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Abstract: As a convenient and natural way of human-computer interaction, gesture recognition tech-
nology has broad research and application prospects in many fields, such as intelligent perception and
virtual reality. This paper summarized the relevant literature on gesture recognition using Frequency
Modulated Continuous Wave (FMCW) millimeter-wave radar from January 2015 to June 2023. In the
manuscript, the widely used methods involved in data acquisition, data processing, and classification
in gesture recognition were systematically investigated. This paper counts the information related to
FMCW millimeter wave radar, gestures, data sets, and the methods and results in feature extraction
and classification. Based on the statistical data, we provided analysis and recommendations for
other researchers. Key issues in the studies of current gesture recognition, including feature fusion,
classification algorithms, and generalization, were summarized and discussed. Finally, this paper
discussed the incapability of the current gesture recognition technologies in complex practical scenes
and their real-time performance for future development.

Keywords: gesture recognition; FMCW millimeter-wave radar; feature extraction; classification;
generalization

1. Introduction

In recent years, with the continuous development of intelligent perception and human-
computer interaction technologies, gesture recognition has received more attention and
has been used as a convenient approach to human-computer interaction [1] in many fields,
including smart homes [2], smart vehicles [3], sign language communication [4], electronic
device control [5], games, and virtual reality [6]. In its early stages, gesture recognition
usually relies on wearable sensors [7], such as data gloves [8], surface electromyography
sensors [9], accelerometer and gyroscope sensors [10], and wearable sensors based on
photoplethysmography [11], which also have good recognition performance. These sensors
are able to obtain a wealth of information about the operator’s hand movements. However,
gesture recognition technology based on wearable sensors is cumbersome and expensive,
which often leads to inconvenience for users and has not been widely used in daily life [12].
Therefore, gesture recognition based on contactless sensing has attracted more attention,
such as computer vision methods using RGB and depth images [13] and radio frequency
identification based on WiFi and radar signals [14]. A computer vision-based gesture
recognition method collects images of dynamic gestures and recognizes gestures based on
features such as appearance, contour, or skeleton of the gesture, which has high recognition
accuracy [15]. With the advancement of depth sensing technology, gesture recognition
based on depth cameras such as Kinect [16], RealSense [17], and Leap Motion [18] has
received widespread attention, which can achieve more accurate and robust recognition
than traditional cameras and can be applied to complex 3D gesture recognition. Depth
cameras can provide real-time tracking of gestures and movements, allowing for immediate
responses and interactions. However, this method is highly dependent on the brightness
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of environmental conditions [19]. To note, it requires much computational resources in
dynamic gesture recognition [20] and brings potential leakage of privacy. The WiFi-based
method uses Channel State Information (CSI) and Received Signal Strength Indicator (RSSI)
as features for gesture recognition, but this method is susceptible to interference and makes
it difficult to recognize complex gestures [21]. LiDAR [22] is a sensor that utilizes infrared
light to determine the distance between the sensor and an object by projecting a pulse of
laser light, which is highly accurate in ranging and has a higher level of safety compared
to cameras. In addition, LiDAR is not reliant on ambient light and can operate effectively
in low light or complete darkness. In gesture recognition, LiDAR can be used to capture
3D point clouds of hand movements and recognize different gestures, enabling touchless
interactions with devices or virtual environments. However, LiDAR is not sensitive to
complex gesture changes and is susceptible to occlusions. As a consequence, millimeter-
wave (mmW) radar-based sensing became an option. Millimeter wave radar combines the
advantages of microwave radar and LiDAR in terms of privacy protection, light robustness,
small size, low cost, and convenience during gesture recognition [23]. Further, mmW radar
has a variety of waveforms, such as Continuous Wave (CW), Frequency-shift keying (FSK),
and Frequency-Modulated Continuous Wave (FMCW). FMCW mmW radar offers higher
accuracy, robustness, and efficiency compared to other waveforms, which have been widely
used in gesture recognition [24].

At present, the studies relating to FMCW mmW radar-based gesture recognition have
achieved certain milestones. For example, in 2015, Google’s Soli project implemented
proximity micro-motion gesture recognition by end-to-end convolutional recurrent neural
networks based on distance Doppler features using a FMCW mmW radar chip at 60
GHz [25], and this study demonstrated the capability of FMCW mmW radar for this
application of gesture recognition. Although there are a number of studies on gesture
recognition based on FMCW mmW radar, systematic analysis of the current method
is scarce.

This paper summarized the main methods and challenges involved in recent research
on FMCW mmW radar-based gesture recognition and discussed the key issues as well as
the development of the technology.

The remainder of this paper is organized as follows: Section 2 introduces the searching
strategy. Section 3 introduces information about FMCW mmW radar and gestures. Section 4
summarizes the methods and results in data processing and classification, analyzes the
statistics, gives recommendations, and discusses the key issues involved. Section 5 discusses
the challenges of gesture recognition. Section 6 concludes this paper.

2. Searching Strategy

In this review article, we searched several databases for references and covered the
following databases:

(1) Web of Science;
(2) IEEE Explore Digital Library
(3) Association for Computing Machinery;
(4) Springer Link;
(5) Google Scholar.

The searching keyword was a combination of “Gesture recognition”, “Radar”, “Millimeter-
wave”, and “FMCW”.

To screen our initial searches, we applied the following inclusion criteria:

(1) Publication date: between January 2015 and January 2023.
(2) Searching domain: science, technology, or computer science.
(3) Publication types: journals, proceedings, and conferences.
(4) Language: English.
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We applied the following exclusion criteria:

(1) Studies that do not include FMCW mmW radar-based gesture recognition.
(2) Studies that do not provide details of experiments or experimental designs.
(3) Studies that replicate with others.
(4) Studies for which the full text of the paper is not available.

