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Abstract: The occurrence of disasters has the potential to impede the progress of sustainable urban
development. For instance, it has the potential to result in significant human casualties and sub-
stantial economic repercussions. Sustainable cities, as outlined in the United Nations Sustainable
Development Goal 12, prioritize the objective of disaster risk reduction. According to the Gesi Smarter
2030, the Internet of Things (IoT) assumes a pivotal role in the context of smart cities, particularly in
domains including smart grids, smart waste management, and smart transportation. IoT has emerged
as a crucial facilitator for the management of disasters, contributing to the development of cities that
are both resilient and sustainable. This systematic literature analysis seeks to demonstrate the sensors
utilized in IoT for the purpose of urban catastrophe management. The review encompasses both
the pre-disaster and post-disaster stages, drawing from a total of 72 articles. During each stage, we
presented the characteristics of sensors employed in IoT. Additionally, we engaged in a discourse
regarding the various communication technologies and protocols that can be utilized for the purpose
of transmitting the data obtained from sensors. Furthermore, we have demonstrated the methodology
for analyzing and implementing the data within the application layer of IoT. In conclusion, this study
addresses the existing research deficiencies within the literature and presents potential avenues for
future exploration in the realm of IoT-enabled urban catastrophe management, drawing upon the
findings of the evaluated publications.

Keywords: sensors; Internet of Things; urban disaster management; flood; earthquake; landslide;
search and rescue

1. Introduction

Cities serve as the primary hubs for economic activities, social interactions, cultural
expressions, and overall human existence [1]. It is anticipated that by the year 2050,
approximately 86% of affluent nations will have undergone urbanization, while around
64% of developing nations will have experienced the same phenomenon [2,3]. At present,
the global urban population stands at approximately 4.27 billion individuals, constituting
approximately 55% of the total global population [1,4]. It is anticipated that almost 70%
of the global population will undergo urbanization and relocate to urban areas by the
year 2050 [4]. This significant shift will probably result in a corresponding expansion
of the world’s metropolitan regions, encompassing an estimated additional land area of
1.2 million square kilometers [4].

Cities often have larger population densities, making them more vulnerable to many
sorts of disasters. As a result, cities have major impacts as a result of these disasters [5].
Disasters possess the capacity to cause harm to human lives and give rise to unfavorable
economic and environmental outcomes [6,7]. From 2001 to 2020, there was an annual
occurrence of big and medium-sized disasters ranging from 350 to 500 [8]. Furthermore,
it is important to acknowledge that a greater population density results in a heightened
demand for rescue services, therefore requiring more sophisticated strategies for catastro-
phe management and the deployment of disaster relief efforts [9]. The lack of effective
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communication between public rescue and safety groups, rescue teams, first responders,
and persons who are trapped worsens the situation [10]. Furthermore, it is important to
acknowledge that disasters possess the capacity to inflict substantial harm against essential
infrastructure systems, encompassing, but not limited to, electrical grids, water distribution
networks, transportation networks, and communication systems [5]. Disasters have the
capacity to disrupt economic activities and yield significant economic losses. Between
the years 2008 and 2018, an extensive examination indicates that a cumulative count of
3751 occurrences of natural catastrophes took place, including a diverse range of phenom-
ena, including earthquakes, floods, and tsunamis. The occurrence of these catastrophic
catastrophes led to a significant economic downturn, resulting in a total financial loss of
$1.658 billion [9]. Urban disasters have the potential to yield substantial environmental
ramifications, encompassing the release of pollutants and the handling of waste disposal.
In light of the considerable repercussions that catastrophes have on urban environments,
leading to enormous losses, it is crucial to improve the management of urban disasters.
The achievement of the United Nations Sustainable Development Goal (UNSDG) 12 en-
tails the need to diminish the probability of catastrophic events and enhance the overall
resilience of urban regions to withstand and recuperate from such occurrences by the year
2030 [11]. The successful attainment of the UNSDGs relies on the efficient execution of
disaster management policies within metropolitan regions [12].

The concept of disaster management entails the systematic coordination and admin-
istration of various endeavors during all phases of a disaster, including but not limited
to mitigation, relief, response, and recovery [9]. The primary objectives of disaster man-
agement encompass the initiation of timely alerts, the acquisition of real-time data, the
precise assessment of damages, the prompt identification of evacuation pathways, and the
efficient administration of emergency provisions [9]. The conventional methods of disaster
management are becoming outdated due to their inability to effectively gather data from
various sources in real-time and process and evaluate vast quantities of catastrophe-related
information in real-time [9].

IoT enables the collection and analysis of real-time data, presenting opportunities
for addressing catastrophe management in urban areas [11,13]. IoT can be described as a
framework that facilitates inter-device communication via the Internet [9]. The promise
of technology to facilitate complex decision support systems is evident through its ability
to deliver services in a more accurate, organized, and intelligent manner [13]. IoT has
significantly enhanced the capacity for analyzing catastrophe risks, namely in the areas of
floods and earthquakes. This advancement has facilitated the development of more effec-
tive disaster response plans and risk management policies [11]. Numerous instances exist
wherein the IoT is employed for the purpose of regular surveillance of natural occurrences,
transmission of alert alerts, and provision of timely information to disaster management
authorities [11]. In 2020, 23 out of 195 UN countries had effective disaster early warning
systems, which successfully protected 93.63% of the population at risk from natural dis-
asters in those countries (https://sendaimonitor.undrr.org/analytics/global-target/16/8
(accessed on 19 May 2023)). Flood warning systems can reduce flood losses by 35% annu-
ally (https://documents1.worldbank.org/curated/pt/609951468330279598/pdf/693580
ESW0P1230aster0Risk0Reduction.pdf (accessed on 19 May 2023)). Early warning systems
on the West Coast of the United States enhance population preparedness for the disaster,
reducing the risk of injuries by 50% [14]. The utilization of IoT technologies facilitates
the acquisition of data, enabling communities to receive periodic updates and implement
proactive steps in response to imminent disasters [11]. The IoT technology plays an impor-
tant role in rescue actions since it can provide instantaneous updates of information [13].
The ability to make effective and precise decisions in a timely manner is crucial during
relief operations due to the needs and dynamic nature of the environment [13]. The first
72 h after a disaster (i.e., the golden rescue time) are crucial for search and rescue, as the
probability of finding survivors sharply decreases after this period [15]. The implementa-
tion of IoT technology has the potential to enhance the effectiveness of search and rescue
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operations within a designated time frame of 72 h [15]. Hence, IoT has the capability to
offer real-time monitoring, timely alerts, post-disaster response, and assistance in rescue
operations, thereby assuming a significant role in urban catastrophe management. Further-
more, the utilization of IoT devices has become increasingly prevalent as a cost-effective
and straightforward approach to monitoring various systems [16]. Our review aims to offer
managers a comprehensive set of recommendations for the effective implementation of IoT
technologies in the context of urban catastrophe management.

