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Abstract: Remote sensing scene objective recognition (RSSOR) plays a serious application value in
both military and civilian fields. Convolutional neural networks (CNNs) have greatly enhanced
the improvement of intelligent objective recognition technology for remote sensing scenes, but
most of the methods using CNN for high-resolution RSSOR either use only the feature map of the
last layer or directly fuse the feature maps from various layers in the “summation” way, which
not only ignores the favorable relationship information between adjacent layers but also leads to
redundancy and loss of feature map, which hinders the improvement of recognition accuracy. In
this study, a contextual, relational attention-based recognition network (CRABR-Net) was presented,
which extracts different convolutional feature maps from CNN, focuses important feature content by
using a simple, parameter-free attention module (SimAM), fuses the adjacent feature maps by using
the complementary relationship feature map calculation, improves the feature learning ability by
using the enhanced relationship feature map calculation, and finally uses the concatenated feature
maps from different layers for RSSOR. Experimental results show that CRABR-Net exploits the
relationship between the different CNN layers to improve recognition performance, achieves better
results compared to several state-of-the-art algorithms, and the average accuracy on AID, UC-Merced,
and RSSCN7 can be up to 96.46%, 99.20%, and 95.43% with generic training ratios.

Keywords: attentional mechanisms; relationship feature; scene objective; feature integration

1. Introduction

RSSOR is popularly adapted to specific tasks such as geological exploration, precision
agriculture, and urban planning [1–3]. As the name implies, RSSOR infers the right category
of scene objectives by evaluating the content features that are included in the remote sensing
data. With the continuous advancement of urban construction and the rapid progress of
high-resolution observation satellites, the characteristics of diverse feature objectives and
the scale of data are increasing, and how to perform RSSOR more accurately is already a
popular and difficult problem for ongoing research in the field of remote sensing technology
development [4–6].

With the accumulation of data volume and the improvement of computer performance,
artificial neural networks and deep learning networks are developing rapidly, and the use
of CNN for RSSOR has come into being [7]. CNN, as one of the emerging artificial neural
network technologies, merges intelligent deep learning techniques, and has the advantages
of “sparse connection”, “parameter sharing”, and “equivariant representation” [8]. It can
shorten the time required for model learning, lower the volumes of data requiring training
parameters, and reduce the memory requirement for model operation. In addition, the
feature maps obtained by using CNN generally have three layers: the bottom layer reflects
the details of the color, texture, and shape of the objective; the middle layer reflects the
state of an object in the image at a certain moment; and the top layer reflects the overall
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concept of the image with rich semantic information. In particular, it should be said that
the top-layer feature maps are also the most applied in RSSORs. However, when CNN is
employed for RSSOR, ignoring the other layers and just adopting the last layer not only
fails to improve the recognition performance but also cannot fully exploit the advantages
of CNN [9].

Another popular method based on CNN is to integrate the hessian eigenmaps learned
from different CNN layers to generate new discriminative feature maps for RSSOR, which
can achieve complementary feature advantages and even improve the recognition effect of
the network. Two structures are common for multilayer feature fusion networks: the first
is a parallel multi-branch network (PMBN), and the other is a serial hop-layer connection
network (SHLCN). PMBNs are usually used to fuse features using different convolutional
kernels, convolution with holes, and pooling operations of different sizes. In [10], the
features are first extracted and then fused using four parallel structures, each containing
convolutional kernels of different sizes. In [11], highly accurate features were obtained
using convolutional networks with holes. In [12], the recognition accuracy of small samples
is improved by assembling feature maps of different scales under different weights. The
above methods achieve their purpose, but they ignore the relationship between adjacent
layers. SHLCN is a combination of features implemented through hop-level connections.
In [13], the fusion of features obtained by using layer-hopping connections for recognition is
superior to traditional methods. In [14], the covariance matrix is obtained by superimposed
multilayer features, and then the covariance matrix and support vector machine are used
to further obtain better classification results. In [15], sparse representation is used to fuse
the middle layer and top layer features, and then the fused features are used for scene
classification, which is effective for classification in limited data. The above method utilizes
multilayer feature fusion, but there are problems of feature redundancy and offset in
the integration process, which also ignores the relationship between adjacent layers. In
summary, it is easy to understand that the parallel structure is able to acquire different
perceptual field features at the same level, while serial structures are able to integrate
features from various levels. All these methods are able to enhance the features, but they
also bring the problems of redundancy and mutual exclusion of feature maps.

In addition, because of the complex and diverse characteristics of the features them-
selves, the satellite will be affected by the background, lighting, scale, and other imaging
conditions in the process of photography. Therefore, two types of feature confusion prob-
lems arose in RSSOR: scene objectives with similar semantic categories probably share
different visual variability, and scene images of different semantic categories may also have
certain similarities [16]. To reduce the impact of these two problems, many researchers
have tried to use an attentional mechanism (AM) [17]. In [18], a dual-attention residual net-
work is designed to extract features, embedding spatial attention into the bottom features
and channeling attention into the top features. In [19], adding AM to top-level features,
selectively focusing on key content, and discarding non-key information improves classifi-
cation performance. The above methods only add attention features after convolutional
processing, so that attention features can only be learned from the current feature layer,
ignoring the attention relationship with other convolutional layers.

To fully exploit the powerful learning capability provided by CNNs while reducing
the impact of feature confusion for remote sensing scene objective recognition, inspired
by the literature [20] and AM, we plan to explore the complementary relationships and
enhanced relationship messages existing between feature maps of adjacent convolutional
layers, focusing on key messages and discarding non-key messages in the process of feature
maps computation.

In general, this study has three main contributions.

(1) A complementary relational feature computation module is designed;
(2) An enhanced relational feature calculation module is designed;
(3) A contextual, relational attention-based recognition network is proposed to effectively

enhance the performance of RSSOR using CNN.
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Other important contents are organized as follows: Section 2 describes related work;
Section 3 introduces CRABR-Net; Section 4 reports the experimental results; Section 5
carries out the discussion; Section 6, the paper is summarized.

2. Related Work
2.1. Methods Based on Intuitive Feature

This category is the earliest recognition method to identify the category of an image
by the most intuitive underlying features of the scene objectives. The underlying features
consist of local features and global features, such as color, spectrum, texture, structure,
and so on [21]. Color features are typical local features, and they are also the most easily
observed and calculated underlying features [22]. A common method of identifying color
histograms is to interpret categories by comparing the proportions of different colors in
the entire image [23]. This method cannot determine the spatial position of each color
in the image, and is less effective in identifying images that are spectrally similar but
have large differences in distribution. Texture features are a type of global feature [24].
Typical methods, such as de-identification using the grayscale covariance matrix, are used
to calculate the gray-level covariance matrix of an objective, and then the categories are
identified by analyzing the features of the image [25]. This method is more effective in
recognizing images with large differences in texture features, but it is not easy to recognize
scene images with insignificant texture features.