In addition, we classified the studies according to their publication date, innovation,
accuracy, features, and algorithms in order to compare and summarize the problems,
methods, and results involved.

3. FMCW mmW Radar and Gestures

In general, FMCW MMW radar-based gesture recognition is divided into three main
steps: data acquisition, data processing, and classification. At the beginning of any study,
researchers need to select the appropriate FMCW mmW radar and gestures as tools and
objects for data acquisition. In this section, we introduced FMCW mmW radar and gestures
in gesture recognition.

3.1. FMCW mmW Radar

In gesture recognition, the FMCW mmW radar transmits FM continuous waves,
whose frequency increases over time, to the hand. The received and transmitted signals
are filtered through a mixer and low-pass filter. After ADC sampling, an intermediate
frequency (IF) signal is generated. The IF signal allows information such as the distance,
speed, and even angle of the gesture to be calculated and the corresponding feature maps
to be obtained. These features reflect the motion of the gesture through changes in distance,
Doppler frequency, and angle rather than 3D shape, which is one of the differences between
dynamic and static gesture recognition. The whole process of data acquisition is shown in
Figure 1.
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The range measurement in FMCW radar is based on the time delay between the
transmitted and received signals. The range of the target (R) can be calculated using
the formula:

R =
c · τ

2
= f IF

cT
2B

where c is the speed of light, τ is the time delay between the transmitted and received
signals, f IF is the frequency of the IF signal, and B and T are the bandwidth and the sweep
period of the chirp signal. This process can be achieved by FFT for the IF signal.

The range resolution of the FMCW radar can be derived as follows:

Rres =
c

2B

Therefore, the range resolution of the radar can be improved by increasing the bandwidth.
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The velocity measurement in FMCW radar is based on the Doppler effect, which can
be obtained by using phase difference. The velocity of the target (v) can be calculated using
the formula:

v =
λ∆φ

4πT
where λ is the wavelength of the chirp signal and ∆φ is the phase difference. This process
can be achieved by using 2D-FFT for the IF signal.

The velocity resolution of the FMCW radar can be derived as follows:

vres =
λ

2NT

where N is the number of chirps in a frame.
The angle measurement in FMCW radar is typically achieved using an antenna array

with multiple elements. The radar can estimate the angle of the target based on the phase
differences between the signals at different antennas. The angle of the target (θ) can be
calculated using the formula:

θ = sin−1(
λ∆φ

2πl
)

where l is the distance between adjacent antenna elements.
The angular resolution of the FMCW radar can be derived as follows:

θres =
λ

NRl cos(θ)

where NR is the number of RX antennas, and the angular resolution can be improved by
increasing the number of antennas.

In order to understand the use of FMCW mmW radars, we summarized the infor-
mation on FMCW mmW radars used in numerous studies in recent years (Table 1). It
can be found that the FMCW mmW radars used in all the studies we investigated were
concentrated in several types of radars, as shown in Table 1. 24 GHz, 60 GHz, and 77 GHz
are the main frequency bands used by millimeter-wave radars at present, and the radars
shown in Table 1 are also distributed in these three frequency bands. It is worth noting
that radars covering 76–81 GHz and 60–64 GHz are favored for most studies in gesture
recognition, while radars operating at 24 GHz are rarely used. We attribute this situation to
the performance of the radars in terms of range resolution and velocity resolution. Accord-
ing to the resolution equations for distance and velocity, we know that the radars in the
frequency bands 76–81 GHz and 60–64 GHz (Table 1) tend to provide higher resolution
in gesture recognition due to their high frequency and wide bandwidth, which in turn
improves the accuracy of the recognition results. In addition, gesture recognition usually
requires angle information in the process of target motion, which requires the radar used
for data acquisition to have multiple receiving antennas, as can also be proven by Table 1.
It is worth noting that Wu et al. [26] tested the effect of using different numbers of receiving
antennas (1, 2, and 4) for gesture recognition and found that more receiving antennas used
to collect gesture data can often obtain higher recognition accuracy. This result is also
consistent with the method we mentioned to improve the angular resolution.

In addition to the information in Table 1, we also counted the power, gain, maximum,
and minimum detection range of these radars according to the datasheet. We found that
the power and gain values of these radars are designed in a small range; for example,
the TX power is all in the range of 10–15 dBm, with very little difference from each other.
Similarly, except for the BGT24MTR12, which has a minimum detection range of 0.5 m,
all the other radars achieve a minimum detection range of centimeters and a maximum
detection range of more than 10 m. In fact, since gesture recognition based on FMCW
millimeter-wave radar is generally in the detection scene at close range, it is not sensitive to
the above parameters compared with frequency, bandwidth, and the number of antennas.
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Table 1. FMCW mmW radar usage statistics.

Model Frequency Coverage Available Bandwidth Number of Antennas References

I/AWR1642BOOST 76~81 GHz 4 GHz 2TX, 4RX [12,27,28]

I/AWR1843BOOST 76~81 GHz 4 GHz 3TX, 4RX [29,30]

I/AWR1443BOOST 76~81 GHz 4 GHz 3TX, 4RX [31,32]

I/AWR6843 60~64 GHz 4 GHz 3TX, 4RX [33,34]

BGT60TR13C 58~63.5 GHz 5.5 GHz 1TX, 3RX [35–37]

BGT24MTR12 24~24.2 GHz 200 MHz 1TX, 2RX [38]

3.2. Gestures

In gesture recognition, the gestures in the dataset need to be predefined. In fact, the
complexity of the gesture is an important factor affecting recognition accuracy. The choice
of gestures is mostly determined by the experimental context and the conditions of the
study. However, the complexity of gestures varies, which affects the comparison and
evaluation of the results of different experiments. Therefore, a systematic summary and
classification of dynamic gestures is necessary.