The architecture of IoT primarily has three layers, namely the perception layer (some-
times referred to as the sensor layer), the network layer, and the application layer [17]. Our
review commences by focusing on sensors, which serve as the foundational component of
the IoT framework. In the realm of IoT devices, sensors play a pivotal role in the collection
and aggregation of data [18]. Sensors have the capability to be deployed in diverse environ-
ments, including riverbeds and soil. The sensors have the capability to gather and transmit
data in real-time on a continuous and automated basis. Sensors are vital link between
the physical and digital realms, assuming a pivotal function within the IoT framework.
Subsequently, the data would be conveyed to the application layers for the purpose of
data analysis and support applications, utilizing diverse communication technologies and
protocols. Then, the data would be transmitted to application layers for data analysis and
handle applications through various communication technologies and protocols, facilitated
by gateways in the network layer [17]. The utilization of sensor-generated data inside IoT
systems can facilitate data analysis and decision-making processes in the field of disaster
management, provided that the data is successfully uploaded to the application layers [19].
Hence, the primary objective of this study is to address the research inquiries pertaining to
both the pre-disaster and post-disaster stages.

1. What kinds of sensors are used to collect data? And what kinds of data are focused
on the pre-disaster stage and post-disaster stages, respectively?

We aim to present a comprehensive analysis of the sensors employed in many catas-
trophe scenarios, with a particular focus on investigating the feasibility of developing
universal sensors capable of addressing multiple types of disasters during the pre-disaster
phase. During the stage following a disaster, it is imperative to deliberate on the appropriate
data to be gathered for the purpose of post-disaster management.

2. What kinds of communication technologies and protocols are used to transmit the
data from sensors?

We aim to examine the communication technologies and protocols employed dur-
ing the pre-disaster stage, with the objective of identifying the prevailing and effective
communication technologies and protocols. Additionally, we will examine the emergency
communication technologies and protocols implemented during the post-disaster phase.
The communication technologies and protocols utilized during the post-disaster phase
differ from those employed in the pre-disaster phase due to the potential destruction of the
communication infrastructure established prior to the occurrence of the disaster.

3. What methods were used to analyze sensor data?

The enhancement of machine learning algorithms has the potential to reduce expenses
associated with sensors and facilitate expedited disaster alert systems. Furthermore, the
utilization of visual algorithms facilitates the detection of various types of disasters, such as
floods and earthquakes, via cameras. Therefore, it is imperative to conduct an investigation
into the processes of data analysis.

4. What are the differences between the IoT technologies used in the pre-disaster and
post-disaster stages?

Prior research has shown a greater emphasis on the utilization of sensors in the IoT
for disaster management in the pre-disaster phase as opposed to the post-disaster phase.
Esposito et al. [14] conducted a comprehensive review of early warning systems for nat-
ural catastrophes in the pre-disaster stage, specifically focusing on IoT. Ahmed et al. [20]
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critically examine the utilization of affordable sensors in the monitoring of climate-related
disasters in coastal regions. Nonetheless, it is imperative for disaster management to en-
compass many activities during both the pre-disaster stage, such as disaster identification
and prevention, as well as the post-disaster stage, including evacuation, search and rescue
operations, and rehabilitation efforts [21,22]. Disasters can manifest abruptly or unexpect-
edly [6]. The likelihood of locating individuals who have survived a catastrophic event
significantly decreases subsequent to the first 72 h period [15]. Efficient disaster response
systems are crucial in order to mitigate human suffering and mortality rates [6]. Hence, we
not only address the sensors employed in IoT systems during the pre-disaster stage but also
emphasize the sensors utilized in IoT systems during the post-disaster stage. Additionally,
we conduct a comparative analysis of IoT systems throughout the pre-disaster and post-
disaster stages. In this study, our objective is to identify the prevailing technologies, such
as sensors, communication technologies and protocols, and data analysis methodologies,
that are utilized in IoT-based disaster management throughout both the pre-disaster and
post-disaster stages.

The rest of the article discusses the methodology, the IoT system in the pre-disaster
stage, the IoT system in the post-disaster stage, and the difference between the IoT technolo-
gies used in the pre-disaster and post-disaster stages. Section 2 introduces the methodology
(i.e., systematic literature review) used in this study. Section 4 introduces the IoT system
in the pre-disaster stage, while Section 5 introduces it in the post-disaster stage, which
answers research questions 1–3. Section 6 compares the differences between the IoT tech-
nologies used in the pre-disaster and post-disaster stages, which answers research question
4. Section 7 concludes the findings of this study, indicates the limitations, and shows the
future research directions in this research area.

2. Methodology

Systematic Literature Review (SLR) is a way to synthesize research findings in a
systematic, transparent, and repeatable manner for identifying and critically evaluating
relevant research to answer specific research questions or hypotheses [23]. Previous studies
widely used the SLR approach to organize literature and perform a thorough literature
review in the areas of sensors in the IoT [19,20]. Regarding the SLR process, we should
first collect the target literature, then identify the literature that meets the pre-specified
inclusion criteria, and finally provide solid findings.

To search the target publications, we combined the keywords into three parts: (1) the
IoT keywords, (2) the keywords related to “urban”, and (3) the keywords related to natural
disasters. Firstly, we target publications related to IoT through the keywords “Internet
of Things”, “wireless sensor networks”, and “Internet of Everything” and their abbrevia-
tions [14,24]. Further, we scoped the publications in the scenarios of the city through the
keywords. “urban”, “city”, and “cities” [25–28]. Finally, we scoped the publications related
to disaster management through the keywords “disaster”, “natural hazard”, “flood”, “land-
slide”, “earthquake”, “storm”, “hurricane”, “wildfire”, “tornadoes”, “cyclones”, “drought”,
“tsunami”, “typhoon”, “avalanche”, “heatwave”, “volcan*”, and “gully erosion” [8,29–36].
Therefore, our final search string was “TS = (“internet of thing*” OR “IoT” OR “IoTs” OR
“wireless sensor network*” OR “WSN” OR “WSNs” OR “Internet of Everything” OR “IoE”)
AND TS = (urban OR city OR cities) AND TS = (disaster* OR “natural hazard*” OR flood*
OR landslide* OR earthquake* OR storm* OR hurricane* OR wildfire* OR tornado* OR
cyclone* OR drought OR tsunami* OR typhoon* OR avalanche* OR heatwave* OR volcan*
OR “gully erosion*”)”. We used quotation marks to search the whole specific phrase, such
as “Internet of Things”. But the quotation marks prevented WoS from searching US and
UK spelling variations automatically (http://webofscience.help.clarivate.com.libezproxy.
must.edu.mo/en-us/Content/spelling-variations.html (accessed on 19 May 2023)). Thus,
quotation marks are not necessary for a single word, such as “urban”. We added an asterisk
to prevent variations of words from being missed (http://webofscience.help.clarivate.
com.libezproxy.must.edu.mo/en-us/Content/search-operators.html#Search (accessed on
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19 May 2023)). It is worth noting that the asterisk is not available to search US and UK
spelling variations (http://webofscience.help.clarivate.com.libezproxy.must.edu.mo/en-
us/Content/spelling-variations.html (accessed on 19 May 2023)).

