Adaptive Neural Backstepping Terminal Sliding Mode Control of a DC-DC Buck Converter
Abstract
:1. Introduction
- (1)
- The DHLRNN can be used to estimate complex nonlinear functions due to its strong learning ability and compensation accuracy. To handle the model uncertainty and improve the tracking performance of the buck converter, the DHLRNN is designed to estimate the nonlinear function of the converter system, and the nonlinear function being estimated integrates state variables and model parameters. The DHLRNN possesses strong learning capability to approximate the nonlinear function;
- (2)
- The ABTSMC is introduced to ensure finite-time convergence and reduce the complexity of the control design. The switching control term can counteract the external disturbances and network approximation error, thus improving the steady-state accuracy and disturbance rejection performance.
2. System Description and Problem Statement
2.1. DC-DC Buck Converter Model
2.2. Backstepping SMC Design
3. Design of Adaptive Backstepping Terminal Sliding Mode Control Using DHLRNN
3.1. Structure of DHLRNN
- (1)
- Input layer: In this layer, each node will transmit input data to the subsequent layers, and the previous output value from the output layer will be fed back to the current input layer. The node output can be described as
- (2)
- First hidden layer: The output form of this layer adopts a nonlinear activation function , which can map the input signal to a high-dimensional space and extract signal features. The neuron feedback loop is constructed in this layer, and the previous output vector is connected to the current input nodes. Thus, the self-regulation capability of the neural network can be improved through the cyclic connections of the neurons. The node output is described as follows:
- (3)
- Second hidden layer: In the second hidden layer, the Gaussian function is also utilized here as the activation function to further implement dynamic mapping and extract signal features. The node output is described as follows:
- (4)
- Output layer: This layer has only one node, and each node output of the second hidden layer is connected to the output layer through the weights . The overall output of the neural network is calculated as
3.2. Controller Design and Stability Analysis
4. Experimental Results
4.1. Start-up Phase Analysis
4.2. Load Resistance Variations
4.3. Reference Voltage Variations
4.4. Input Voltage Fluctuations
4.5. Comparison Analysis and Summary
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Emadi, A.; Lee, Y.J.; Rajashekara, K. Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles. IEEE Trans. Ind. Electron. 2008, 55, 2237–2245. [Google Scholar] [CrossRef]
- Denniston, N.; Massoud, A.M.; Ahmed, S.; Enjeti, P.N. Multiple-Module High-Gain High-Voltage DC–DC Transformers for Offshore Wind Energy Systems. IEEE Trans. Ind. Electron. 2011, 58, 1877–1886. [Google Scholar] [CrossRef]
- Hassan, M.A.; Li, E.P.; Li, X.; Li, T.; Duan, C.; Chi, S. Adaptive Passivity-Based Control of dc–dc Buck Power Converter with Constant Power Load in DC Microgrid Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 2029–2040. [Google Scholar] [CrossRef]
- Sira-Ramirez, H.; Oliver-Salazar, M.A. On the Robust Control of Buck-Converter DC-Motor Combinations. IEEE Trans. Power Electron. 2013, 28, 3912–3922. [Google Scholar] [CrossRef]
- Ayop, R.; Tan, C.W. Rapid Prototyping of Photovoltaic Emulator Using Buck Converter Based on Fast Convergence Resistance Feedback Method. IEEE Trans. Power Electron. 2019, 34, 8715–8723. [Google Scholar] [CrossRef]
- Kanamarlapudi, V.R.K.; Wang, B.; Kandasamy, N.K.; So, P.L. A New ZVS Full-Bridge DC–DC Converter for Battery Charging with Reduced Losses Over Full-Load Range. IEEE Trans. Ind. Appl. 2018, 54, 571–579. [Google Scholar] [CrossRef]