The gestures chosen for the experiments should be generic and distinctive, taking into
account the differences in gestures due to individual habits. We counted the gestures to be
tested that were of concern in previous studies, as shown in Figure 2, which appeared in
more than two papers. These gestures are considered to be divided into macro gestures
and micro gestures [39]. Macro gestures usually take the palm movement as the main
recognition subject, excluding finger movements, and are defined according to the changing
process of the spatial position of the palm. In the statistical process, we attempt to further
classify macro gestures into those with single-direction (Figure 2a) and those with multi-
direction (Figure 2b). This is due to the fact that macro gestures with multi-directions were
found to be more likely to be misclassified in several studies because a certain part of the
movement is more prominent and more similar to single-directional gestures [40,41]. This
classification also provides a better statistical measure of the complexity of gestures. Micro-
gestures usually take finger movements as the main recognition subject, and micro-gestures
often do not include the spatial position changes of the palm. Since the radar reflection
area and motion amplitude of fingers are smaller than those of palms, the features of
microscopic gestures are weaker and more susceptible to interference from other reflected
signals, resulting in misjudgment. Therefore, the recognition of micro gestures has higher
requirements for feature extraction, clutter suppression, and classification algorithms.
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In addition, dynamic gestures are divided into isolated gestures and continuous
gestures. This is a definition of gesture types based on coherence. Currently, most of the
research on gesture recognition based on radar sensors uses isolated gestures [42]. This
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is due to the fact that isolated gestures have significant action boundaries and are easy to
detect and recognize. In contrast to isolated gestures, continuous gestures can improve
the speed and efficiency of gesture recognition. However, the accurate segmentation of
continuous gestures is a challenge for recognizing continuous gestures [43], which largely
increases the difficulty of accurate gesture recognition. It is necessary to determine the
beginning and end of a gesture according to the features of gestures so as to realize the
segmentation of continuous gestures. Zhou et al. [44] obtained the total time of a single
hand gesture and realized the detection of continuous gestures. Ren et al. [45] obtained
the amplitude by normalizing the hand gesture target and setting a threshold to effectively
segment the continuous gestures.

4. Methodologies

After data acquisition, the raw data needs to be processed to extract the gesture
features and build the dataset for training and testing the classification model (Figure 3).
Finally, the features are classified by a classification algorithm to obtain the results of gesture
recognition. Feature extraction and classification algorithms are the most important parts of
gesture recognition and have been the focus of researchers. In this section, we summarized
the methods in gesture recognition and discussed and made suggestions on the problems
of feature fusion, clutter suppression, and generalization based on the statistical results.
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4.1. Pre-Processing

The raw gesture data contains clutter that can seriously interfere with gesture recogni-
tion. It is necessary to pre-process the acquired data to remove interference while retaining
the main gesture data. In this section, we summarize the conventional pre-processing
methods for radar data. Since Range Doppler Map (RDM) is the classical way to describe
single frames of signal data from FMCW mmW radar, which can significantly show the
clutter distribution, we introduced the method of acquiring RDM and summarized the
main methods for removing clutter based on previous studies.

In general, the gesture signal needs to be processed into a data matrix, the rows of
which represent the sampled values of the chirp signal in the fast-time and slow-time
domains, respectively. The popular pre-processing method for the chirp signal is the
Fourier transform, such as the fast Fourier transform (FFT) [46] and the short-time Fourier
transform (STFT) [47]. For each data matrix, an FFT is performed in the fast-time domain
(the IF signal sampling direction) to obtain a two-dimensional range map. By performing
FFT on the 2D range map in the slow-time domain (the chirp index direction), the RDM
can be obtained [48]. The process is shown in Figure 4.

Spurious signals are divided into static and dynamic spurious waves. Static clutter
refers to radar signals in the environment that are reflected by static targets. Dynamic
interference comes from echoes from other moving parts of the hand. From the perspective
of parametric characteristics, static target echoes are quite different from moving target
echoes, which tend to exhibit low-frequency characteristics in the Doppler domain and
thus can usually be achieved by using high-pass filtering [49], pulse-to-cancellation [50],
background subtraction [51], or adaptive clutter suppression algorithms [52] for static
clutter filtering. For dynamic interference, traditional clutter suppression methods are
mainly based on various types of constant false alarm algorithms (CFAR), which detect
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the clutter energy to determine the judgment threshold and then achieve the elimination
of dynamic interference signals [53]. However, in recent years, some studies have found
that the energy and amplitude of some dynamic clutter signals are very similar to real
gesture signals, which is called target-like clutter. They have serious uncertainty and
time-varying characteristics, and the traditional CFAR method cannot solve the complex
clutter interference. To address the above problem, some studies proposed solving the
mixing problem of clutter signals and target gesture signals through location information.
Xia et al. [54] proposed a preprocessing method for spatial position alignment to improve
the spatial consistency of a multi-position dataset. There are also studies that target specific
forms of clutter interference by mathematically modeling them to achieve the cancellation
of target-like clutter. Ritchie et al. [55] used deep learning techniques to exploit the joint
location-energy feature information of real gesture targets and target-like targets on the
distance-angle spectrum to achieve clutter suppression.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20 
 

 

domains, respectively. The popular pre-processing method for the chirp signal is the Fou-
rier transform, such as the fast Fourier transform (FFT) [46] and the short-time Fourier 
transform (STFT) [47]. For each data matrix, an FFT is performed in the fast-time domain 
(the IF signal sampling direction) to obtain a two-dimensional range map. By performing 
FFT on the 2D range map in the slow-time domain (the chirp index direction), the RDM 
can be obtained [48]. The process is shown in Figure 4. 

 
Figure 4. The process of obtaining RDM. 