2.2. Methods Based on Statistical Features

This method is an agglutination or consolidation of intuitive features, and its essence is
to analyze the statistical distribution of image intuitive features to establish the connection
between them and semantic features, and the representative methods are bag of visual
words (BoVW) and k-mean clustering methods [26]. The core idea of BoVW is to count the
underlying features of an image, such as SIFTI [27], GIST [28], etc., and then analyze these
underlying features by clustering methods such as K-mean to form a “visual dictionary”,
and then encode the image according to the frequency of the intuitive features appearing
in the “visual dictionary”, as a feature description of the image. The BoVW method
recognizes better than the method based on intuitive features, but only utilizes the frequency
information of the visual lexicon, ignores the spatial distribution relationship, and lacks the
correlation between the features, which still has limitations. Later, there are some improved
methods, such as spatial pyramid matching [29], to segment the image at multiple scales
and enhance the spatial information. However, these methods still need to extract many
intuitive features, which are not only cumbersome and inflexible, but also easy to ignore
semantic information.

2.3. Methods Based on Depth Feature

These methods utilize deep learning models to adaptively learn objectives in an “end-
to-end” manner, and achieve higher accuracy after obtaining deep semantic information.
Commonly used models include Stacked Auto Encoder (SAE) [30], Visual Transformer
(VIT) [31], CNN [32], etc. For example, Li et al. [33] will apply the SAE; the model is simpler,
and the feature representation of the input data can be quickly established by a small
number of features, but this type of method is unable to catch the spatial relationship among
the local features. Bazi et al. [34] utilize VIT and achieve a high recognition accuracy, but
these methods take a long time to train and need a large amount of Objective information
to achieve a relatively good training result. Methods utilizing CNN are the most popular
approaches for RSSOR [9]. Generally, according to the way of deep feature utilization, the
method can be categorized into CNN without fusion method, CNN with fusion method,
and CNN with AM method.

• CNN without Fusion Method. The method utilizes CNN to acquire local features of
the training objectives and then transforms them directly into global features for
recognition [35]. According to whether pretraining parameters are used or not, the
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present method can be categorized into two classes. One class does not use pretrain-
ing parameters. Nogueira et al. [36] apply popular CNNs, such as AlexNet, VGG,
PatreoNet, etc., to RSSOR, respectively, and achieve good recognition results without
pretraining parameters. Another category uses pretraining parameters. Castelluccio
et al. [37] demonstrate the importance of adopting pretraining parameters for CNN by
importing the pretraining parameters of CaffeNet and GoogLeNet and applying them
to RSSOR, respectively;

• CNN with Fusion Method. The methods perform the fusion process on the features of
CNN-extracted images. One class of methods utilizes a single CNN to extract features
and then fuses them. Yuan et al. [38] directly stitche the last convolutional layer feature
and the last fully connected layer feature of VGG-19 as the final representation of the
image. Xu et al. [39] processed the convolutional features of layers 4, 7, 10, and 13
of VGG-16 and obtained converged features. The other is utilizing multiple CNNs
to draw features, which are then fused. Zhang et al. [40] propose the use of multiple
CNNs to extract local features of an image. Liu et al. [41] use CaffeNet and VGG-VD16
to extract deep features and then rearrange and combine them for recognition; Yu
et al. [42] use three networks, CaffeNet and its improved network, and improved VGG
network, to extract features and fuse them for recognition;

• CNN with AM Method. The methods usually add AM behind the convolutional layer to
filter useless information and enhance useful features. For example, the literature [43]
added a channel attention mechanism [44] to different stages of DenseNet-121, and
Guo et al. [18] added a spatial attention mechanism [45] to the second convolutional
module of ResNet-101, and channel attention to the third, fourth, and fifth convolu-
tional modules. Wang et al. [19] propose a mask matrix as a convolutional feature for
attention; Fan et al. [46] design an attention mechanism with trunk branches and mask
branches for ResNet-50.

All of the above methods work well in RSSOR, but where these methods either utilize a
certain layer of features or simply sum the features of several layers, ignoring the relational
information between the features, our goal is to maximize the use of CNN extracted features
of each layer, and to obtain a better recognition effect just by one CNN backbone network.

3. Methodology

The architecture of the CRABR-Net proposed is shown in Figure 1. It contains
5 main steps.

(a) The first step is to divide the data. Divide the remote sensing image dataset into the
training dataset and verify the dataset according to a certain ratio (e.g., 4:1);

(b) The second step is data preprocessing. Firstly, augment the remote sensing image data
to be input, including randomly cropping to 256 × 256, randomly rotating between
−45 degrees and 45 degrees, flipping horizontally with 0.5 probability, and then
cropping to 224 × 224; then converting the format, converting the data format to
(Batch, Channel, Height, Width); and finally normalizing the data, setting the mean
value of Height and Width of every Channel’s Height and Width mean value is set to
0 and standard deviation is set to 1, respectively;

(c) The third step is to extract features with the backbone network, a Bottleneck is shown
in Figure 2. The parameters that have been trained on the Image-Net dataset [47] are
imported into the Se-ResNext-50 network, the fully connected layers of the original
network are replaced with the network structure designed in steps d and e, and then
go on to extract F1, F2, F3, F4 of the four different convolutional layers;

(d) The fourth step is to compute the relationship enhancement features. (1) PFRFM.
Obtain the refined features F′1, F′2, F′3, F′4 by using SimAM. (2) CRFMC. Sum the
elements at the corresponding positions of F′4 and F′3 to obtain F′4,3. Before summing,
up-sample F′4 by a factor of 2 to obtain F′′ 4. Similarly, we obtain F′3,2 and F′2,1. For
F′′ 3, F′′ 2, F′′ 1, the processing flow shown in Figure 3 can be utilized by using F′4,3,
F′3,2, F′2,1 respectively. (3) ERFMC. For FL

2 , F′′ 1 is transformed into ZGAP(F′′ 1 ) =
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[B, 256, 1, 1] and ZGMP(F′′ 1 ) = [B, 256, 1, 1] using GAP and GMP, respectively, and
then linearly transformed using MLP to obtain MGAP(ZGAP(F′′ 1 )) = [B, 256, 1, 1]
and MGMP(ZGMP(F′′ 1 )) = [B, 256, 1, 1], respectively. MA(F′′ 1 ) are obtained through
Equation (9). Up-sampling F′′ 2 by a factor of 2 yields F′′′ 2, and multiplying F′′′ 2 by
MA(F′′ 1 ) yields FL

2 . Similarly, FL
3 and FL

4 can be obtained. Specifically, F′′ 1 equals FL
1 .