We ran the search string on the Web of Science, which is one of the significant bibli-
ographic databases [35]. We selected Web of Science since it allowed us to select a large
number of highly credible publications with impact factors [35]. We only considered En-
glish publications [35]. The types of publications include research articles, conference
papers, and review papers [8]. Finally, we gathered 502 publications.

We excluded irrelevant publications through two stages: screening the title and ab-
stract of the publications and a full review of the publications. After screening the titles and
abstracts of the publications, we excluded 400 irrelevant publications. After fully reviewing
the publications, we excluded 30 irrelevant publications. Finally, we constructed a database
with 72 publications for a systematic literature review. Among 72 publications, 47 focus
on the pre-disaster stage, while 20 focus on the post-disaster stage. Five publications both
mention IoT systems used in the pre-disaster and post-disaster stages.

3. Descriptive Analysis

Figure 1 shows the distribution of sample publications by year. Academic attention
was directed towards this particular research domain in the year 2007. However, there was
a limited number of papers that concentrated on this specific subject field throughout the
subsequent decade. The quantity of publications reached its highest point in 2021, with a
total of 17 publications, but experienced a significant decline to 7 publications annually in
2022. The dataset of articles for the year 2023 is still incomplete, as it only includes items
downloaded up until May 2023.
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Figure 1. The distribution of publications by year.

Table 1 shows the top six distributions of publications by sources. Among 72 publica-
tions, most were published in the journal Sensors (five publications). Two publications were
published at the 2019 5th IEEE International Smart Cities Conference, Applied Sciences,
Earth Science Informatics, IEEE Access, and Materials Today-Proceedings, respectively.
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Table 1. Top six distribution of publication by sources.

Source Number of
Publications

Sensors 5
2019 5th IEEE International Smart Cities Conference (IEEE ISC2 2019) 2

Applied Sciences 2
Earth Science Informatics 2

IEEE Access 2
Materials Today-Proceedings 2

4. IoT Systems in the Pre-Disaster Stage

IoTs have various advantages, such as low cost, low energy consumption, access to
harsh environments, and simple installation [37]. More importantly, the sensors used in
IoT systems can adapt to changes in the environment and collect real-time, high-precision
environmental data [37]. Therefore, IoT systems are useful tools for monitoring natural
environments and disaster management [37].

4.1. Sensors

Sensors used in the pre-disaster stage mainly collect environmental data. Accelerome-
ters are usually used to detect earthquakes [38,39]. Except for accelerometers, more sensors
are used to detect landslides, such as inertial sensors, bar extensometers, and borehole
inclinometers. More publications focus on flood monitoring. Floods may occur more
frequently in cities. One reason is that urban drainage systems often become saturated
due to prolonged and intense rainfall [40]. Regarding flood monitoring systems, scholars
use more sensors, such as rain gauges [40,41], water level sensors [40,42–47], water pres-
sure sensors [41,45,47], cameras [41,48,49], soil moisture sensors [42], weather sensors [42],
drones with drones [42], water presence sensors [44,50], temperature sensors [50], and a
triaxial accelerometer [50]. The sensors are usually powered by solar batteries [41,50]. To
save the energy cost of the sensors, Biabani et al. [51] introduced a model with a harmony
search algorithm and improved hybrid Particle Swarm Optimization to select cluster heads.
Based on Particle Swarm Optimization, they developed a multi-hop routing system with
enhanced tree encoding and a modified data packet format. The single computer boards
are the Raspberry Pi [43,48] and Arduino [43,44]. We will further discuss the sensors used
for different disaster types in the following content.

4.1.1. Earthquake

We commonly use accelerometers to detect earthquakes. Accelerometers include
triaxial accelerometers and dual-axis accelerometers. Regarding triaxial accelerometers,
we can choose the accelerometer ADXL362 [39] for low-power use, while we can choose
the accelerometer EPSON M−A351AU [39] and the accelerometer LSM9DSO [16] for
high-precision use. Regarding dual-axis accelerometers, we can choose the accelerom-
eter ADXL203, which is low-power and high-precision [52]. Also, we can choose triax-
ial accelerometers, such as L1S3DSH sensors (manufactured by STMicroelectronics) and
EpiSensors [53]. The L1S3DSH sensor is ultra-low-power and high-performance [53]. The
accelerometers are placed on the object being detected (e.g., buildings or bridges). The
single computer boards include Raspberry [38], CC2420 DBK [52], and Sparrow v4 [16].
The microprocessors include the ATmega128L [52], ATmega128RFA1 [16], and ARM pro-
cessor [53]. Sensors should be equipped with antennas to enable data transmission over
long distances [39]. The sensors should be energy-saving [39]. Regarding batteries, we
can choose d-cell batteries [39] and CR2032-3V lithium-ion batteries [16]. The sensors
should sleep when they do not need to collect data [39]. In addition, the sensors should be
low-cost [39]. For example, each sensor in Siringoringo et al.’s [39] earthquake detection
system costs 2300 USD.
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In addition, some scholars may use other sensors for earthquake detection. For exam-
ple, Castelli et al. [54] also combined triaxial velocimeters and ultrasonic measurements to
build the earthquake early warning system. Tudose et al. [16] combined an LSM9DSO-16
bit high-resolution triaxial accelerometer with an SI7020 humidity and temperature sensor,
a three-axis gyroscope, a triaxial magnetometer with embedded FIFO, an SI1145- infrared
proximity detection, a high-precision altimeter, a UV and ambient light sensor, and a
MPL3115A2-pressure and temperature sensor.

4.1.2. Landslides

People detect landslides with more sensors, such as inertial sensors [55], accelerome-
ters [55], bar extensometers [56,57], borehole inclinometers [56], rainfall sensors (e.g., rain
gauge [58]), and displacement meters [58]. The models of inertial sensors include the
IMU6050 [55]. The models of accelerometers include LIS3331LDH [55]. The models of
microprocessors include the ESP32 [55,59]. The models of single computer boards include
the Waspmote PRO board [55]. Usually, the sensors can store data locally on SD cards [55].
Batteries [55–57] and solar [56] are the major power sources. To improve energy efficiency,
Zhang [60] designed a wavelet-based sampling process for landslide sensors. This process
allowed the sensors to reduce data gathering while maintaining performance and system
reliability, which allows the battery to run continuously for 3–5 months without recharging
during the monsoon period. Wang et al. [57] suggested using the WorkStop recycling
control mode in the batteries.

4.1.3. Floods

People develop flood detection systems based on more considerations such as rain-
fall [40–42,61–64], water level [40,43,44,46,47,62,63,65–68], water pressure [41,44,45,47,50,69],
soil moisture [42], solar radiation [42], vapor pressure [42], relative humidity [42], humid-
ity [42], temperature [42,61,62,70], air pressure [42,62], wind speed [42,61], wind gust [42],
wind direction [42], tilt [42], lighting [42], lighting average distance [42], the flow veloc-
ity [42,62]. Moreover, Ragnoli et al. [50] also used GSM to detect locations in their flood
monitoring systems.