Spurious signals are divided into static and dynamic spurious waves. Static clutter 
refers to radar signals in the environment that are reflected by static targets. Dynamic in-
terference comes from echoes from other moving parts of the hand. From the perspective 
of parametric characteristics, static target echoes are quite different from moving target 
echoes, which tend to exhibit low-frequency characteristics in the Doppler domain and 
thus can usually be achieved by using high-pass filtering [49], pulse-to-cancellation [50], 
background subtraction [51], or adaptive clutter suppression algorithms [52] for static 
clutter filtering. For dynamic interference, traditional clutter suppression methods are 
mainly based on various types of constant false alarm algorithms (CFAR), which detect 
the clutter energy to determine the judgment threshold and then achieve the elimination 
of dynamic interference signals [53]. However, in recent years, some studies have found 
that the energy and amplitude of some dynamic clutter signals are very similar to real 
gesture signals, which is called target-like clutter. They have serious uncertainty and time-
varying characteristics, and the traditional CFAR method cannot solve the complex clutter 
interference. To address the above problem, some studies proposed solving the mixing 
problem of clutter signals and target gesture signals through location information. Xia et 
al. [54] proposed a preprocessing method for spatial position alignment to improve the 
spatial consistency of a multi-position dataset. There are also studies that target specific 
forms of clutter interference by mathematically modeling them to achieve the cancellation 
of target-like clutter. Ritchie et al. [55] used deep learning techniques to exploit the joint 
location-energy feature information of real gesture targets and target-like targets on the 
distance-angle spectrum to achieve clutter suppression. 

4.2. Feature Extraction 
In the previous section, we introduced RDM, which is also one of the most commonly 

used gesture features. However, the RDM only contains the position and velocity of the 
target in a single-frame signal and cannot represent the complete gesture feature over a 
period of time. Therefore, some features with a time dimension are used to represent the 
overall gesture. In fact, classical gesture features can be divided into time-frequency maps 
and spectrum map videos. Time-frequency maps include range-time maps (RTMs), Dop-
pler-time maps (DTMs), and angle-time maps (ATMs). The spectrum map videos consist 
of the multi-frame accumulation of range-Doppler maps (RDMs), range-angle maps 
(RAMs), and Doppler-angle maps (DAMs) [29]. These features reflect information about 
the target in terms of distance, Doppler, and angle. The time-frequency maps contain the 
trajectory of a feature over time. We introduced how to obtain the range and Doppler 
information in the previous chapter, and RTM and DTM can be constructed by 

Figure 4. The process of obtaining RDM.

4.2. Feature Extraction

In the previous section, we introduced RDM, which is also one of the most commonly
used gesture features. However, the RDM only contains the position and velocity of the
target in a single-frame signal and cannot represent the complete gesture feature over
a period of time. Therefore, some features with a time dimension are used to represent
the overall gesture. In fact, classical gesture features can be divided into time-frequency
maps and spectrum map videos. Time-frequency maps include range-time maps (RTMs),
Doppler-time maps (DTMs), and angle-time maps (ATMs). The spectrum map videos
consist of the multi-frame accumulation of range-Doppler maps (RDMs), range-angle
maps (RAMs), and Doppler-angle maps (DAMs) [29]. These features reflect information
about the target in terms of distance, Doppler, and angle. The time-frequency maps
contain the trajectory of a feature over time. We introduced how to obtain the range and
Doppler information in the previous chapter, and RTM and DTM can be constructed by
accumulating the Range-bin and Doppler-bin. For example, using the distance information
obtained by weighted averaging each 2D range map and then stitching each frame in turn,
the RTM of this gesture signal can be obtained. Similarly, the velocity vector at the distance
unit of the target on each RDM frame is extracted, and the velocity vectors of each frame
are stitched together to obtain the DTM of the gesture signal. Different from distance
and Doppler information, angle information is calculated from the data acquired by the
different receiving antennas. There are many different algorithms for angle estimation,
such as Beam-Forming, Minimum Norm, Multiple Signal Classification (MUSIC) [56],
etc. Beamforming is a signal processing technique used to estimate the angle of arrival
(AoA) of incoming signals by combining the signals received from multiple antennas in
a specific way. The Minimum Norm method estimates the direction of arrival of a signal
by minimizing the power of the received signal, subject to some constraints, and provides
superior interference rejection compared to conventional beamforming. MUSIC is a high-
resolution algorithm for direction finding and source location in array signal processing.
It estimates AOA by analyzing the eigenvalues and eigenvectors of the received signal
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covariance matrix. MUSIC not only provides excellent angle resolution, but also has good
robustness to noise and has been widely used in gesture recognition. Yao et al. [57] used
the MUSIC algorithm to extract the angle feature and construct the angle-time map (ATM)
of multi-hand gestures. The spectrum map videos contain more feature information in each
frame of the map. Similar to RDM, RAM and DAM are maps calculated from one frame
of radar data in two different dimensions. Currently, features that can represent distance,
velocity, and angle information, such as RDM [58,59], RAM [12], DAM [28], RTM [60,61],
DTM [62], and ATM [63], have been widely used in the research of gesture recognition.

However, it is difficult to achieve high recognition accuracy by relying on a single
feature in gesture recognition. In contrast, rich gesture features can improve the accuracy
of a recognition system. Therefore, many studies have proposed feature fusion as a way to
consider more gesture features in gesture recognition. Since the traditional convolutional
neural network structure is limited by a single input data set, some studies have proposed
a multi-channel algorithmic model to exploit more gesture features [64,65]. In addition to
multi-channel networks, some studies have proposed feature stitching methods to create
new multidimensional features, such as constructing multi-feature cubes including range,
Doppler, and angle features, which are input classification models with one channel. We
selected several representative studies that have applied feature fusion methods, as shown
in Table 2. We counted the type and number of gestures, the classification algorithm, and
the accuracy of using different features in these studies. Due to the differences in the
gestures, datasets, and classification algorithms used in these studies, it is meaningless to
directly compare the results of different studies, but there are some commonalities between
these studies under different conditions. By comparing the results of these studies applying
different characteristics in their experimental settings, we summarized the findings and
recommendations as follows:

Before comparing the results of different feature extraction methods, it is necessary
to clarify the radars used in these studies and their resolution in different dimensions. In
gesture recognition, resolution has the greatest correlation with features. As we mentioned
before, the object of gesture recognition is the movement of dynamic gestures that are
reflected by features. Higher resolution may allow more gesture motion details to be
included in the same feature, which is more important in the detection of micro-gestures.
Based on radar parameters, we calculated the range, velocity, and angular resolution of the
radars used in the studies according to the formula, as shown in Table 2. It can be noticed
that the studies generally set the resolutions at a high level, and because the configurations
of the radars used are very similar, the values of the resolutions are also very close to each
other. In the recognition of most gestures, including micro-gestures, these small differences
cannot produce significant differences or effects in features. In addition, the detection
accuracy is different from the resolution, which can be affected by the frequency resolution
of the processing algorithm. It is often possible to increase the frequency resolution of
the algorithm by increasing the length of the sampling sequence, but this also reduces
the efficiency of the algorithm. In fact, it is usually not necessary to detect the specific
position, speed, or angle value in gesture recognition; rich and detailed features are the
most important.
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Table 2. Statistics of methods and results in feature extraction.

Radar
Resolution

Gestures/Number Classification Algorithm Single Features/Average Accuracy
Fusion Features/Average Accuracy

Reference
Range Velocity Angular One-Channel Multi-Channel

AWR1642 BOOST 3.95 cm 0.2 m/s ≥0.5◦ Macro-gestures/7
Micro-gestures/3 SVM

RTM/70.69%
DTM/87.59%
ATM/69.28%

RTM + DTM/89.43%
DTM + ATM/98.15%
RTM + ATM/91.37%

RTM + DTM +
ATM/98.48%

\ [27]

IWR1642 BOOST 3.75 cm 0.032 m/s ≥0.5◦ Macro-gestures/7
Micro-gestures/3 CNN DTM/91.34% 3D-festure/96.61% \ [66]

IWR1642 BOOST 8.33 cm 0.19 m/s ≥0.5◦ Macro-gestures/9
Micro-gestures/1 3D-CNN

RTM/91.60%
DTM/92.80%
ATM/92.10%
RDM/93.20%
DAM/93.90%

Feature Cube
(RDAM)
98.10%

\ [28]

IWR1443 BOOST 3.75 cm 0.8 m/s ≥0.5◦ Macro-gestures/6 CNN
RTM/89.6%
DTM/87.3%
ATM/84.3%

\ RTM + DTM + ATM/91.6% [31]

AWR1642 BOOST 3.75 cm 0.4 m/s ≥0.5◦ Macro-gestures/6 VGG-16
RTM/89.3%
DTM/86.3%
ATM/87.0%

\ RTM + DTM + ATM/92.0% [67]

AWR1642 BOOST 3.75 cm 0.4 m/s ≥0.5◦ Macro-gestures/6 DTW
RTM/89.50%
DTM/89.83%
ATM/88.50%

\ RTM + DTM + ATM/94.50% [60]

AWR1642 BOOST 4.46 cm 0.4 m/s ≥0.5◦ Macro-gestures/8 3D-CNN RDM/72.16%
RAM/82.79% \ RDM + RAM/86.95% [12]

AWR1843 BOOST ≥3.75 cm \ ≥0.5◦ Macro-gestures/7
Micro-gestures/3 2D-ResNet18

RTM/83.70%
DTM/88.63%
ATM/60.37%

\
RTM + DTM/91.52%
RTM + ATM/73.00%
DTM + ATM/84.00%

RTM + DTM + ATM/90.48%

[29]

AWR1843 BOOST ≥3.75 cm \ ≥0.5◦ Macro-gestures/7
Micro-gestures/3 3D-ResNet18

RDM/92.26%
RAM/87.07%
DAM/91.37%

\
RDM + RAM/90.33%
RDM + DAM/92.52%
DAM + RAM/89.70%

RDM + RAM + DAM/93.30%

[29]

AWR1843 BOOST ≥3.75 cm \ ≥0.5◦ Macro-gestures/7
Micro-gestures/3

2D + 3D ResNet18
(Dual-flow) \ \

DTM + RDM/93.70%
DTM + DAM + RAM/94.96%
DTM + RDM + DAM + RAM

/95.63%
RTM + DTM + RDM/94.11%
RTM + DTM + DAM + RAM

/95.22%
RTM + DTM + RDM + DAM + RAM

96.04%

[29]

AWR1642 BOOST 3.75 cm 0.2 m/s ≥0.5◦ Macro-gestures/16 2D/3D-CNN \ 5D feature
cubes/99.53%

RTM + DTM/92.47%
RTM + DTM + ATM + ETM/98.87% [40]
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Excluding the effect of resolutions on the results, we are able to directly compare each
feature extraction method. First, by comparing the results of applying a single feature, it
can be found that the accuracy of the feature in the recognition of different gestures varies
greatly, even in the same study. We believe this is because the expressive force of gestures in
different dimensions is different. For example, the change of range and Doppler in macro
gestures is more prominent, while angle information plays a greater role in the recognition
of micro gestures. This confirms, from another perspective, the need to consider multiple
characteristics. In addition, by comparing the results of applying a single feature and a
fusion feature, it can be found that the application of a fusion feature can increase the
accuracy of gesture recognition regardless of the experimental conditions, and the accuracy
tends to increase with the increase in feature information. It is worth noting that we also
found that there were cases where the feature information increased but the accuracy did
not increase or even slightly decreased [68], although these cases were very rare. We believe
that this is because the integrated features with less feature information have fully expressed
the gestures to be measured, and the continued addition of feature information may cause
redundancy, which affects accuracy to a certain extent. Finally, in the statistical analysis of
the methods and results of the two types of feature fusion, we found that methods that put
multiple features on the same map or feature cube tend to have slightly higher accuracy
compared to multi-channel feature fusion methods, and similar results were found in the
study [40]. We believe this is due to the fact that the former reduces complexity while
enriching gesture features and, at the same time, enhances the correlation between features
of different dimensions. With the above discussion and results, we suggest that researchers
should consider features of multiple dimensions based on the method of feature fusion in
feature extraction, including but not limited to range, Doppler, and angle. Of course, this
should also consider other experimental and application conditions.