- Du, H.; Jiang, C.; Wen, G.; Zhu, W.; Cheng, Y. Current Sharing Control for Parallel DC–DC Buck Converters Based on Finite-Time Control Technique. IEEE Trans. Ind. Inform. 2019, 15, 2186–2198. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, X.; Gao, Y.; Xu, R.; Wang, J.; Wang, Y.; Liu, J. Fixed-Time Sliding Mode Control for DC/DC Buck Converters with Mismatched Uncertainties. IEEE Trans. Circuits Syst. I: Regul. Pap. 2023, 70, 472–480. [Google Scholar] [CrossRef]
- Wang, B.; Ma, G.; Xu, D.; Zhang, L.; Zhou, J. Switching sliding-mode control strategy based on multi-type restrictive condition for voltage control of buck converter in auxiliary energy source. Appl. Energy 2018, 228, 1373–1384. [Google Scholar] [CrossRef]
- Peretz, M.M.; Ben-Yaakov, S. Time-Domain Design of Digital Compensators for PWM DC-DC Converters. IEEE Trans. Power Electron. 2012, 27, 284–293. [Google Scholar] [CrossRef]
- Park, H.H.; Cho, G.H. A DC–DC Converter for a Fully Integrated PID Compensator with a Single Capacitor. IEEE Trans. Circuits Syst. II: Express Briefs 2014, 61, 629–633. [Google Scholar] [CrossRef]
- Yan, W.T.; Ho, C.N.M.; Chung, H.S.H.; Au, K.T.K. Fixed-Frequency Boundary Control of Buck Converter with Second-Order Switching Surface. IEEE Trans. Power Electron. 2009, 24, 2193–2201. [Google Scholar] [CrossRef]
- Siew-Chong, T.; Lai, Y.M.; Tse, C.K.; Cheung, M.K.H. A fixed-frequency pulse width modulation based quasi-sliding-mode controller for buck converters. IEEE Trans. Power Electron. 2005, 20, 1379–1392. [Google Scholar]
- Siew-Chong, T.; Lai, Y.M.; Cheung, M.K.H.; Tse, C.K. On the practical design of a sliding mode voltage controlled buck converter. IEEE Trans. Power Electron. 2005, 20, 425–437. [Google Scholar]
- Wang, J.; Zhang, C.; Li, S.; Yang, J.; Li, Q. Finite-Time Output Feedback Control for PWM-Based DC–DC Buck Power Converters of Current Sensorless Mode. IEEE Trans. Control Syst. Technol. 2017, 25, 1359–1371. [Google Scholar]
- Olalla, C.; Queinnec, I.; Leyva, R.; El Aroudi, A. Robust optimal control of bilinear DC-DC converters. Control Engineering Practice 2011, 19, 688–699. [Google Scholar]
- Yang, J.; Li, S.Y. Sliding-Mode Control for Systems with Mismatched Uncertainties via a Disturbance Observer. IEEE Trans. Ind. Electron. 2013, 60, 160–169. [Google Scholar] [CrossRef]
- Tan, S.-C.; Lai, Y.M.; Tse, C.K. General design issues of sliding-mode controllers in dc-dc converters. IEEE Trans. Ind. Electron. 2008, 55, 1160–1174. [Google Scholar]
- Tan, S.C.; Lai, Y.M.; Tse, C.K. Indirect Sliding Mode Control of Power Converters Via Double Integral Sliding Surface. IEEE Trans. Power Electron. 2008, 23, 600–611. [Google Scholar]
- Repecho, V.; Masclans, N.; Biel, D. A Comparative Study of Terminal and Conventional Sliding-Mode Startup Peak Current Controls for a Synchronous Buck Converter. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 197–205. [Google Scholar]
- Wang, Z.; Li, S.; Li, Q. Discrete-Time Fast Terminal Sliding Mode Control Design for DC–DC Buck Converters with Mismatched Disturbances. IEEE Trans. Ind. Inform. 2020, 16, 1204–1213. [Google Scholar]
- Babes, B.; Mekhilef, S.; Boutaghane, A.; Rahmani, L. Fuzzy Approximation-Based Fractional-Order Nonsingular Terminal Sliding Mode Controller for DC–DC Buck Converters. IEEE Trans. Power Electron. 2022, 37, 2749–2760. [Google Scholar]
- Chung, C.W.; Chang, Y. Backstepping control of multi-input non-linear systems. IET Control Theory Appl. 2013, 74, 1773–1779. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, J.; Alcaide, A.M.; Lin, X.; Leon, J.; Vazquez, S.; Franquelo, L.; Wu, L. Advanced Control Strategies for DC–DC Buck Converters with Parametric Uncertainties via Experimental Evaluation. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 672, 5257–5267. [Google Scholar]
- Liu, L.; Zheng, W.X.; Ding, S. An Adaptive SOSM Controller Design by Using a Sliding-Mode-Based Filter and its Application to Buck Converter. IEEE Trans. Circuits Syst. I: Regul. Pap. 2020, 67, 2409–2418. [Google Scholar]