We usually collect rainfall data using rain gauges [40,41], such as double-tipping
buckets [40]. We usually measure water level with water level sensors, such as radar
level sensors [40,65], ultrasonic sensors [42,47,65,68,70], and force-sensitive resistors [47].
Ultrasonic sensors include MaxBotix MB7066 [70], HC-SR04 [68], and so on. A method
to measure water level is to measure water pressure and convert that data into water
level [45,64,69]. Ragnoli et al. [50] detected water with electrical resistance. To be spe-
cific, they used fork-shaped probes made of conductive and corrosion-resistant metal
with 10 cm long and 1.5 cm spaced terminals [50]. The resistance would drop when the
terminal came into contact with water [50]. Regarding fault tolerance, they added a
triaxial accelerometer (i.e., ADXL345) to use when the water sensors were damaged [50].
Malik et al. [44] combined the Adafruit SHT31-D temperature and humidity sensor with
dual ultrasonic sensors to monitor water levels. Another sensor type aims to detect
the presence of water. Malik et al. [44] combined a waterproof temperature sensor
with dual water presence sensors to detect water presence. Mendoza-Cano, Aquino-
Santos, Lopez-de la Cruz, Edwards, Khouakhi, Pattison, Rangel-Licea, Castellanos,
Martinez-Preciado, Rincon-Avalos, Lepper, Gutierrez-Gomez, Uribe-Ramos, Ibarreche
and Perez [42] combined Drifters and river drones to measure parameters such as river
flow velocity and water temperature during the flooding events. Drifters were the main
measuring tool, while RiverDrone aimed to locate the Drifters. Mousa, Oudat, Claudel
and Ieee [70] suggested measuring temperature through passive infrared sensors (e.g.,
Melexis MLX90 614).

Cameras are also effective tools for flood detection [41,48,49,63,69,71–73]. Regard-
ing the use of cameras, Castro et al. [72] suggested using no infrared cameras, while
Castro et al. [72] and Garcia et al. [48] suggested using cameras with water level mark-
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ers. Regarding water level markers, Castro et al. [72] suggested placing highly visible
reflective tapes on surfaces visible to cameras ranging from 0 to 1.5 m. Each tape was
spaced out with other tapes, which allowed us to obtain a better approximation of the
severity of the water level. This method could improve accuracy because it was not
affected by the temperature and humidity of the air or the objects that could absorb
wave sounds. In addition, Garcia et al. [48] suggested putting visible marks on the
image captured by the camera to detect the flood-severity level.

The types of power supplies are numerous. For example, we can place sensors on
electricity poles to absorb power [40,47]. Solar and/or batteries are the common power sup-
ply [41,44,50,70], such as Seeed Studio solar cell batteries with TP4056 charge regulators [50]
and solar-powered Lithium Iron Phosphate batteries [70]. The models of microprocessors
include the Raspberry Pi 4 Model B [48], Arduino Uno [43], Raspberry Pi 3 Model B+ [43],
Analog to Digital Converter [50], Intel PXA271 XScale [71], and ESP32 [67]. The models of
single computer boards include Arduino [44,68], NodeMCU [47], TelosB [74], Raspberry
Pi [72], ARM Cortex M4 [70], and Arduino DUE [67]. We can also consider SD cards for
local data storage [70].

4.1.4. Others

Park and Baek [75] introduced the detection of heatwaves and cold waves. Al-
hamidi et al. [76] presented an IoT-based tsunami monitoring system. Aljohani and
Alenazi [77] introduced a storm detection system. We can use meteorological sensors
to detect heatwaves and cold waves by monitoring parameters such as temperature,
relative humidity, noise, illumination, ultraviolet, vibration, PM10, PM2.5, wind speed,
wind direction, CO, NO2, SO2, NH3, H2S, and O3 [75]. Alhamidi, Pakpahan, Siman-
juntak and Iop [76] used the ADXL335 accelerometer to read vibrations in the seafloor
crust because tsunamis are caused by vibrations and faults in the seafloor crust. They
also connected sensors to flare-marking buoys to provide information to the nearest
disaster mitigation center. They used the Arduino Uno as a single computer board.
Regarding storm detection systems, Aljohani and Alenazi [77] suggested using weather
sensorsincluding humidity and lightningsensors. For forest fires detection, Viegas [78]
used sensors to collect data such as temperature, humidity, gas concentrations, rain
rate, wind direction, and wind speed. They also use cameras, including Pan-Tilt-Zoom
and Fixed Cameras, and Unmanned Air Vehicles equipped with cameras. To detect
typhoons, Wang et al. [79] suggested using meteorological satellites as sensors to obtain
high-resolution remote sensing image data to recognize typhoon clouds and locate the
typhoon center.

4.2. Communication Technologies and Protocols

People usually transmit the data from sensors to servers through Bluetooth [38],
Ethernet [38,42,43], Wi-Fi [38,43,55,56,59,68,72], and cellular communication technol-
ogy [42,57,59,71,80], Radio Frequency [42], and radio [44]. Cellular communication tech-
nologies include GSM [57], GPRS [57,71], and 3G [42]. The communication protocols
include Choco protocol [39], UDP [41], IPv6 with LoWPAN [41], IEEE 802.15.4 [16,41,52],
Message Queuing Telemetry Transport (MQTT) [42,43,47,59,67,81], concurrent multi-
path transfer protocol [49,82], LoRaWAN [50,62,80], TCP/IP Internet protocol [50,83],
Hyper Text Transfer Protocol (HTTP) [61], Zigbee [16,45,71], LRWiFi [59], Cat-M1 [59],
CoAP [59], XBee [70]. The data is usually transmitted in JSON format [42,50,61]. Re-
garding data storage, people may use local data storage (e.g., SD memory cards [55])
and cloud storage (e.g., MongoDB [48], Dynamo [43]). Miao and Yuan [58] used the
SQL Server 2008 database software. Malik et al. [44] store the data in Oracle’s MySQL
and host the database on an Ubuntu Server. Drones can relay data from sensors to base
stations, thereby effectively achieving large-scale data transmission [18]. Drones can
cooperate with drifters to collect river velocity data. In this combination, drones aim to
locate the drifters and transmit the data from the drifters to a server [42].
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The connection solutions for earthquakes include Bluetooth [38], Ethernet [38],
Wi-Fi [38], Choco protocol [39], IEEE 802.15.4 [16,52], MQTT [81], and Zigbee [16].
Regarding the connectivity solutions for landslides, we can use Wi-Fi [55,56], cel-
lular communication technology [57,59], MQTT [59], LRWiFi [59], Cat-M1 [59], and
CoAP [59]. The connection solutions for floods include UDP [41], IPv6 with LoW-
PAN [41], IEEE 802.15.4 [41], MQTT [42,43], Ethernet [42,43], cellular communication
technology [42,71,80], Wi-Fi [43,68,72], concurrent multi-path transfer protocol [49],
LoRaWAN [50,62,80], TCP/IP [50,83], radio [44], HTTP [61], ZigBee [45,71], 6LoW-
PAN [74], and XBee [42,70]. Concurrent transfer can achieve higher throughput [49,82],
accelerate transmission [49,82], reduce packet loss [49,82], and save energy [39]. Choco
protocol [39] and 6LoWPAN [74] can save energy. In addition, Luo et al. [84] proposed
the “MWAC model” for sensor networks to save power and transmit information over
long distances (p. 49).