The process is illustrated in Figure 4. (4) Feature Fusion. Using Equation (11), splice
FL

1 , FL
2 , FL

3 , and FL
4 to obtain F = [B, 1024, 56, 56];
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(e) The fifth step is to recognize. F is fed into a recognizer consisting of GAP, Fully
Connected Layer, and Softmax Layer for scene recognition.

3.1. Backbone Network for Extraction Feature Map

We use Se-ResNext-50 as the feature extraction backbone network for this remote
sensing image recognition task. Se-ResNext-50 retains the advantages of the residual
structure of ResNet, adopts ideas from the inception network model in widening network
processing, and combines the advantages of the Se-Net network to exploit the relationship
between channels between features, which performs better in feature learning compared to
ResNet and other variants of the network [48].

As shown in © CNN Backbone Network in Figure 1, the Stem module, layer1 module,
layer2 module, layer3 module, and layer4 module in the Se-ResNext-50 network are used
to compute the preprocessed dataset in turn for obtaining the output feature maps from
the four-level modules. Within the Stem module, 64 convolution kernels of size 7 × 7 are
used for the convolution calculation at one step of 2. Then, the feature maps obtained in
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step 1 are pooled with a window of 3 × 3 and a maximum value of 2 for obtaining a feature
mapping with a size variation of 56 × 56.

As shown in Figure 2, the Layer1 module contains three groups of Bottleneck. Each
group of Bottleneck consists of Conv_1, Conv_2, Conv_3, and Se-Module, where the
convolutional kernel sizes of the three convolutional modules are 1 × 1, 3 × 3, and 1 × 1,
and the numbers of convolutional kernels are 128, 128 and 256, in that order. Specifically,
in the second convolution stage, 32 identical structures are utilized to widen this network
module. In this se-module, the compression is performed using global average pooling,
followed by modeling associations between channels through a full connectivity layer, a
sigmoid function to export weights with an equal amount of input features, and finally, the
normalized weights are added onto the features per channel. Similar to the Layer1 module,
the number of Bottleneck compositions of Layer2, Layer3, and Layer4 modules are 4, 6, and
3, respectively, and each Bottleneck consists of Conv_1, Conv_2, Conv_3, and Se-Module,
and the number of convolutional cores are, respectively [256, 256, 512], [512, 512, 1024],
[1024, 1024, 2048]. After the calculation of each module above, we obtained the feature
maps of four different convolutional layers, which are F1 = [B, 256, 56, 56], F2 = [B, 512, 28,
28], F3 = [B, 1024, 14, 14], and F4 = [B, 2048, 7, 7].

3.2. Preprocessing for Relational Feature Map

To prevent the model from becoming more complex and to control the number of
parameters as much as possible, we use SimAM [49] to focus the feature expressions of the
four different layers deeper into the more important information without increasing the
network parameters.

In order to facilitate the primary relational feature calculation and advanced relational
feature calculation later, we use 1 × 1 convolution to perform channel reduction operation
on the features maps. We design the convolutional dimensionality reduction module
separately; the input size of the convolution kernel is set to the channel number scale of the
input features, and the output number of the convolution kernel is kept the same as the
channel number F1.

In the above processing, to avoid the instability of the network learning process due
to the oversized feature data after the convolutional dimensionality reduction calculation,
we batch normalize the dimensionality reduction results so that the feature data satisfy
the distribution law of mean 0 and variance 1. In addition, to avoid over-fitting, we add a
modified linear function [50] to keep only the outputs larger than 0, and other inputs will
be set to 0, so that the network can be better fitted.

So far, we obtained the results after relational feature maps preprocessing as F′1 = [B,
256, 56, 56], F′2 = [B, 256, 28, 28], F′3 = [ B, 256, 14, 14], F′4 = [B, 256, 7, 7].

3.3. Complementary Relationship Feature Map Calculation

Information about the relationship between F′1, F′2, F′3 and F′4 should be fully
utilized. We design a primary relationship enhancement process from the high feature
layer to the low feature layer to further extract the relationship between adjacent layer
features and embed this relationship into the adjacent low layer features to complement
the performance of low layer features, and the structure is described in Figure 3.

In aiming to utilize the adjacent high convolutional layers to complement the miss-
ing global message of low-level features, we enhance the size of high-level feature maps
with a bilinear difference algorithm to match the size of the feature maps acquired from
low-level convolutional layers. In particular, unlike the literature [20], considering various
fusion methods of convolutional features from adjacent layers will have variable effects on
integrated features; instead of simply using the direct summation of the corresponding ele-
ments, we obtain the primary relational features by assigning different weight parameters
to the adjacent feature layers and then multiplying the corresponding elements with the
weights before summation.
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As seen in Figure 3, firstly achieve size augmentation of dimensions between relational
features by a bilinear interpolation algorithm, and then the dimensionally augmented
feature map and the underlying feature map in its adjacent layers are sequentially summed
by the corresponding positions of the pixels to acquire the fused feature map.

F′n+1,n = F′′ n+1 ⊕ F′n (1)

where ⊕ denotes the element-by-element summation operation.
Then, utilizing the features acquired in the previous step, the global and self-attentive

relationship weights are calculated by the sigmoid function, respectively. As shown in
Figure 3, the process shown in the upper part of the branch is the computation process of
global attention features. We perform a two-dimensional global average adaptive pooling
of the input features, and then use a convolutional kernel of size 1 × 1, and the channel
dimension of output features is one-fourth of the channel dimension of input features to
realize the dimensionality reduction of convolutional feature channels. In order to avoid
the computed data being too large and the network over-fitting problem, we perform batch
normalization and add modified linear units. Finally, the original count of channels for
features is to be restored with a convolutional kernel of size 1 × 1, and batch normalization
is performed to obtain global attention features.

The process shown in the lower branch is the computation process of local attention
features. By adopting a 1 × 1 size convolution kernel, the channel dimension of the input
features is minimized to one-fourth of the original size. Then, batch normalization is
performed, and corrected linear units are added. Finally, the amount of original channels to
which the channel dimension of the feature map is restored with a convolution kernel of size
1× 1 is applied, and then all feature values are normalized to acquire self-attention features.