4.3. Datasets

In this section, we conducted statistics on the datasets in gesture recognition. Since
most studies used self-constructed data sets, we selected some representative self-constructed
datasets for summary and analysis, as shown in Table 3. Currently, there are limited
publicly available resources for comprehensive radar gesture datasets, except for the freely
accessible Google soli dataset [25], and only a few studies have collected and made public
comprehensive gesture datasets with large samples and data volumes, such as the Dop-
NET [69] and M-Gesture [70] datasets. The Soli dataset comes from Google’s Project Soli
sensor. The dataset contains a total of 5500 gesture samples, and gesture movement is
represented by four RDMs. These data are divided into two parts: One part contains
a sample of 11 gestures from 10 experimenters, with 25 samples of each gesture and a
total sample size of 2750. The other part contains 2750 samples generated by a single
experimenter in six gestures, which can be used in some comparison experiments. Dop-Net
is a large radar database organized in a hierarchy in which each node represents the data of
a person. This data was obtained using FMCW and CW radars. Unlike the Soli dataset,
the radar signal in Dop-NET is based on micro-Doppler signatures. The dataset includes
data from four different gestures (Wave/Pinch/Click/Swipe) from six experimenters, for a
total sample size of 3052. M-Gesture is a large gesture dataset built by Liu et al. [70]. The
data was obtained from 144 experimenters, for a total sample size of 56,420. The dataset,
obtained from Radar IWR1443, contains a total of 14 gestures and includes a variety of
data types such as eigenvalue sequences, RDM, point clouds, and raw data. In addition,
the data was divided into two experimental scenarios: short-range and long-range, and
the gestures, number of samples, and experimenters differ in both scenarios, allowing the
dataset to meet the needs of a wider range of experimental conditions.
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Table 3. Statistics of the datasets.

Dataset Radar Features Experimenters/Number Gestures/Number Samples of
Each Gesture Total Sample Reference

Soli BGT60TR13C RDM 10 11 25 2750 [25]

Dop-Net Ancortek radar DTM 6 4 \ 3052 [69]

M-Gesture IWR1443 BOOST

Eigenvalue
sequences, RDM,
Point Cloud and

Raw data

144 (64 men and
80 women) 14 10/15/30/50 56,420 [70]

Self-constructed IWR1642 BOOST RTM, DTM, ATM 5 10 30 1500 [28]

Self-constructed AWR1642 BOOST RDM, RAM 5 8 100 4000 [12]

Self-constructed AWR1843 BOOST RTM, DTM, ATM
RDM, RAM, DAM 9 6 50 2700 [29]

Self-constructed AWR1642 BOOST Feature Cube 19 16 65 19,760 [40]

Self-constructed BGT60TR13C Feature Cube 20 12 30 7200 [71]

Self-constructed AWR1642 BOOST RDM, RTM,
DTM, ATM 8 + 2 7 + 1 50 4000 [68]

Self-constructed BGT60TR13C RDM 9 + 9 + 10 20 + 15 + 14 \ 3696 + 2788 + 1934 [72]

The self-constructed datasets used in most of the studies differed considerably in
terms of features, the number of experimenters, the type of gestures, and the total sample,
as shown in Table 3. Through statistics, it can be found that the number of experimenters
and gesture types in the self-constructed datasets varies from a few to several dozen.
These datasets are subject to different experimental and application conditions, but there
is no doubt that datasets with more experimenters and gesture types tend to have better
generalization and robustness of the algorithms, although they face greater recognition
difficulties. Most of the samples of a single gesture in the self-constructed datasets are in
the range of dozens, which shows that the number of samples per gesture in this magnitude
is adequate for the experimental needs. It is also worth noting that in some studies, not
all of the datasets were scaled for training and testing, but rather a small number were
tested independently as ‘unfamiliar users’ or ‘unfamiliar gestures’, and some studies may
even use all of the ‘unfamiliar user’ data for testing. This allows for a good evaluation
of the robustness and generalizability of the algorithm, which are of great importance in
practical applications.

4.4. Classification Algorithms

In this section, we summarize the classification algorithms in the studies on gesture
recognition and count the experimental conditions (number of gestures and experimenters,
total sample, features) and results where the classification algorithms were located, as
shown in Table 4. Similar to the analysis of feature fusion methods in Section 4.2, due
to the different experimental conditions of classification algorithms, we cannot judge the
advantages and disadvantages of different classification methods by directly comparing the
results of different studies, but we can find the common values or rules from the statistics.

Table 4. Statistics of classification algorithms and results.

Gestures/Number Experimenters/Number Total Sample Features Classification Algorithms Accuracy Reference

7 5 1750 DTM and the phase spectrum SVM 93.84% [73]

6 2 1250 RTM + DTM + ATM SVM 98.48% [27]

4 2 1200 DTM HMM 83.3% [74]

10 5 1050 RTM DTW 91% [44]

12 10 1200 DTM DTW 93.5% [75]

10 10 5000 DTM
KNN
SVM
CNN

88.93%
90.21%
91.34%

[66]

10 10 5000 3D Feature CNN
CNN + Attention Module

96.61%
97.17% [66]
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Table 4. Cont.