Usually, we convert information between different protocols using different sys-
tems and intermediate devices. For instance, Ragnoli et al. [50] and Gomes et al. [83]
both transmitted the data for sensors to the server via TCP/IP while transmitting the
data from the server to user applications through HTTP. However, Ferraz et al. [61] built
the servers to connect sensors and human clients based on the HTTP protocol without
the use of other protocols.

4.3. Analysis and Applications of Sensor Data

Firstly, we tend to emphasize that data pre-processing is important to improve the
efficiency of data analysis. Some missing sensor data were recorded as zero because of the
irregular data transmission and the irregular observation time. We could not distinguish
this missing data from an observed zero value. To solve this problem, Park and Baek [75]
suggested some quality management for sensor networks, such as data pre-processing
(time allocation and filling short gaps in missing data), physical limit check, climate range
check, internal consistency check, persistence check, step check, spatial consistency check,
spatial outlier check, and data reconstruction using spatial and temporal gap-filling. In
addition, Wang and Abdelrahman [62] suggested using a divide-and-conquer approach to
process the high-dimensional data inputs from sensors. For example, we can group the
sensors by their physical locations and customize the model to process each sensor.

Since sensors have limited resources, another way to improve the efficiency of data
analysis is to combine fog computing and cloud computing [41,85]. To be specific, sensors
send the data to the fog periodically [85]. After the fog pre-processes the data, it will be
transmitted to the cloud [85]. Therefore, fog computing is mainly responsible for concen-
trating, distributing, caching, and analyzing the data, detecting abnormalities, analyzing
the data on a smaller scale, sending notifications and feedback, and forwarding summa-
rized data to the cloud periodically [41,85]. Fog computing can reduce the latency of the
service, respond to any emergency change immediately, and reduce the burden on the
cloud [41,85]. Cloud computing is responsible for combining and permanently storing all
the data in the system to obtain a general view of the monitored environment [41,85]. In
addition, the cloud accumulates some historical data over time, which can provide impor-
tant information about the weather in each area [85]. We can also run machine learning
algorithms on the historical data to form a smart classifier [85]. In a word, we can use
fog computing to analyze a small range of data for the timely detection of disasters and
warnings. Cloud computing builds long-term predictive models by analyzing data on a
larger scale. In addition, cooperation between fog computing and cloud computing can
improve the efficiency of data analysis through data pre-processing in fog computing and
database construction in cloud computing.

Regarding data analysis methods, we can use some advanced techniques, such as ma-
chine learning [38,45,62,70,85–87], deep learning [46,73], and time-series data analysis [58].
Some studies may use traditional methods, such as mathematical modeling (e.g., Markov
Process, Laplace Transformation) [68], observing the signal (e.g., flare marker buoys) [76],
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and comparing the current situation with past cases [84]. Table 2 shows data analysis
methods for different types of disasters.

Table 2. Data analysis method used in analyzing data from sensors.

Types of Disasters Method Detail Reference

Earthquake Machine learning Convolutional Neural Network
Kim et al. [38]Recurrent Neural Network

Landslide Time-series data analysis Grey System Forecasting Miao and Yuan [58]

Floods Machine learning

Bayesian Learning

Furquim et al. [45]

Multi-Layer Perceptron Artificial Neural
Networks

Random Forest
J-48 Decision Tree

Random Tree
Simple Cart Decision Tree

BFTree

Floods Machine learning Artificial Neural Networks Wang and Abdelrahman [62]
LSTM

Floods Machine learning
Random Forest

Aljohani et al. [85]Decision Tree
KNN

Floods Machine learning Artificial Neural Network Mousa et al. [70]

Floods Machine learning Artificial Neural Network Goyal et al. [87]

Floods Deep learning Deep Neural Network Junior et al. [73]

Floods Time-series data analysis +
Machine learning

BiGRU Neural Network + Attention
Mechanism Chen et al. [86]

Floods Time-series data analysis +
Machine learning

Multilayer Perceptron artificial neural
network Furquim et al. [37]

Floods Time-series data analysis +
Machine learning

Multilayer Perceptron artificial neural
network Furquim et al. [64]

Floods Time-series data analysis +
machine learning

Multilayer Perceptron artificial neural
network Furquim et al. [69]

Floods Image processing algorithm Garcia et al. [48]

Floods Image processing algorithms Edge Keeping Index
Liu et al. [71]SURF.

Floods Image processing algorithm
Color segmentation

Castro et al. [72]Morphological operations
Shape detection

Floods Image processing algorithm DNN Pruning Algorithm + Randomized
Heuristic Junior et al. [73]

Floods Mathematical modeling Markov Process Tyagi et al. [68]
Laplace Transformation

Floods Data retrieval Compare current situations with past
cases Luo et al. [84]

Typhoon Image processing algorithm
Attention Mechanism

Wang et al. [79]Fast R-CNN
Transfer Learning method

Tsunami Observation Flare marker buoys Alhamidi et al. [76]

Machine learning techniques are commonly used to analyze the data from sensors.
We can use machine learning techniques to analyze the data related to different types
of disasters, such as earthquakes [38] and floods [45,62,70,85–87]. The machine learning
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techniques used in earthquake detection include convolutional neural networks [38] and
recurrent neural networks [38]. They can analyze the data collected by accelerometers.
The machine learning techniques used in flood detection include Bayesian Learning [45],
Multi-Layer Perceptron Artificial Neural Networks [45], Random Forest [45], J 48 Decision
Tree [45], Random Tree [45], Simple Cart Decision Tree [45], and BFTree [45]. They can
classify and analyze the water level data. Regarding data classification, we can classify the
water level data into stable level (i.e., −20◦, 20◦), slight increase level (i.e., 20◦, 45◦), high
increase level (i.e., 45◦, 90◦), slight decrease level (i.e., (−20◦, −45◦) and high decrease level
(i.e., −45◦, −90◦) [45]. Another classification is 0 to 0.25 for Mild level, 0.26 to 0.5 for the
Moderate level, 0.51 to 0.75 for Severe level, and 0.76 to <1 for Critical level [87].