After summing the global attentional features and self-attentive features per element
according to the corresponding positions, the sigmoid function is employed for computing
the focused relationship parameters of the bottom layer in the adjacent feature layer, which
is S12

n+1,n. Similarly, the supplemental relationship parameter of the higher level is obtained,
where S11

n+1,n = 1− S12
n+1,n.

This leads to the focused relation feature map S22
n+1,n and the supplemental relation

feature map S21
n+1,n:

S21
n+1,n = F′′ n+1 ⊗ S11

n+1,n (2)

S22
n+1,n = F′n ⊗ S12

n+1,n (3)

where ⊗ indicates that the elements in the corresponding positions are calculated sequen-
tially according to the multiplication rule. Finally, the complementary relationship feature
map is obtained.

F′′ n = S21
n+1,n ⊕ S22

n+1,n (4)

By the same principle, we obtained the complementary relationship feature map for
F′′ 1, F′′ 2, F′′ 3 and F′′ 4.

3.4. Enhanced Relationship Feature Map Calculation

Considering the main relationship feature maps of two neighboring layers, where one
lower layer contains the contextual information of the upper layer and the main relationship
feature map of the upper layer is a more abstract representation of the lower layer, there is
a rich contextual dependency between these feature maps.

The purpose of this proposed section is to capture such contextual relationships for
embedding into the higher-level feature maps of neighboring layers so as to enhance the
representation of higher-level features.

The calculation process for the module is illustrated in Figure 4; let F′′ nεRB×C×Hn×Wn

denote the obtained primary relationship feature map, where B, C, Hn and Wn denote the
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number of learned features, the channel dimension of features, the horizontal dimension of
features, and the vertical dimension of features in one training session, respectively.

To establish the high-level enhancement relationship between two adjacent layers of
features F′′ n and F′′ n+1, the GAP is calculated to acquire global feature map ZGAP(F′′ n)εRC

and the GMP algorithm is utilized for local feature map ZGMP(F′′ n)εRC.

ZGAP(F′′ n) = Gpool(F′′ n) =
1

Hn ×Wn

Hn

∑
i=1

Wn

∑
j=1

F′′ n(i, j) (5)

ZGMP(F′′ n) = Gmax(F′′ n) = Max
Hn

∑
i=1

Wn

∑
j=1

F′′ n(i, j) (6)

where Gpool indicates that after GAP calculation and Gmax indicates that after GMP calculation.
Then, the two results are imported into the MLP separately.

MGAP(F′′ n) = W1(W0(ZGAP(F′′ n))) (7)

MGMP(F′′ n) = W1(W0(ZGMP(F′′ n))) (8)

where W0εRC/r×C and W1εRC×C/rr represents the scaling ratio of the channel dimension.
W0 and W1 are convolutional operations. In particular, the activation function ReLU comes
right after W0 to avoid over-fitting and speed up network convergence.

Then, the output from the multilayer perceptron MGAP MGMP is subjected to an
element-wise summation operation, followed by a Sigmoid activation operation to generate
the enhanced weights of the adjacent two layers of feature maps:

MA(F′′ n) = σ(MGAP(F′′ n)⊕MGMP(F′′ n)) (9)

where σ denotes the Sigmoid function.
After calculating the augmented weights of the adjacent two layers of feature maps, we

perform an elemental multiplication to calculate the mapping with feature augmentation:

FL
n =

{
F′′ n n = 1

MA(F′′ n)⊗ F′′′ n+1 n = 2, 3, 4
(10)

where ⊗ denotes the element multiplication operation. The enhanced relationship feature
maps FL

1 , FL
2 , FL

3 , and FL
4 can be calculated from Equation (10).

3.5. Feature Fusion and Objective Recognition

The advanced enhancement features are fused using the concatenation function to
generate the final multilevel enhanced relationship feature map.

F = Concat
[

FL
1 , FL

2 , FL
3 , FL

4

]
(11)

Then, after GAP calculation, the flattened feature is obtained by pulling the global
average pooled features into a one-dimensional vector using the flatten function. Then, the
flattened features are input to the fully connected layer. Finally, We use one-hot coding
to represent N categories of remote sensing scene categories, where the true probability
of a category is denoted as yij. The predicted probability ŷij of each of the N categories is
obtained by inputting Z1 into the Softmax Layer.



Sensors 2023, 23, 7514 10 of 24

The loss distance between the true probability and the predicted probability is determined
by using the loss function; the smaller the loss value, the more accurate the prediction:

Loss = − 1
B

B

∑
i=1

N

∑
j=1
−yij log ŷij −

(
1− yij

)
log
(
1− ŷij

)
(12)

where N represents the total number of scene objective categories to be recognized.

4. Experiments and Results
4.1. Experiment-Related Settings
4.1.1. Datasets

To evaluate the recognition effect for CRABR-Net under different numbers of remote
sensing scene categories and different amounts of remote sensing scene data, the proposed
CRABR-Net is validated on the following three datasets.

1. AID Dataset. It is a massive dataset of airborne scenes, acquired by collecting Google
Earth images. It includes 30 categories of feature images of targets such as landforms,
terrain, and buildings, and there are approximately 220 to 420 feature images collected
for each category. The number of all images together is 10,000; in addition, the pixel
size of each image is 600 × 600 [51]. Figure 5 shows instances of the scene objectives
for every category within this dataset;

Sensors 2023, 23, x FOR PEER REVIEW 11 of 26 
 

 

 
Figure 5. Instances of the scene objectives within AID Datasets. 

  

Figure 5. Instances of the scene objectives within AID Datasets.



Sensors 2023, 23, 7514 11 of 24

2. UC-Merced Dataset. It is an image data representing land use extracted manually
by the researchers. These data reflect the land use within the city, and in terms of
the main content reflected in the images, there are a total of 21 land use types, with
100 images of each type. The total number of images is 2100, and the size of each type
of image is 256 × 256 [52]. Figure 6 shows instances of the scene objectives for every
category within this dataset;
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3. RSSCN7 Dataset. It is a typical scene target collected from Google Earth, acquired
under the conditions of diverse seasonal changes and weather variations, and the
data processing is challenging. It contains seven types of features, with a total of
400 images for each type of feature, where each image gets a size of about 400 × 400,
for a total of 2800 images [53]. Figure 7 shows instances of the scene objectives for
every category within this dataset.
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4.1.2. Experimental Environment Setup

Our work was performed on a Linux platform with four NVIDIA A100-type GPU
processors installed. Considering the seamless use of NumPy and the ability to accelerate
the training using GPUs, as well as the ability to use dynamic graph computation to
make the network more flexible, we used PyTorch, a deep learning framework released
by Facebook. In our proposed model, to fasten convergence and increase speed while
reducing the over-fitting of the model, we used pretraining parameters, a distributed
training approach, and take batch size to 64, using the Adam gradient function, set L2
regularization to 0.0001, set the learning rate to 0.0003, and trained the network with
200 Epochs.
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4.1.3. Data Preprocessing

To prove the advantages of the proposed method via comparative results, we borrowed
ratios used by many previous most advanced algorithms in classifying the dataset during
the experimental process. Specifically, for the UC-Merced dataset, we set the proportion
of training data to verified data to 1:1 and 4:1, respectively, and for the AID dataset and
RSSCN7 dataset, we set 1:4 and 1:1, respectively.