- Tran, D.T.; Ba, D.X.; Ahn, K.K. Adaptive Backstepping Sliding Mode Control for Equilibrium Position Tracking of an Electrohydraulic Elastic Manipulator. IEEE Trans. Ind. Electron. 2020, 67, 3860–3869. [Google Scholar]
- Alam, Z.; Roy, T.K.; Ghosh, S.K.; Mahmud, M.A. Control of DC–DC Buck Converters Using Robust Composite Backstepping and Integral Terminal Sliding Mode Approaches. IEEE J. Emerg. Sel. Top. Ind. Electron. 2023, 4, 866–877. [Google Scholar]
- Karamanakos, P.; Geyer, T.; Manias, S. Direct Voltage Control of DC–DC Boost Converters Using Enumeration-Based Model Predictive Control. IEEE Trans. Power Electron. 2014, 29, 968–978. [Google Scholar]
- Rodriguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.A.; Rojas, C.A. State of the Art of Finite Control Set Model Predictive Control in Power Electronics. IEEE Trans. Ind. Inform. 2013, 9, 1003–1016. [Google Scholar]
- Babazadeh, A.; Maksimovic, D. Hybrid Digital Adaptive Control for Fast Transient Response in Synchronous Buck DC–DC Converters. IEEE Trans. Power Electron. 2009, 241, 2625–2638. [Google Scholar]
- Xu, L.; Yao, B. Adaptive robust control of mechanical systems with non-linear dynamic friction compensation. Int. J. Control 2008, 81, 167–176. [Google Scholar]
- Zhao, Z.; Lu, W.; Davari, P.; Du, X.; Iu, H.H.C.; Blaabjerg, F. An Online Parameters Monitoring Method for Output Capacitor of Buck Converter Based on Large-Signal Load Transient Trajectory Analysis. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 4004–4015. [Google Scholar]
- Ka-Sing, L.K.; Shu-Hung, C.H. Dynamic hysteresis band control of the buck converter with fast transient response. IEEE Trans. on Circuits Syst. II Express Briefs 2005, 52, 398–402. [Google Scholar]
- Yan-Fei, L.; Sen, P.C. A general unified large signal model for current programmed DC-to-DC converters. IEEE Trans. Power Electron. 1994, 9, 414–424. [Google Scholar] [CrossRef]
- Polycarpou, M.M. Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Autom. Control 1996, 41, 447–451. [Google Scholar]
- Babes, B.; Boutaghane, A.; Hamouda, N. Design and real-time implementation of an adaptive fast terminal synergetic controller based on dual RBF neural networks for voltage control of DC-DC step-down converter. Electr. Eng. 2022, 104, 945–957. [Google Scholar]
- Nizami, T.K.; Mahanta, C. An intelligent adaptive control of DC-DC buck converters. J. Frankl. Inst. Eng. Appl. Math. 2016, 3532, 2588–2613. [Google Scholar]
- Nizami, T.K.; Mahanta, C. Single layer type II Chebyshev neural network based adaptive backstepping control of DC-DC buck converter. In Proceedings of the 2016 IEEE Annual India Conference (INDICON), Bangalore, India, 16–18 December 2016; pp. 1–6. [Google Scholar]
- Huang, S.N.; Tan, K.K.; Lee, T.H. Adaptive motion control using neural network approximations. Automatica 2002, 38, 227–233. [Google Scholar]
- Ge, S.S.; Cong, W. Direct adaptive NN control of a class of nonlinear systems. IEEE Trans. Neural Netw. 2002, 13, 214–221. [Google Scholar]
- Dong, W.; Li, S.; Fu, X.; Li, Z.; Fairbank, M.; Gao, Y. Control of a Buck DC/DC Converter Using Approximate Dynamic Programming and Artificial Neural Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1760–1768. [Google Scholar]
- Han, H.; Zhang, L.; Hou, Y.; Qiao, J. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 402–415. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, Z. An Adaptive Fuzzy Recurrent Neural Network for Solving the Nonrepetitive Motion Problem of Redundant Robot Manipulators. IEEE Trans. Fuzzy Syst. 2020, 28, 684–691. [Google Scholar] [CrossRef]
- Gong, X.; Fu, W.; Bian, X.; Fei, J. Adaptive Backstepping Terminal Sliding Mode Control of Nonlinear System Using Fuzzy Neural Structure. Mathematics 2023, 11, 1094. [Google Scholar] [CrossRef]