Furquim et al. [37] assumed that the water level data is time-series data. They
modelled the time series data based on chaos theory. They used the false nearest
neighbor method to estimate the value of the separation dimension and the embedding
dimension. Furquim et al. [64] found that the best results for all the sensors were
obtained when the separation dimension was one and the embedding dimension was
two. When we adopted the distributed approach, MLP could present the peak values in
a better way. The peak values are very important in examining flood prediction since
they are at the points where the flooding occurs. In addition, Furquim et al. [69] used
a multilayer perceptron artificial neural network to construct the recursive prediction
model and obtained better results when the separation dimension was one and the
embedding dimension was four. Furthermore, Chen et al. [86] suggested using a
Bidirectional Gated Recurrent Unit (BiGRU) model with attention mechanisms to deal
with the time-series flood data. The attention mechanism is used to automatically adjust
how well the input features match the output features, while the BiGRU model aims
to process the input series from both directions of the time series (chronologically and
anti-chronologically) and then merge their representations together.

Since we use cameras for disaster detection more commonly, image processing
algorithms have become one of the most common data analysis methods [48,71–73,79].
Previous studies adopted image-processing algorithms to detect floods [48,71–73] and
typhoons [79]. Although some of them are machine learning algorithms, the data they
processed was different from the machine learning mentioned above. Image processing
algorithms focus on image data, while the machine learning algorithms mentioned
above focus on numerical data.

After data analysis, scholars tend to present the results to the public through web appli-
cations [40,42–44,47,48,57,58,61,63,65,71,72,83,85,88,89]. Some of them are mobile applications
such as Ferraz et al. [61]. In addition, we usually visualize data with maps to present envi-
ronmental data and disaster positions in web applications [40,42,45,48,58,63,72,78,81,83,84,88].
Interestingly, Kanak et al. [81] integrated data from the sensors to create a virtual reality environ-
ment to help residents perform fire and earthquake escape drills. In addition, email [43,50,71],
messages [43,71], and social media [40,68] are the ways to send out warnings to people in time.
They are also the ways to send out disaster warnings.

5. IoT Systems in the Post-Disaster Stage
5.1. Sensors

Excepted for environmental data [15,90–93], the sensors in the post-disaster stage
mainly collect human health data [90,92–94] and position data [15,38,93–95], which can
improve the efficiency of search and rescue.

Regarding environmental data, Ochoa and Santos [15] suggested using sensors to
collect environmental data in terms of weather, chemicals, and movement. Sahil and
Sood [90] placed sensors on the buildings and in-pavements in the disaster-affected
areas to collect environmental data, including water level, tilt in structures, temperature
of buildings and ambient, smoke detection, obstacles in the path, visibility range, and
location of the sensor. Korkalainen et al. [93] suggested using gas sensors to monitor
air quality. Usually, multiple agencies participate in rescue operations. Each agency
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could use the sensors deployed in cities (e.g., weather stations, traffic cameras, wind
sensors, precipitation meters, road surface condition sensors, and visibility meters) to
collect environmental data [91,92]. Also, the agency integrated its own sensors, such as
unmanned vehicles equipped with GPS sensors, acoustic detection, distance measure-
ment, and motion sensing, and drones equipped with GPS sensors and cameras [91,92].
Regarding disaster mitigation, Goyal et al. [96] and Rahman et al. [47] collected water
level data to open the floodgates. Rahman et al. [47] used ultrasonic sensors and a
force-sensitive resistor to measure the water level. In addition, floods may cause pot-
holes on the road. Ulil et al. [80] developed pothole monitoring systems with a modem
accelerometer and gyroscope. They used the Raspberry Pi as a single computer board.
They placed the sensors on the vehicles. For building structure health detection after an
earthquake, Antonacci et al. [97] suggested using the LIS344ALH accelerometer, TAOS
2561 light sensor, and SHT11 temperature and humidity sensors, which were installed
on the Imote2 platform and ISM400 board.

The human health data, including the rescuers’ health data and the stranded people’s
health data, Boukerche et al. [94] suggested that command posts should guarantee the
safety of first responders through the body-worn sensors in wearable smart devices, such
as smart glasses and smart watches. Sahil and Sood [90] developed an IoT system to
prioritize the evacuation of panicked, stranded people and provide them with timely
medical support. They used the health sensors in stranded people’s personal mobile
communication devices to collect health data, including heart rate, breath rate, dizziness,
sweating, chest pain, trembling, chills, choking, nausea, and the location of the individuals.
In the rescue operations suggested by Johnsen et al. [92], each rescuer was equipped
with a personal sensor system (e.g., a tactical vest or tactical underwear) to monitor their
health and position. The sensors in the tactical vest aimed to monitor water levels. The
tactical underwear contained medical sensors, including one muscle activity sensor, pulse
oximeters, and a heart rate sensor, which were installed on the Arduino single computer
board. Regarding detecting epidemics in disasters, Ehsani et al. [98] used the case of
detecting COVID-19 in earthquakes to explain an IoT framework. In evacuation centers
and temporary hospitals, they used thermal and infrared sensors to monitor people’s
body temperatures and detect fever. And they used heart rate sensors to measure oxygen
levels and detect breathlessness. In affected areas, they monitored body temperature data
through medical infrared thermometer guns. And they also deployed thermal sensors on
unmanned aerial vehicles to monitor people’s body temperature. Korkalainen et al. [93]
used CO sensors, CO2 sensors, optical sensors (e.g., LWIR cameras, visual range cameras),
vibration sensors, sound sensors, and an ion mobility spectrometer to detect and locate life.
An ion mobility spectrometer could detect volatile organic compounds, such as ammonia
and Acetone [93].

The position data includes the stranded people’s position data, the rescuers’ po-
sition data, and the rescue vehicles’ position data. Firstly, people’s personal devices
are effective sensors to help us collect stranded people’s position data [38]. We can
ask stranded people to wear radio frequency identification bracelets to locate them as
well [99]. And we can locate evacuated social vehicles through portable on-board radio
frequency identification tags [99]. Suri et al. [91] also suggested using traffic cameras to
search for and locate people trapped in vehicles or rubble. The traffic camera can clearly
take images for every passing car, and recognize the license plate and driver charac-
teristics automatically [99]. Furthermore, we also installed the sensors in the rescuers’
personal devices (e.g., tactical vests, tactical underwear) to locate the rescuers [92].
Ochoa and Santos [15] suggested using GPS, Radio Frequency positioning, and inertial
sensors to track rescuers in the field. For rescue vehicles (e.g., ambulances, fire engines,
police cars, and engineering vehicles), we should equip them with IoT equipment to
locate them. For example, Anagnostopoulos et al. [95] use sensors to collect the position
data of the emergency medical service system. Last but not least, Rahman et al. [47]
installed GSM to locate the floodgates.
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5.2. Communication Technologies and Protocols

Normal communication technologies and protocols are also suitable for communi-
cation in the post-disaster stage, such as Wi-Fi [38,80,93,98], Bluetooth [98], Internet [98],
MQTT [47,80,92,100], LoRa/LoraWAN [92], WPAN [93], 3G/4G [80], and COAP [100].
However, disasters may destroy the infrastructure in the cities [94]. We may address this
issue by maintaining the efficiency of existing communication infrastructure and using
additional mobile communication tools.