An insufficient amount of data can easily cause the model training results to be under-
fitted. To minimize the possible adverse effects in this regard, we used a data enhancement
technique from the image processing domain to generate new training samples for the
data used in our experiments. Specifically, we further enhanced the data diversity using
rotation, translation, and flip processing for all the data in the training set before feeding it
into our proposed model, while the dimensions were all resized to 224 pixels × 224 pixels.
In addition, we convert all data formats to tensor format and normalize them to facilitate
data processing and ensure faster convergence when the program runs.

4.2. Performance Evaluation Metrics

To demonstrate the validity and sophistication of our proposed method CRABR-Net,
we used several important evaluation metrics, namely Accuracy, Confusion Matrix (CM),
Precision, Recall, and Specificity, to quantitatively evaluate.

4.2.1. Accuracy

For the validation of the recognition performance with the model throughout the
verified dataset, we calculated the recognition accuracy as follows:

Accuracy =

N
∑

i=1
( f (xi) = yi)

N
(13)

where the category of remote sensing scene sample xi is yi, the overall amount of remote
sensing scene objective is N, and the function of predicted category is f .

4.2.2. Confusion Matrix

To determine which classes of samples the model misidentified and to obtain the
probability of misidentifying samples in that class, we constructed CMs for the three
datasets at different training ratios using PyTorch 3.7. The vertical coordinates represent
the true category of the remote sensing scene objective, and the horizontal coordinates
represent the categories identified by our method.

4.2.3. Precision, Recall, Specificity

Precision, which indicates the accuracy rate, for the percentage of positive samples
you predict that are identified correctly (i.e., identified the positive sample as a positive
sample). The higher the precision, the more accurate the finding.

Precision =
TP

TP + FP
(14)

where TP means identifying positive samples as positives, and FP means predicting negative
samples as positives.

Recall is a metric of coverage, and the metric has multiple positive examples being
divided into positives. The higher the recall, the more complete the search is.

Recall =
TP

TP + FN
(15)

where TP means identifying positive samples as positive samples and FN means identifying
positive samples as negative samples.
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Speci f icity indicates the ability to predict negative cases (the higher, the better).

Speci f icity =
TN

TN + FP
(16)

TN means identifying negative samples as negative samples.

4.3. Recognition Results
4.3.1. Analysis of Accuracy

According to the characteristics of the proposed method, we chose three different
methods of the same type to conduct a comparison experiment: single CNN, multiple
CNNs, and CNN combined with AM, with the same proportion of training data, and
analyzed the performance of CRABR-Net in three typical scenarios for accuracy. The
specific comparison is given below:

Table 1 gives the results of scene objective recognition using CNNs for the AID dataset.
Of the three datasets, the AID dataset is much more challenging because it has more
sample classes and a larger number of samples. As shown in Table 1, among single
CNNs, CaffeNet, GoogLeNet, and VGG-VD-16 all use the top-level features of CNNs for
scene recognition, and VGG-16 combines pretraining parameters; among multi-CNNs,
the literature [54] uses two deep networks to learn different features of the same data
separately and uses the fused two depth features for scene recognition; the literature [55]
fused local binary pattern features of remote sensing image data for classification; the
literature [10] achieved scene recognition by tandem CNN network and CapsNet network;
in CNNs combining AMs, Wang et al. [18] improved classification performance by using
AM on top layer features to selectively focus on key regions; Sun et al. [56] used three
layers of convolutional features to combine to form new features for scene recognition, and
additionally added two auxiliary linear classifiers to promote network convergence; the
literature [57] applied the self-attention mechanism and combined with SVM to achieve
scene recognition. The CRABR-Net achieved an impressive performance in the scene
recognition task; while utilizing 20% of the dataset for training, the accuracy obtained is
about 94.02%, and utilizing 50% of the dataset for training, the accuracy obtained is about
96.46%.

Table 1. Scene objective recognition accuracy on the AID dataset.

Modes Solutions
Accuracy

20% 50%

#

CaffeNet [49] 86.86 ± 0.47 89.53 ± 0.31
GoogLeNet [49] 83.44 ± 0.40 86.39 ± 0.55
VGG-VD-16 [49] 86.59 ± 0.29 89.64 ± 0.36

VGG-16(fine-tuning) [54] 89.49 ± 0.34 93.60 ± 0.64

}

Two-Steam Fusion [55] 92.32 ± 0.41 94.58 ± 0.25
TEX-Net-LF [56] 90.87 ± 0.11 92.96 ± 0.18

VGG-16-CapsNet [10] 91.63 ± 0.19 94.74 ± 0.17
Inception-v3-CapsNet [10] 93.79 ± 0.13 96.32 ± 0.12

•

GBNet [54] 90.16 ± 0.24 93.72 ± 0.34
GBNet + global feature [54] 92.20 ± 0.23 95.48 ± 0.12

AlexNet + SAFF [57] 87.51 ± 0.36 91.83 ± 0.27
VGG_VD16 + SAFF [57] 90.28 ± 0.29 93.83 ± 0.28

ARCNet-VGG16 [18] 88.75 ± 0.40 93.10 ± 0.55

Ours CRABR-Net 94.02 ± 0.34 96.46 ± 0.23
# for single CNN; } for multiple CNNs; • for CNN combined with AM.

The results of scene objectives recognition using CNNs for the UC-Merced dataset are
given in Table 2. As shown in Table 2, two approaches are proposed in the literature [58]; one
is to perform scene recognition using the fusion of feature maps from various convolutional
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layers, and the other is to continue collecting feature maps from various layers separately
and then fuse them to perform scene recognition using the fused features. The CRABR-Net
achieved impressive performance in the UC-Merced scene recognition task; while utilizing
50% of the dataset for training, the accuracy obtained is about 98.06%, and utilizing 80% of
the dataset for training, the accuracy obtained is about 99.20%.

