Electromagnetic-Thermal Coupling Study for RF Compression Cavity Applied to Ultrafast Electron Diffraction
Abstract
:1. Introduction
2. Ultrafast Electron Diffraction System
3. RF Compression Cavity System
4. Electromagnetic–Thermal Coupling Study
4.1. TM Mode in the Cylindrical Resonant Cavity
4.2. Design Optimization of Ω RF Cavity
4.3. Thermal Simulation of RF Compression Cavity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filippetto, D.; Musumeci, P.; Li, R.K.; Siwick, B.J.; Otto, M.R.; Centurion, M.; Nunes, J.P.F. Ultrafast electron diffraction: Visualizing dynamic states of matter. Rev. Mod. Phys. 2022, 94, 045004. [Google Scholar] [CrossRef]
- Musumeci, P. Ultrashort electron probe opportunities. Nat. Photonics 2020, 14, 199–200. [Google Scholar] [CrossRef]
- Guzelturk, B.; Winkler, T.; Van de Goor, T.W.J.; Smith, M.D.; Bourelle, S.A.; Feldmann, S.; Trigo, M.; Teitelbaum, S.W.; Steinrück, H.-G.; de la Pena, G.A.; et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat. Mater. 2021, 20, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Najafi, E.; Scarborough, T.D.; Tang, J.; Zewail, A. Four-dimensional imaging of carrier interface dynamics in p-n junctions. Science 2015, 347, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Lanigan-Atkins, T.; Yang, S.; Niedziela, J.L.; Bansal, D.; May, A.F.; Puretzky, A.A.; Lin, J.Y.Y.; Pajerowski, D.M.; Hong, T.; Chi, S.; et al. Extended anharmonic collapse of phonon dispersions in SnS and SnSe. Nat. Commun. 2020, 11, 4430. [Google Scholar] [CrossRef]
- Maldonado, P.; Chase, T.; Reid, A.H.; Shen, X.; Li, R.K.; Carva, K.; Payer, T.; von Hoegen, M.H.; Sokolowski-Tinten, K.; Wang, X.J.; et al. Tracking the ultrafast nonequilibrium energy flow between electronic and lattice degrees of freedom in crystalline nickel. Phys. Rev. B 2020, 101, 100302. [Google Scholar] [CrossRef]
- Yoo, B.-K.; Su, Z.; Thomas, J.M.; Zewail, A.H. On the dynamical nature of the active center in a single-site photocatalyst visualized by 4D ultrafast electron microscopy. Proc. Natl. Acad. Sci. USA 2016, 113, 503–508. [Google Scholar] [CrossRef]
- de Cotret, L.P.R.; Pöhls, J.H.; Stern, M.J.; Otto, M.R.; Sutton, M.; Siwick, B.J. Time- and momentum-resolved phonon population dynamics with ul-trafast electron diffuse scattering. Phys. Rev. B 2019, 100, 214115. [Google Scholar] [CrossRef]
- Siddiqui, K.M.; Durham, D.B.; Cropp, F.; Ophus, C.; Rajpurohit, S.; Zhu, Y.; Carlström, J.D.; Stavrakas, C.; Mao, Z.; Raja, A.; et al. Ultrafast optical melting of trimer superstructure in layered 1T′-TaTe2. Commun. Phys. 2021, 4, 152. [Google Scholar] [CrossRef]
- Otto, M.R.; Pöhls, J.H.; René de Cotret, L.P.; Stern, M.J.; Sutton, M.; Siwick, B.J. Mechanisms of electron-phonon coupling unraveled in momentum and time: The case of soft phonons in TiSe2. Sci. Adv. 2021, 7, eabf2810. [Google Scholar] [CrossRef]
- Fitzpatrick, A.W.; Park, S.T.; Zewail, A.H. Exceptional rigidity and biomechanics of amyloid revealed by 4D electron mi-croscopy. Proc. Natl. Acad. Sci. USA 2013, 110, 10976–10981. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, R.P.; Morrison, V.R.; Godbout, C.; Siwick, B.J. Ultrafast electron diffraction with radio-frequency compressed electron pulses. Appl. Phys. Lett. 2012, 101, 081901. [Google Scholar] [CrossRef]
- Ischenko, A.A.; Weber, P.M.; Miller, R.J.D. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics. Chem. Rev. 2017, 117, 11066–11124. [Google Scholar] [CrossRef] [PubMed]
- Harb, M.; Ernstorfer, R.; Hebeisen, C.T.; Sciaini, G.; Peng, W.; Dartigalongue, T.; Eriksson, M.A.; Lagally, M.G.; Kruglik, S.G.; Miller, R.J.D. Electronically Driven Structure Changes of Si Captured by Femtosecond Electron Diffraction. Phys. Rev. Lett. 2008, 100, 155504. [Google Scholar] [CrossRef]
- Siwick, B.J.; Dwyer, J.R.; Jordan, R.E.; Miller, R.D. Femtosecond electron diffraction studies of strongly driven structural phase tran-sitions. Chem. Phys. 2004, 299, 285–305. [Google Scholar] [CrossRef]
- Siwick, B.J.; Dwyer, J.R.; Jordan, R.E.; Miller, R.J.D. An Atomic-Level View of Melting Using Femtosecond Electron Diffraction. Science 2003, 302, 1382–1385. [Google Scholar] [CrossRef]
- Robinson, M.S.; Lane, P.D.; Wann, D.A. A compact electron gun for time-resolved electron diffraction. Rev. Sci. Instrum. 2015, 86, 013109. [Google Scholar] [CrossRef]
- Waldecker, L.; Bertoni, R.; Ernstorfer, R. Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit. J. Appl. Phys. 2014, 117, 044903. [Google Scholar] [CrossRef]