To maintain communication efficiency in the face of a reduced number of commu-
nication facilities, we should develop resilient communication networks and reduce con-
tention during data communication. Alvarez et al. [101] suggested using the Bluetooth
Mesh emergency network to utilize the remaining sensors to mediate device-to-device
communication in the post-disaster stage. Regarding energy-constrained IoT sensors,
Ai-Turjman [102] suggested using the Cognitive Energy-Efficient Algorithm (CEEA). The
CEEA was a topology-independent protocol that can handle randomness in IoT networks.
The CEEA determined the path from routing nodes to sensors based on the remaining
energy of each node. To be specific, the CEEA would control the remaining energy of
neighbors of recent routing nodes each time before sending data from the recent routing
nodes. If the energy of one of the neighboring routing nodes was less than half of its initial
value, the CEEA might determine a new path to transmit the data. If the residual energy
of all neighboring routing nodes are found to be below 50% of the beginning energy, the
CEEA uses the same strategy. However, it was noted that multitier IoT networks and
cluster- or tier-wide synchronization were the two assumptions for the effective use of the
CEEA. Aljohani and Alenazi [77] introduced a multi-path resilient routing system based on
software-defined networking (SDN), which combined aided-multipath routing with the
capabilities of SDN. Campioni, Lenzi, Poltronieri, Pradhan, Tortonesi, Stefanelli, Suri and
Ieee [100] developed a multi-domain Asynchronous Gateway of Things to enable discovery
across different communication protocols and administrative domains in post-disaster
relief. In addition, epidemic protocols can solve the contention caused by the reduced num-
bers of communication infrastructure in the post-disaster stage. Tan et al. [103] proposed
an adaptive probabilistic epidemic protocol that can effectively suppresses redundant
messages and reduces contention/collision levels. This protocol allowed a node to decide
whether to respond to a broadcast based on information such as the number of neighbors of
the broadcasting node. Ochoa and Santos [15] suggested using epidemic routing algorithms
and spray and wait routing algorithms to support the dissemination of shared information
among personal devices.

In addition, we can use additional mobile communication tools in post-disaster relief,
such as drones [90,94,103] and vehicles participating in relief [10,22]. Tei et al. [22] proposed
an opportunistic data dissemination protocol. They proposed facilitating the transmission
of information from victims to rescue agencies by using the existing vehicles, including
ambulances, police cars, and fire trucks, as well as the sensors inside the network. We can
store the data from drones in the cloud [90]. The vehicles participating in relief include
dynamic vehicles (e.g., fire trucks, ambulances) and stationary vehicles [15]. Dynamic
vehicles aim to transmit data from sensors to stationary vehicles, while stationary vehicles
(e.g., the base vehicles) focus on the transmission between different teams or companies in
post-disaster relief [15]. Further, Johnsen, Zielinski, Wrona, Suri, Fuchs, Pradhan, Furtak,
Vasilache, Pellegrini, Dyk, Marks, Krzyszton and Ieee [92] suggested using the base vehicle
as a central server that utilizes Wi-Fi to receive data from sensors deployed on mobile
unmanned vehicles and in cities. The video data from the drones could also be transmitted
to the base vehicle through radio links [92].

5.3. Analysis and Applications of Sensor Data

People focus on analyzing position data and health data in order to plan evacuation
routes [38,90], allocate ambulance vehicles [95], understand the health of trapped individ-
uals [90], and integrate information for rescuers [91,92]. For example, Ehsani et al. [98]
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can detect COVID-19 cases in a disaster by analyzing people’s temperatures with machine
learning techniques. Regarding locating people in disasters, Kristalina et al. [104] used the
least squares method to improve the generalized geometric triangulation scheme, which
allows sensors to track the position of rescuers or victims. Similarly, Konomi et al. [105]
proposed a cooperative location inference mechanism to locate the sensors automatically.
And they developed a user-participatory sensing environment that allows people to collect
position data from sensors. In addition, we may carry out post-disaster activities with the
cooperation of multiple agencies [9]. Thus, we need to collect data from various heteroge-
neous sensors. Konomi, Wakasa, Ito and Sezaki [105] proposed a novel multi-factor cost
model to integrate the multi-modal sensor data consistently and flexibly. Li et al. [106]
introduced a semi-automated role mapping process for dynamic cross-domain accesses of
sensors in post-disaster relief to solve heterogeneity and protect sensitive information.

In addition, the combination of fog computing and cloud computing can improve the
efficiency of data analysis [90–92]. For example, Suri et al. [91] proposed the Sieve, Process,
and Forward (SPF) Fog-as-a-Service platform to address the scenario of post-disaster relief.
Fog computing is also helpful in reducing the time of search and rescue since it can improve
the efficiency of data analysis through pre-processing some data analysis, such as data
categorization and data novelty analysis [90,91]. Cloud computing aims to store the data
and process deeper data analysis [90–92,98]. The fog layer exists in the gateway (e.g.,
drones and evacuation vehicles) and serves as a bridge between the sensor layer and cloud
layer of the Internet of Things [90,91]. The utilization of the fog layer is attributed to its
position awareness and close proximity to the sensors [90]. This enables it to perform
essential data pre-processing tasks, such as data categorization, novelty analysis, panic
health status classification, and alarm creation [90]. Due to the inherent limitations in
computing and storage capacities of the fog layer, the cloud layer was employed to store
and analyze environmental and health data, as well as the corresponding panic health
status data [90]. This facilitated the generation of alerts in the form of compiled medical
records [90]. The Cloud layer includes temporal data mining, cloud storage, panic health
sensitivity monitoring, evacuation strategy, and evacuation map building [90]. Thus, we
usually develop an application to combine the data and conduct big data analysis on the
cloud [91,92]. And we will place the mobile decision-making centers for post-disaster
rescue on the cloud [91,92].

Regarding data application, scholars usually publish the results of data analysis on the
web application [15,38,88,91,92,99,105]. Some of them are mobile applications [15,92,105].
We visualize data with maps to present the collapse, the traffic, the shelters, and the
evacuation route in the post-disaster stage [15,38,88,90–92]. For example, Lwin et al. [88]’s
City Geospatial Dashboard can provide road congestion information to help disaster
response teams estimate travel times to reach disaster areas. toRoute planning is one of the
major applications in the post-disaster stage [38]. Based on position data, Kim et al. [38]’s
system can provide a real-time evacuation route guidance service, including searching for
the safest shelter and showing pedestrian paths for users. Then, previous studies tend
to use dynamic programming methods to support route planning. Konomi et al. [105]
developed a user sensing environment to collect geo-tagged sensor data, omnidirectional
cameras, and environmental sensors (e.g., temperature, humidity) to solve dynamic routing
planning problem in the post-disaster stage. Liu and Wang [99] suggested using the variable
structure discrete dynamic Bayesian network model for real-time dynamic path planning
This approach could facilitate the prompt evacuation of social vehicles from the event area,
while also ensuring the timely arrival of rescue vehicles at their allocated position to carry
out necessary tasks. Anagnostopoulos et al. [95] developed a real-time dynamic routing
algorithm for the ambulance arrangement to reduce the time per route, distance covered,
and fuel consumption.