Table 2. Scene Objective Recognition Accuracy on the UC-Merced Dataset.

Modes Solutions
Accuracy

50% 80%

#

CaffeNet [49] 93.98 ± 0.67 95.02 ± 0.81
GoogLeNet [49] 92.70 ± 0.60 94.31 ± 0.89
VGG-VD-16 [49] 94.14 ± 0.69 95.21 ± 1.20

VGG-16(fine-tuning) [54] 96.57 ± 0.38 97.14 ± 0.48

}

Two-Steam Fusion [55] 96.97 ± 0.75 98.02 ± 1.03
TEX-Net-LF [56] 95.89 ± 0.37 96.62 ± 0.49

VGG-16-CapsNet [10] 95.33 ± 0.18 98.81 ± 0.22
MSDS [58] - 96.96 ± 0.84
MLDS [58] - 97.88 ± 0.71

•

ARCNet-VGG16 [18] 96.81 ± 0.14 99.12 ± 0.40
HONGLIN WU [57] 95.81 ± 0.98 97.43 ± 0.94

GBNet [54] 95.71 ± 0.19 96.90 ± 0.23
GBNet+global feature [54] 97.05 ± 0.19 98.57 ± 0.48

AlexNet + SAFF [57] 96.13 ± 0.97 -
VGG_VD16 + SAFF [57] 97.02 ± 0.78 -

Ours CRABR-Net 98.06 ± 0.24 99.20 ± 0.19
# for single CNN; } for multiple CNNs; • for CNN combined with AM.

Table 3 gives the results of scene objective recognition using CNNs for the RSSCN7
dataset. In [59], scene recognition is achieved by fine-tuning the MobileNet V2 network and
then using top-level features; Gao et al. [60] use channel attention and spatial attention to
extract important information about features; in [61], a bilinear structure is built using deep
separable convolution and regular convolution, to fuse feature of both branches for scene
recognition; Liu et al. [62] proposes a weighted spatial pyramidal matching classification
method based on collaborative representation. In [63], the features of each branch of the
CaffeNet and the VGG-VD-16 network are fused separately, and then the features of both
branches are fused to form new features for scene recognition; Xu et al. [64] use CNN and
graph neural network in parallel to achieve scene recognition; As shown in Table 3, the
CRABR-Net achieved impressive performance in the RSSCN7 scene recognition task, while
utilizing 20% of the dataset for training, the accuracy obtained is about 93.21% and utilizing
50% of the dataset for training, the accuracy obtained is about 95.43%.

Table 3. Scene objective recognition accuracy on the RSSCN7 dataset.

Modes Solutions
Accuracy

20% 50%

#

CaffeNet [49] 85.57 ± 0.95 88.25 ± 0.62
GoogLeNet [49] 82.55 ± 1.11 85.84 ± 0.92
VGG-VD-16 [49] 83.98 ± 0.87 87.18 ± 0.94

Fine-turn MobileNet V2 [59] 89.04 ± 0.17 92.46 ± 0.66
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Table 3. Cont.

Modes Solutions
Accuracy

20% 50%

}

TEX-Net-LF [56] 92.45 ± 0.45 94.0 ± 0.55
LCNN-BFF [61] - 94.64 ± 0.21
Yishu Liu [63] - 92.37 ± 0.72
DFAGCN [64] 94.14 ± 0.44

•

Yue Gao [60] 91.07 ± 0.65 93.25 ± 0.28
Resnet+SPM-CRC [62] - 93.86

Resnet+WSPM-CRC [62] - 93.90
SE-MDPMNet [59] 92.65 ± 0.13 94.71 ± 0.15

Ours CRABR-Net 93.21 ± 0.47 95.43 ± 0.79
# for single CNN; } for multiple CNNs; • for CNN combined with AM.

4.3.2. Analysis of Confusion Matrix

To analyze the recognition accuracy of CRABR-Net for each sample category in the
three datasets, we constructed prediction CM to demonstrate the performance, respectively.

Figure 8 shows the CM generated under different proportions of AID training data.
When the training data amount is 50% of all data, there are 27 remote sensing scene
objective types recognized by our proposed method with an accuracy close to 100%; when
the training data amount is 20% of all data, there are seven types recognized with 100%
accuracy and eighteen types recognized with more than 90% accuracy; like “BareLand”,
“MediumResidential”, “River”, “ StorageTanks”, “Viaduct”, and “Bridge” are difficult to
recognize because of the large amount of overlap in the content of the image data, but
despite this, our method achieves recognition accuracy of nearly 90%.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 26 
 

 

data accounts for 20% of the total data. When a percentage of up to 50% of the training 
data is increased, the accuracy of our proposed approach can be seen to be greater than 
90% for all remote sensing scene objective types. 

(a) 50% for training. 

 
(b) 20% for training. 

Figure 8. CMs on the AID dataset. 

Figure 8. Cont.



Sensors 2023, 23, 7514 16 of 24

Sensors 2023, 23, x FOR PEER REVIEW 17 of 26 
 

 

data accounts for 20% of the total data. When a percentage of up to 50% of the training 
data is increased, the accuracy of our proposed approach can be seen to be greater than 
90% for all remote sensing scene objective types. 

(a) 50% for training. 

 
(b) 20% for training. 

Figure 8. CMs on the AID dataset. Figure 8. CMs on the AID dataset.

Figure 9 shows the CM generated under different proportions of UC-Merced training
data. It is observed that all the types of remote sensing scene objectives are recognized by
our proposed method with no less than 90% accuracy; 12 types are recognized with 100%
accuracy when the training data amount is 50% of all data; 16 types are recognized with
100% accuracy when the training data amount is 80% of all data.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 26 
 

 

  
(a) 50% for training.  (b) 80% for training. 

Figure 9. CMs on the UC-Merced dataset. 

  

Figure 9. CMs on the UC-Merced dataset.



Sensors 2023, 23, 7514 17 of 24

Figure 10 shows the CM generated with different proportions of RSSCN7 training
data. It can be seen that because of the overlap between the contents of “Industry” and
“Resident” and “Parking”, the accuracy of “Industry” is close to 90% when the training
data accounts for 20% of the total data. When a percentage of up to 50% of the training data
is increased, the accuracy of our proposed approach can be seen to be greater than 90% for
all remote sensing scene objective types.
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5. Discussion

To evaluate our proposed method scientifically, we have conducted sufficient ablation
studies in three aspects: the typical model used in extracting features, the attention mech-
anism used in preprocessing, and the two modules used in the calculation of relational
feature maps to verify the scientific validity of the present method.