- Floettmann, K. Generation of sub-fs electron beams at few-MeV energies. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2014, 740, 34–38. [Google Scholar] [CrossRef]
- Wang, X.J.; Xiang, D.; Kim, T.K.; Ihee, H. Potential of Femtosecond Electron Diffraction Using Near-Relativistic Electrons from a Photocathode RF Electron Gun. J. Korean Phys. Soc. 2006, 48, 390–396. [Google Scholar]
- Kealhofer, C.; Schneider, W.; Ehberger, D.; Ryabov, A.; Krausz, F.; Baum, P. All-optical control and metrology of electron pulses. Science 2016, 352, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Carbajo, S.; Nanni, E.A.; Wong, L.J.; Moriena, G.; Keathley, P.D.; Laurent, G.; Miller, R.J.D.; Kärtner, F.X. Direct longitudinal laser acceleration of electrons in free space. Phys. Rev. Accel. Beams 2016, 19, 021303. [Google Scholar] [CrossRef]
- Zhu, P.; Zhu, Y.; Hidaka, Y.; Wu, L.; Cao, J.; Berger, H.; Geck, J.; Kraus, R.; Pjerov, S.; Shen, Y.; et al. Femtosecond time-resolved MeV electron diffraction. New J. Phys. 2015, 17, 063004. [Google Scholar] [CrossRef]
- Baum, P.; Zewail, A.H. 4D attosecond imaging with free electrons: Diffraction methods and potential applications. Chem. Phys. 2009, 366, 2–8. [Google Scholar] [CrossRef]
- van Oudheusden, T.; de Jong, E.F.; van der Geer, S.B.; Root, W.P.E.M.O.; Luiten, O.J.; Siwick, B.J. Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J. Appl. Phys. 2007, 102, 093501. [Google Scholar] [CrossRef]
- van Oudheusden, T.; Pasmans, P.L.E.M.; van der Geer, S.B.; de Loos, M.J.; van der Wiel, M.J.; Luiten, O.J. Compression of Subrelativistic Space-Charge-Dominated Electron Bunches for Single-Shot Femtosecond Electron Diffraction. Phys. Rev. Lett. 2010, 105, 264801. [Google Scholar] [CrossRef]
- Fill, E.; Veisz, L.; Apolonski, A.; Krausz, F. Sub-fs electron pulses for ultrafast electron diffraction. New J. Phys. 2006, 8, 272. [Google Scholar] [CrossRef]
- Gliserin, A.; Apolonski, A.; Krausz, F.; Baum, P. Compression of single-electron pulses with a microwave cavity. New J. Phys. 2012, 14, 073055. [Google Scholar] [CrossRef]
- Tokita, S.; Hashida, M.; Inoue, S.; Nishoji, T.; Otani, K.; Sakabe, S. Single-Shot Femtosecond Electron Diffraction with Laser-Accelerated Electrons: Ex-perimental Demonstration of Electron Pulse Compression. Phys. Rev. Lett. 2010, 105, 215004. [Google Scholar] [CrossRef]
- Siwick, B.J.; Dwyer, J.R.; Jordan, R.E.; Miller, R.J.D. Ultrafast electron optics: Propagation dynamics of femtosecond electron packets. J. Appl. Phys. 2002, 92, 1643–1648. [Google Scholar] [CrossRef]
- Pulsar Physics. General Particle Tracer. Available online: www.pulsar.nl/gpt (accessed on 5 July 2023).
- van Oudheusden, T. Electron Source for Sub-Relativistic Single-Shot Femtosecond Diffraction. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2010. [Google Scholar]
- Wangler, T.P. RF Acceleration in Linacs. In RF Linear Accelerators; John Wiley: Hoboken, NJ, USA, 2008; pp. 32–52. [Google Scholar]
- Los Alamos National Lab. (LANL). Reference manual for the Poisson/Superfish Group of Codes; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 1987; 419p. [Google Scholar]
- Incropera, F.P.; Dewitt, D.P. Fundamental of Heat and Mass Transfer; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
COMSOL Multiphysics | Possion SUPERFISH | |
---|---|---|
Ez, max, r = 0 | 7.30 MV/m | 7.20 MV/m |
Ez, max, r = 1.8 | 8.76 MV/m | 8.60 MV/m |
Ez, max, r = 1.8 | 5.00 MV/m | 4.90 MV/m |
vHφ, max, r = 1.8 | 0.29 A/m | 0.28 A/m |
Frequency | 2.97035 GHz | 2.97065 GHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Xu, J.; Cai, X.; Gan, Z.; Ji, C.; Lei, C.; Liu, S. Electromagnetic-Thermal Coupling Study for RF Compression Cavity Applied to Ultrafast Electron Diffraction. Sensors 2023, 23, 7455. https://doi.org/10.3390/s23177455
Wang Z, Xu J, Cai X, Gan Z, Ji C, Lei C, Liu S. Electromagnetic-Thermal Coupling Study for RF Compression Cavity Applied to Ultrafast Electron Diffraction. Sensors. 2023; 23(17):7455. https://doi.org/10.3390/s23177455
Chicago/Turabian StyleWang, Zhen, Jian Xu, Xintian Cai, Zhiyin Gan, Caoyue Ji, Cheng Lei, and Sheng Liu. 2023. "Electromagnetic-Thermal Coupling Study for RF Compression Cavity Applied to Ultrafast Electron Diffraction" Sensors 23, no. 17: 7455. https://doi.org/10.3390/s23177455
APA StyleWang, Z., Xu, J., Cai, X., Gan, Z., Ji, C., Lei, C., & Liu, S. (2023). Electromagnetic-Thermal Coupling Study for RF Compression Cavity Applied to Ultrafast Electron Diffraction. Sensors, 23(17), 7455. https://doi.org/10.3390/s23177455