalized left myocardium. Experimental results validate the
performance of the proposed approach with quantitative and qualitative comparison to
some state-of-the-art algorithms.

It should be noted that the quality of the left myocardial segmentation results can
directly affect the performance of the final reconstruction. Although the powerful deep-
learning-based segmentation approach is employed, the segmentation and reconstruction
are separated processing steps in the proposed model. In future study, the 3D segmentation
and 3D reconstruction of the left myocardium will be integrated as a whole to improve the
reconstruction results.
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