5.1. Effects of Backbone Network

For a better demonstration of how superior the Se-ResNext-50 model is in our proposed
approach, we selected ResNet-50 and its improved model to compare the experimental
effects. Specifically, the UC-Merced dataset is split into training data and validation data in
a 1:1 ratio, at the same time keeping the feature preprocessing module and two relational
feature calculation modules unchanged. In addition, the optimizer and learning rate, etc.,
were also kept unchanged, and only the backbone network for extracting features was
replaced, and 200 epochs were trained to obtain the accuracy results of RSSOR, as shown
in Figure 11.

The left panel in Figure 11 shows the recognition accuracy of different backbone
networks in the training data, while the right panel shows the recognition accuracy of
different backbone networks in the verified data. The solid line indicates that we used
pretraining parameters in the training, and the dashed line indicates that we did not use
pretraining parameters. Obviously, the Se-ResNext-50 model with pretraining parameters
in the same case not only converges quickly and smoothly during the learning process in
both datasets, but also has the highest target recognition accuracy. Therefore, it is clear that
the convolutional network backbone model used has some superiority.
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None ECA CBAM SimAM None ECA CBAM SimAM None ECA CBAM SimAM 
Agricultural 1.0 1.0 1.0 0.943 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.997 

Airplane 1.0 1.0 1.0 1.0 1.0 0.96 1.0 1.0 1.0 1.0 1.0 1.0 
Baseball diamond 1.0 0.925 0.98 1.0 0.98 0.98 1.0 0.98 1.0 0.996 0.999 1.0 

Beach 1.0 1.0 1.0 1.0 0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Buildings 0.942 0.957 0.98 0.942 0.98 0.88 0.96 0.98 0.997 0.998 0.999 0.997 
Chaparral 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Dense residential 0.906 0.907 0.906 0.923 0.96 0.98 0.96 0.96 0.995 0.995 0.995 0.996 
Forest 1.0 0.962 0.98 1.0 1.0 1.0 1.0 0.96 1.0 0.998 0.999 1.0 

Freeway 0.962 0.942 0.98 1.0 1.0 0.98 0.98 0.98 0.998 0.997 0.999 1.0 
Golf course 0.961 0.978 1.0 0.98 0.98 0.9 0.98 0.98 0.998 0.999 1.0 0.999 

Harbor 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Intersection 0.979 1.0 0.959 1.0 0.94 0.92 0.94 0.96 0.999 1.0 0.998 1.0 

Medium residential 0.938 0.939 0.939 0.959 0.9 0.92 0.92 0.94 0.997 0.997 0.997 0.998 
Mobile home park 0.98 0.98 0.98 1.0 1.0 1.0 1.0 1.0 0.999 0.999 0.999 1.0 

Overpass 0.961 1.0 0.98 0.962 0.98 0.98 1.0 1.0 0.998 1.0 0.999 0.998 
Parking lot 1.0 1.0 1.0 1.0 1.0 1.0 0.98 1.0 1.0 1.0 1.0 1.0 

Figure 11. Accuracy on UC-Merced dataset.

5.2. Effects of Attentional Mechanism

With the aim of analyzing the influence of various attention mechanisms in the feature
preprocessing stage on the final recognition effect of our method, we selected three typical
attention mechanisms containing Efficient Channel Attention (ECA) [65], Convolutional
Block Attention Module (CBAM) [66], and SimAM, and conducted validation experiments
with other conditions remaining the same and not being changed, respectively. The specific
results are presented in Table 4.

Table 4. Model recognition effects under different attention mechanisms.

Class
Precision Recall Specificity

None ECA CBAM SimAM None ECA CBAM SimAM None ECA CBAM SimAM

Agricultural 1.0 1.0 1.0 0.943 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.997
Airplane 1.0 1.0 1.0 1.0 1.0 0.96 1.0 1.0 1.0 1.0 1.0 1.0

Baseball diamond 1.0 0.925 0.98 1.0 0.98 0.98 1.0 0.98 1.0 0.996 0.999 1.0
Beach 1.0 1.0 1.0 1.0 0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Buildings 0.942 0.957 0.98 0.942 0.98 0.88 0.96 0.98 0.997 0.998 0.999 0.997
Chaparral 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Dense residential 0.906 0.907 0.906 0.923 0.96 0.98 0.96 0.96 0.995 0.995 0.995 0.996
Forest 1.0 0.962 0.98 1.0 1.0 1.0 1.0 0.96 1.0 0.998 0.999 1.0

Freeway 0.962 0.942 0.98 1.0 1.0 0.98 0.98 0.98 0.998 0.997 0.999 1.0
Golf course 0.961 0.978 1.0 0.98 0.98 0.9 0.98 0.98 0.998 0.999 1.0 0.999

Harbor 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Intersection 0.979 1.0 0.959 1.0 0.94 0.92 0.94 0.96 0.999 1.0 0.998 1.0

Medium residential 0.938 0.939 0.939 0.959 0.9 0.92 0.92 0.94 0.997 0.997 0.997 0.998
Mobile home park 0.98 0.98 0.98 1.0 1.0 1.0 1.0 1.0 0.999 0.999 0.999 1.0

Overpass 0.961 1.0 0.98 0.962 0.98 0.98 1.0 1.0 0.998 1.0 0.999 0.998
Parking lot 1.0 1.0 1.0 1.0 1.0 1.0 0.98 1.0 1.0 1.0 1.0 1.0

River 0.943 0.98 0.98 1.0 1.0 1.0 0.98 1.0 0.997 0.999 0.999 1.0
Runway 1.0 0.962 0.98 0.98 1.0 1.0 1.0 1.0 1.0 0.998 0.999 0.999

Sparse residential 1.0 0.98 1.0 0.962 0.98 0.96 0.98 1.0 1.0 0.999 1.0 0.998
Storage tanks 0.977 0.923 0.979 1.0 0.86 0.96 0.94 0.9 0.999 0.996 0.999 1.0
Tennis court 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Maximum rate 52.38% 42.86% 47.62% 71.43% 61.90% 57.14% 57.14% 76.19% 52.38% 42.86% 47.62% 71.43%

Scientific and rational use of AM can improve the overall performance of the model
to a certain stage on the basis of the original method performance level. To facilitate
the comparison of experimental effects, we set up a new function, named maximumrate,
to evaluate the enhancement of method performance by the attention mechanism by
calculating the proportion of the amount of category scene features of the maximum
evaluation metric. The bolded numbers in Table 4 indicate the maximum rate of the results
in this category, and it is easy to discover from the Maximum rate that the best results were
achieved when we used SimAM, both in precision, recall, and specificity of the samples.
Conversely, when ECA and CBAM were used, the Maximum rate of the sample data was



Sensors 2023, 23, 7514 19 of 24

lower than when no attention mechanism was used. Therefore, we chose SimAM with
facilitation in the preprocessing stage.