- Fei, J.; Chen, Y. Fuzzy Double Hidden Layer Recurrent Neural Terminal Sliding Mode Control of Single-Phase Active Power Filter. IEEE Trans. Fuzzy Syst. 2021, 290, 3067–3081. [Google Scholar] [CrossRef]
- Fei, J.; Wang, Z.; Pan, Q. Self-Constructing Fuzzy Neural Fractional-Order Sliding Mode Control of Active Power Filter. IEEE Trans. Neural Netw. Learn.Syst. 2022, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Fei, J.; Wang, Z.; Fang, Y. Self-Evolving Recurrent Chebyshev Fuzzy Neural Sliding Mode Control for Active Power Filter. IEEE Trans. Ind. Inform. 2023, 19, 2729–2739. [Google Scholar] [CrossRef]
- Fei, J.; Chen, Y.; Liu, L.; Fang, Y. Fuzzy Multiple Hidden Layer Recurrent Neural Control of Nonlinear System Using Terminal Sliding-Mode Controller. IEEE Trans. Cybern. 2022, 52, 9519–9534. [Google Scholar] [CrossRef] [PubMed]
- Fei, J.; Wang, H.; Fang, Y. Novel Neural Network Fractional-Order Sliding-Mode Control with Application to Active Power Filter. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 3508–3518. [Google Scholar] [CrossRef]
- Lin, F.J.; Hung, Y.C.; Ruan, K.C. An Intelligent Second-Order Sliding-Mode Control for an Electric Power Steering System Using a Wavelet Fuzzy Neural Network. IEEE Trans. Fuzzy Syst. 2014, 22, 1598–1611. [Google Scholar] [CrossRef]
- Fei, J.; Wang, Z.; Liang, X.; Feng, Z.; Xue, Y. Fractional Sliding-Mode Control for Micro-gyroscope Based on Multilayer Recurrent Fuzzy Neural Network. IEEE Trans. Fuzzy Syst. 2022, 30, 1712–1721. [Google Scholar] [CrossRef]
- Fei, J.; Liu, L.; Chen, Y. Finite-Time Disturbance Observer of Active Power Filter with Dynamic Terminal Sliding Mode Controller. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 1604–1615. [Google Scholar] [CrossRef]
- Lin, X.; Liu, J.; Liu, F.; Liu, Z.; Gao, Y.; Sun, G. Fractional-Order Sliding Mode Approach of Buck Converters with Mismatched Disturbances. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3890–3900. [Google Scholar] [CrossRef]
- Yang, J.; Cui, H.; Li, S.; Zolotas, A. Optimized Active Disturbance Rejection Control for DC-DC Buck Converters with Uncertainties Using a Reduced-Order GPI Observer. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 832–841. [Google Scholar] [CrossRef]
- He, W.; Namazi, M.M.; Guerrero, J.M. Adaptive Energy-Based Control for Buck Converter with a Class of Nonlinear Loads. IEEE Trans. Circuits Syst. II Express Briefs 2022, 692, 4869–4873. [Google Scholar] [CrossRef]
Description | Parameter | Value | Units |
---|---|---|---|
Inductor | 6 | mH | |
Capacitor | 2200 | uF | |
Load resistance | 30 | ||
Input voltage | 25 | V | |
Reference voltage | 12 | V |
Controllers | Parameters and Values |
---|---|
ABTSMC | |
BSMC-RBFNN | |
ABTSMC-DHLRNN |
Test | Controllers | Performance Indices | |
---|---|---|---|
MVR/MVD (V) | ST (ms) | ||
1 | ABTSMC | −/− | 75/− |
BSMC-RBFNN | 0.7/− | 160/− | |
ABTSMC-DHLRNN | −/− | 28/− | |
2 | ABTSMC | 0.6/0.6 | 400/400 |
BSMC-RBFNN | 0.5/0.5 | 210/206 | |
ABTSMC-DHLRNN | 0.3/0.35 | 125/170 | |
3 | ABTSMC | −/− | 90/− |
BSMC-RBFNN | 0.6/− | 78/− | |
ABTSMC-DHLRNN | −/− | 40/− | |
4 | ABTSMC | 0.4/0.4 | −/− |
BSMC-RBFNN | 0.3/0.4 | −/− | |
ABTSMC-DHLRNN | 0.3/0.2 | −/− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, X.; Fei, J. Adaptive Neural Backstepping Terminal Sliding Mode Control of a DC-DC Buck Converter. Sensors 2023, 23, 7450. https://doi.org/10.3390/s23177450
Gong X, Fei J. Adaptive Neural Backstepping Terminal Sliding Mode Control of a DC-DC Buck Converter. Sensors. 2023; 23(17):7450. https://doi.org/10.3390/s23177450
Chicago/Turabian StyleGong, Xiaoyu, and Juntao Fei. 2023. "Adaptive Neural Backstepping Terminal Sliding Mode Control of a DC-DC Buck Converter" Sensors 23, no. 17: 7450. https://doi.org/10.3390/s23177450
APA StyleGong, X., & Fei, J. (2023). Adaptive Neural Backstepping Terminal Sliding Mode Control of a DC-DC Buck Converter. Sensors, 23(17), 7450. https://doi.org/10.3390/s23177450