Gestures/Number Experimenters/Number Total Sample Features Classification Algorithms Accuracy Reference

7 10 4200 RDM
RNN
CNN

3D-CNN

90.27%
93.58%
99.06%

[51]

8 5 4000 RAM
RDM + RAM

3D-CNN
3D-CNN (Multi-Channel)

82.79%
86.95% [12]

8 10 1600 RDM, RAM CNN-LSTM 94.75% [76]

6 4 2400 RDM 3D-CNN
CNN-LSTM

95%
97% [77]

5 9 4500 RTM, DTM, ATM LSTM
CNN-LSTM

96.7%
99.6% [31]

10 \ 4000 RDM

CNN
3D-CNN

LSTM
I3D

I3D + LSTM

82.77%
88.07%
90.35%
89.37%
93.05%

[78]

49 28 8418 RDM Transformer 93.95% [72]

6 9 2700 RTM, DTM, ATM
VGG-19

ResNeXt101
DenseNet161

93.52%
93.33%
92.69%

[29]

6 9 2700 RDM, RAM, DAM
S3D
I3D

3-D ResNeXt152

95.37%
94.54%
95.19%

[29]

6 9 2700 RTM, DTM, ATM
RDM, RAM, DAM

2D/3D-ResNet18 +
Deformable + Attention 97.52% [29]

16 19 19,760 5D Feature cube

S3D
S3D + STDC

S3D + ASTCAC
S3D + STDC + ASTCAC

98.80%
99.12%
99.01%
99.53%

[40]

The widely used machine learning methods in gesture recognition are support vector
machine (SVM) [27,73], K-nearest neighbor method (KNN) [66], and hidden Markov model
(HMM) [74]. These methods are easy to implement but lack robustness and computational
efficiency. Especially when the gestures are complex and the training sample size is large,
the accuracy rate will drop significantly. Some research has given suggestions and methods
to improve the above algorithm [79,80]. The Dynamic Time Warping (DTW) algorithm can
deal with the similar relationship between the time series of two gestures well. However,
the DTW algorithm also has the limitations of high computational complexity and poor
robustness [44,75]. Additional studies have enhanced the DTW algorithm for gesture
recognition by adding path constraints and refining the matching procedure for gesture
recognition [81]. According to the data in statistics [27,44,66,73,75], it can be found that
machine learning algorithms are more suitable for problems with simple gestures, small
sample categories, and quantity in gesture recognition, and deep learning algorithms tend
to have better performance in gesture recognition problems with complex gestures and a
larger number of samples.

Classification algorithms based on deep learning have been widely used in gesture
recognition, which mainly involves two classical deep neural network models: the convo-
lutional neural network (CNN) [49] and the long short-term memory network (LSTM) [50].
From the data in the statistics, it can be found that CNN, 3D-CNN, and CNN-LSTM are
often used in gesture recognition. 3D-CNN is an extension of traditional CNN in the time
dimension that can capture both spatial and temporal features in 3D data. In gesture
recognition, 3D-CNN often has better performance than CNN, especially when the features
are spectrum map videos (RDM, RAM, and DAM). However, it also has a higher com-
putational cost compared to CNN. In addition, there are many studies that have applied
CNN-LSTM networks [31,76,77], which benefit from the strengths of both CNN and LSTM.
It uses CNN to learn spatial features from input data and then feeds these features to
LSTM to learn temporal patterns. It usually has higher recognition accuracy than using
LSTM or CNN algorithms alone, making it suitable for recognizing complex gestures.
Neural networks with multiple channels are a common optimization method that increases the
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feature information input to the classification model, which has been discussed in Section 4.2.
In addition, neural networks with optimized architectures such as I3D, S3D, VGG-Net,
Res-Net, Dense-Net, and Transformer have also been used in gesture recognition, often with
higher accuracy. These methods achieve better performance by optimizing the network
in terms of convolutional kernel, depth, width, connection mode, and mechanism. I3D
extends the traditional CNN from 2D to 3D, similar to 3D-CNN, but it is also a dual-stream
network. S3D introduces efficient 3D convolutions using separable spatial and tempo-
ral convolutions, reducing computational complexity while maintaining spatio-temporal
modeling. VGG-Net demonstrated the importance of using deeper networks and smaller
convolutional filters to learn more complex features. The key improvement in ResNet is the
introduction of skip connections (residual blocks), enabling the training of extremely deep
networks with hundreds or even thousands of layers. Dense-Net introduces the concept of
dense connectivity, connecting each layer to every other layer in a feed-forward manner,
promoting feature reuse and information flow. Transformer’s key idea is the self-attention
mechanism, which allows the model to capture dependencies between different positions
in the input sequence effectively. In general, from spatial-temporal modeling to efficient
convolutions, from deeper architectures to residual connections, and from dense connec-
tivity to attention mechanisms, these ideas have significantly advanced the capabilities
and efficiency of neural networks in gesture recognition. In addition, some studies have
incorporated attention block into neural networks, an approach that further reduces the
effects of noise and clutter and adaptively focuses on important features and suppresses un-
necessary ones [29,66]. There are also studies here that incorporate deformable blocks [29]
or spatiotemporal deformable convolution (STDC) blocks [40] into neural networks. This
method is able to improve the motion modeling ability of gestures by learning extra offsets,
improving the generalization of the algorithm and the accuracy of recognizing complex
gestures. In addition, Zhao et al. [40] proposed an adaptive spatiotemporal context-aware
convolution (ASTCAC) block to improve the ability of the recognition network to capture
both global and local contextual information. These optimization algorithms for classifica-
tion models all contribute to the improvement of accuracy in gesture recognition, which is
also confirmed by the statistical results in Table 4. In general, deep learning-based classifi-
cation algorithms can provide high accuracy and robustness. However, these methods also
tend to face problems such as high complexity and high computational costs. Based on the
above discussion and results, we suggest that researchers select appropriate classification
algorithms according to the experimental conditions. For example, in the case of simple
gestures and a small sample size, machine learning or 2D-CNN algorithms can be chosen
with spectral maps as features. In the opposite case, researchers can choose a multi-channel
neural network with fusion features and use some optimization architectures or methods,
such as attention or deformable blocks.