5.3. Effects of MLP, GAP, and GMP

In enhanced relationship feature map calculation, the number of feature channels
input to the MLP is 256, so we set seven different scaling values, and using the UCM
dataset trained under the same conditions, we obtained the accuracy of the model under
different channel scaling ratios. As can be seen from Table 5, the model has the highest
accuracy when the scaling ratio is equal to 16.

Table 5. Accuracy at Different Ratio of MLP.

Scaling Ratio r = 2 r = 4 r = 8 r = 16 r = 32 r = 64 r = 128

Accuracy 0.9771 0.9762 0.9781 0.98 0.9781 0.9752 0.9752

To verify the effect of GAP and GMP on the accuracy of the model, we designed three
combinations and trained them under the same conditions, as shown in Table 6; when both
GAP and GMP are involved in the training, the local enhancement coefficients and global
enhancement coefficients of the input features are involved in the relationship enhancement
computation, which leads to the highest accuracy of the model.

Table 6. Accuracy in Different Combinations of GAP and GMP.

GAP GMP MLP Accuracy

×
√ √

0.9771√
×

√
0.9781√ √ √

0.98
× indicates no participation in the calculation.;

√
indicates participation in the calculation.

5.4. Effects of Feature Fusion Strategy

Towards analyzing the influence of multilevel enhancement relationship features on
scene recognition effect under different fusion strategies, on the basis of fusing four-level
features by using the concatenation function, we carried out comparison experiments on
four high-level enhancement features according to the ways of fusing three-level features,
fusing two level features and no fusing.

We design the model architecture in each of the four different fusion methods accord-
ing to the mathematical approach to combination. When no features are fused, the channel
dimension is minimized, which is 256; when two features are fused, the channel dimension
is 512; and when three features are fused, the channel dimension is 768. Using 80% and 50%
of the UCM data, we train under the same conditions. Figure 12 lists some of the results of
the experiments, from which it can be seen that the enhanced features are able to obtain high
accuracy; in addition to the different strategies for combining the features, the recognition
accuracy of the model under the same conditions is also different. When all four levels of
features are concatenated by the concatenation function, the channel dimension reaches
1024, and the features at this time fully integrate the relationship information between the
features at all levels, and after training, the model has the highest accuracy rate.
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5.5. Effects of Calculation Module

For analyzing the effect of our proposed complementary relationship and enhanced
relationship module on the recognition effect of the model, we set four different combi-
nations of the relationship module under the same other conditions, so as to verify the
recognition accuracy of the method in terms of different combinations of modules.

As shown in Figure 13, the “00” mode indicates that the complementary and aug-
mented relationship modules are not used; the “01” mode indicates that the complementary
relationship module is not utilized, but the augmented relationship module is utilized; the
“10 “ mode indicates that the complementary relationship module is utilized and the aug-
mented relationship module is not utilized; “11” mode indicates that the complementary
relationship module and the augmented relationship module are utilized. We conducted
comparison experiments on the UC-Merced dataset to obtain the recognition of each cate-
gory of scene targets. From the figure, we can see that the “11” mode has relatively high
accuracy and is more stable than the other modes.

Sensors 2023, 23, x FOR PEER REVIEW 23 of 26 
 

 

 
Figure 13. Accuracy for per category with different module combinations. 

6. Conclusions 
Not only because of the complexity of remote sensing scene image data, but also be-

cause of the simple application of features to each layer of CNN, all of which affect the 
improvement of scene objective recognition accuracy to a certain extent. To solve the issue, 
we use the convolutional feature message of the upper layer to complement the lower 
layer, and complementary weights between adjacent layers are calculated using the self-
attention relation and the global attention relation, and then the weights are assigned to 
the adjacent layers to complementary relationship feature maps, and the global and local 
features of the underlying layers are extracted to form the guide coefficients, and then 
fused with the features of the upper layers to obtain the enhanced relationship feature 
maps, and finally the features are fused to achieve scene objective recognition using soft-
max recognizer. The network is able to capture the key contents of scene objectives and 
enhance the representation of deep features by using the complementary relationships 
between contextual features and enhanced relational information, further improving the 
performance of scene recognition based on CNNs effectively. Experimental results on 
three common benchmark data collections (including AID, UC-Merced, and RSSCN7) in-
dicate that CRABR-Net can fully utilize the powerful learning ability of CNN and realize 
higher recognition accuracy. In the next work, we will investigate various network archi-
tectures to enhance the efficiency of remote sensing scene objective recognition further by 
fusing and optimizing different networks. 

Author Contributions: N.G. and M.J.: Methodology, Software, Writing—original draft; L.G. and 
X.C.: Supervision; Y.T. and J.H.: Validation, Investigation. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research was funded by Internal Parenting Program (Grant number: 
145AXL250004000X). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

A
cc

ur
ac

y 
fo

r P
er

 C
at

eg
or

y

00 01 10 11

Figure 13. Accuracy for per category with different module combinations.



Sensors 2023, 23, 7514 21 of 24

6. Conclusions

Not only because of the complexity of remote sensing scene image data, but also
because of the simple application of features to each layer of CNN, all of which affect
the improvement of scene objective recognition accuracy to a certain extent. To solve the
issue, we use the convolutional feature message of the upper layer to complement the
lower layer, and complementary weights between adjacent layers are calculated using the
self-attention relation and the global attention relation, and then the weights are assigned
to the adjacent layers to complementary relationship feature maps, and the global and
local features of the underlying layers are extracted to form the guide coefficients, and
then fused with the features of the upper layers to obtain the enhanced relationship fea-
ture maps, and finally the features are fused to achieve scene objective recognition using
softmax recognizer. The network is able to capture the key contents of scene objectives
and enhance the representation of deep features by using the complementary relationships
between contextual features and enhanced relational information, further improving the
performance of scene recognition based on CNNs effectively. Experimental results on three
common benchmark data collections (including AID, UC-Merced, and RSSCN7) indicate
that CRABR-Net can fully utilize the powerful learning ability of CNN and realize higher
recognition accuracy. In the next work, we will investigate various network architectures
to enhance the efficiency of remote sensing scene objective recognition further by fusing
and optimizing different networks.
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