Some scholars designed mitigation measures specifically for floods. Goyal et al. [96]
use reinforcement learning to develop gate-control systems on Flash Flood Bypass Wa-
terways to evacuate the flood water to channels. Rahman et al. [47] also controlled the
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valves based on water level data collected by sensors. In addition, Ulil et al. [80] developed
pothole monitoring systems to detect potholes on the road caused by floods. Decision trees
and machine support vector methods are the data analysis within the systems.

6. Comparison between the IoT Applied in Pre-Disaster and Post-Disaster Stages

We usually use sensors to collect environmental data in the pre-disaster stage. How-
ever, we should use sensors to collect health data and position data more in the post-
disaster stage. We can transmit the data with a number of communication technologies
and protocols in the pre-disaster stage. However, disasters may destroy communication
infrastructures. Thus, it is important to maintain the efficiency of existing communication
infrastructure and use additional mobile communication tools in the post-disaster stage.
Machine learning techniques are common data analysis methods both in the pre-disaster
stage and the post-disaster stage. With the development of image processing algorithms,
we used cameras as sensors more. Fog-cloud computing is useful to improve the efficiency
of data analysis both in the pre-disaster and post-disaster stages. The data applications
aim to provide environmental information and send warnings in the pre-disaster stage.
However, they focus more on route planning in the post-disaster stage.

In addition, five publications mention IoT systems used in both the pre-disaster
and post-disaster stages [38,47,88,94,105]. Environmental data should be collected both
in the pre-disaster and post-disaster stages since we need to use environmental data to
detect disasters in the pre-disaster stage and ensure the safety of the environment in the
post-disaster stage. For example, Rahman et al. [47] may use water level data to control
the valves to prevent sewerage system overflow and mitigate floods. Since position
data is also useful in the post-disaster stage, people can check environmental data and
position data in Lwin et al. [88]’s application in the pre-disaster and post-disaster stages.
Furthermore, Kim et al. [38] and Konomi et al. [105] provide evacuation route planning
in the applications.

7. Conclusions and Future Work

Disasters have the potential to inflict harm upon human lives and result in signifi-
cant economic and environmental repercussions, particularly in densely populated urban
areas [6,7]. Given the substantial magnitude of losses incurred by urban disasters, it is
imperative to enhance the efficacy of urban disaster management. Furthermore, the imple-
mentation of effective disaster management strategies is of utmost importance for urban
areas to successfully attain the UNSDGs [12]. Sensors play a crucial role in the acquisition
of data within IoT devices. They serve as a connection between the physical and digital
realms, playing a vital function within the IoT framework. IoT has the potential to offer
real-time monitoring, early warning systems, post-disaster response, and rescue support,
thereby playing a significant role in the field of urban catastrophe management.

This study conducted a SLR to examine the utilization of sensors in the IoT for urban
catastrophe management. The evaluation encompassed both the pre-disaster and post-
disaster stages and analyzed a total of 72 publications. This study fills the research gap in
sensors on IoT systems for urban disaster management. Nevertheless, this study possesses
certain limitations that warrant further investigation in order to enhance its findings. The
utilization of keywords has the potential to restrict the size of the sample. The formulation
of keywords and establishment of inclusion criteria are based on the research questions,
which may lead to the exclusion of some articles. Additionally, the selected publications
may place a greater emphasis on the topics of earthquakes, landslides, and floods. There are
a limited number of scholarly works that specifically address the topic of natural disasters,
such as storms.

In addition, we explore potential avenues for future study in the field of disaster
management. Specifically, we highlight the following areas: sensor heterogeneity, post-
disaster emergency communication, integration of sensor technology with unmanned aerial
vehicles, user participation in sensing, and the calculation of post-disaster rescue time.
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Firstly, it can be observed that a diverse range of sensors are employed in the field
of disaster management, encompassing both the pre-disaster and post-disaster stages.
The presence of various manufacturers and the diverse applications of sensors in disaster
scenarios contribute to the heterogeneity of these sensors, hence hindering the integration
and sharing of information [107,108]. Some disasters may cause sequent disasters. For
example, seismic activity or inundations can cause floods [109]. By performing an analysis
of sensor data pertaining to various sorts of disasters, it becomes possible to anticipate
the occurrence of subsequent disasters following an initial one. Moreover, future research
endeavors could explore the integration of disparate sensors in order to develop a holistic
application capable of facilitating the visualization of sensor data and the dissemination
of alerts pertaining to various categories of disasters. To facilitate communication among
heterogeneous sensors, future research endeavors may explore novel communication tech-
nologies and protocols, including the incorporation of integration brokerage applications.
The JosNet system serves as a brokerage platform that facilitates interoperability and inte-
gration among many low-rate and low-power protocols, including Bluetooth LE, Zigbee,
and Thread [110]. Furthermore, integration brokerage programs provide seamless com-
munication with the remaining sensors and other heterogeneous devices throughout the
post-disaster phase, hence enabling sustained communication in this critical time.

Secondly, in the aftermath of a disaster, it is possible to employ low-power commu-
nication technologies and protocols to sustain communication. For instance, one such
technology is low-power satellite communication protocols. Random-access, very-low-
power, and wide-area networks (RA-vLPWANs), as low-power satellite communication
protocols, provide uncoordinated multiple access in scenarios characterized by poor signal-
to-noise ratios and very low signal power [111]. Furthermore, the CEEA algorithm, as
suggested by Ai-Turjman [102], serves the purpose of establishing a post-disaster sensor
network by effectively connecting operational sensors with remaining energy. Notably, this
algorithm bears a resemblance to the Bee algorithm [112]. Future research endeavors may
be directed toward examining the potential applicability of the Bee algorithm in optimizing
sensor networks during the post-disaster phase.

Thirdly, future studies also can combine sensors with unmanned aerial vehicles.
We can install sensors on unmanned aerial vehicles. Future studies may investigate
what types of sensors are suitable to install on unmanned aerial vehicles. If we use
cameras on unmanned aerial vehicles, it is useful to investigate how to transmit the
image data from unmanned aerial vehicles to the operation centers. Since we may
control unmanned aerial vehicles remotely, how do we ensure the connects between
controllers and unmanned aerial vehicles? Unmanned aerial vehicles can also serve as
communication tools, especially in the post-disaster stage. It is interesting to optimize
unmanned aerial vehicles’ cruising trajectory to balance the communication coverage
and cost. Future studies may also investigate how to use unmanned aerial vehicles to
locate the sensors or trapped people.

Fourthly, some studies mentioned user participation in sensing in the pre-disaster
stage. However, people may upload false information to the system, affecting the credibility
of the system. Future studies may investigate how to ensure the authenticity of data with
Blockchain. In addition, because of the wide application of cameras, sensor communication
must be able to transmit a larger amount of image data.

Fifthly, future studies can use sensors to calculate the time from departure to the
successful completion of the rescuers in the post-disaster stage, which can allocate rescue
personnel more efficiently. For example, personal devices can record the rescuers’ routes
and calculate the time. The rescuers may record the completion of the rescue when they
save the people successfully.
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