4.5. Generalization

Generalization is the focus of improving accuracy in gesture recognition, which can
make the recognition system perform better in the face of strange people and complex
environments. In this part, we summarized the suggestions and methods to improve
algorithm generalization in gesture recognition and discussed three aspects.

Firstly, abundant samples and sufficient data are important factors in improving the
accuracy of gesture recognition. There are some studies that have proposed data augmen-
tation. The purpose is to increase the number of samples and improve the recognition
effectiveness of the model. Data augmentation can be broadly classified into two types:
generative adversarial networks (GANs) and mixup augmentation (MA). The images gen-
erated by the GAN are not derived from the original samples but are mainly trained by the
model to obtain the applicable images, thus increasing the number of samples [82]. The
MA algorithm is able to increase the number of features by random cropping, translation
transformation, scale transformation, contrast transformation, and rotation transformation
based on the original image [66]. It is also able to fuse features from multiple types of



Sensors 2023, 23, 7478 14 of 19

samples to increase the diversity of the samples. In general, the MA avoids overfitting
while improving the generalization ability of the model and thus improving the gesture
recognition rate [67].

Secondly, we focused on data dependencies in gesture recognition. Indeed, most
gesture recognition methods require a large amount of data for training. Studies generally
focus on the classification of the fixed predefined gestures that already exist in the training
set, but gesture data in real scenes often contains more variations. In recent years, several
studies have proposed the use of meta-learning networks as a solution to the few-shot
learning problem for the sample and generalization problems of gesture recognition. Dif-
ferent from conventional machine learning or deep learning models, the proposed model
is able to make use of domain knowledge learned from a relatively large number of la-
beled points to quickly adapt to unseen hand gesture classes with only a few training
observations [29,83]. This method not only adapts well to the new environment but also
solves the data dependency problem and reduces computational complexity. In addition,
unsupervised network-based gesture recognition methods have also received attention [35].
These methods automatically classify dynamic gesture datasets without labels, using the
intrinsic closeness of the data. They are more generalizable and efficient than classification
methods relying on labeled data. However, it is difficult to apply radar data.

Thirdly, the variability of gestures is also an important direction to take to solve
the generalization problem. In practical applications, the recognition of new users is an
unavoidable problem for gesture recognition systems. Users with different hand habits
and diseases (e.g., Parkinson’s disease) often pose a great challenge to gesture recognition
systems. Zeng et al. [84] applied the above meta-learning network-based approach to
dynamic gesture recognition, which solved the problem of new user-defined gestures while
achieving good performance. In addition, the characteristic trajectory and spatial location
of the gesture are important factors in discerning gesture variability [31]. Xia et al. [54]
proposed a spatial position alignment method to improve the spatial consistency of a
multi-position dataset and the generalization performance of gesture recognition by using
multi-dimensional position spectrum features. These methods are also commonly used in
the recognition of handwritten trajectories and patterns [71].

5. Challenges
5.1. Gesture Recognition in Complex Environments

The experimental scenario of the existing study is ideal without much interference
compared to the actual complex application environment. However, in long-distance or
large field-of-view (LD/LFoV) environments, there are not only more interference factors
but also problems such as dynamic blurring of target gestures due to small observation
angles [68]. Although studies have focused on this aspect [54], there is still a great re-
search prospect.

On the other hand, most studies have used single radar sensors for dynamic gesture
recognition. However, in more complex application scenarios, the gesture information
obtained by a single radar sensor is not rich and accurate enough. At present, studies have
been conducted on incoherent radar sensor networks and joint recognition of radar and
other categories of sensors [58,85]. The results showed that the application of multiple
sensors can ensure a more accurate and stable gesture recognition system, but how to
remove mutual interference between sensors and how to perform effective data fusion
remains a challenge in this field.

5.2. Real Time and Complexity of Gestures

At present, gesture recognition tends to achieve high accuracy through a large amount
of feature data and complex classification models, which require a large amount of mem-
ory and computing resources. However, most commercial embedded systems, such as
smartphones and other portable devices, have limited memory and computing power.
Complex gesture recognition systems are also unable to meet the requirements of real-time
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performance, which is not accepted in commercial applications. Therefore, many studies
hope to reduce the complexity of gesture recognition systems while ensuring accuracy and
put forward some methods from two aspects: data and classification models. The feature
cube introduced in Section 4.2 is one of the main methods to reduce data complexity and
improve data processing efficiency. In addition, the sparse signal processing technique
provides a new way to reduce data complexity without affecting performance. Li et al. [42]
proposed a sparsity-driven method for dynamic gesture recognition, which is expected
to achieve real-time processing in practical applications. Due to the high complexity of
the conventional deep neural network, a lot of computational energy is needed in gesture
recognition, and the majority of the energy is consumed by the multiply-accumulate (MAC)
operations between layers. Therefore, researchers have proposed to reduce the computa-
tional complexity by using lightweight networks [86,87] or by optimizing the classification
model through methods such as pruning techniques [58,67]. In general, reducing the com-
plexity of the algorithm while ensuring accuracy and meeting the real-time requirements
of the application is a great challenge for gesture recognition and will also be the focus of
future studies.

6. Conclusions

The progress of FMCW mmW radar gesture recognition technology opens up a new
approach to human-computer interaction. This paper summarized the methods, results,
and key issues of gesture recognition based on the main step process of gesture recognition,
discussed three aspects of feature fusion, classification algorithms, and generalization, and
provided analysis and recommendations for other researchers based on the statistical data.
This paper provides a reference for future research on gesture recognition based on FMCW
mmW radar and is of great significance in promoting the practice and research of gesture
recognition methods.
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