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Abstract: Gestures have been used for nonverbal communication for a long time, but human–
computer interaction (HCI) via gestures is becoming more common in the modern era. To obtain a
greater recognition rate, the traditional interface comprises various devices, such as gloves, physical
controllers, and markers. This study provides a new markerless technique for obtaining gestures
without the need for any barriers or pricey hardware. In this paper, dynamic gestures are first
converted into frames. The noise is removed, and intensity is adjusted for feature extraction. The
hand gesture is first detected through the images, and the skeleton is computed through mathematical
computations. From the skeleton, the features are extracted; these features include joint color cloud,
neural gas, and directional active model. After that, the features are optimized, and a selective feature
set is passed through the classifier recurrent neural network (RNN) to obtain the classification results
with higher accuracy. The proposed model is experimentally assessed and trained over three datasets:
HaGRI, Egogesture, and Jester. The experimental results for the three datasets provided improved
results based on classification, and the proposed system achieved an accuracy of 92.57% over HaGRI,
91.86% over Egogesture, and 91.57% over the Jester dataset, respectively. Also, to check the model
liability, the proposed method was tested on the WLASL dataset, attaining 90.43% accuracy. This
paper also includes a comparison with other-state-of-the art methods to compare our model with
the standard methods of recognition. Our model presented a higher accuracy rate with a markerless
approach to save money and time for classifying the gestures for better interaction.

Keywords: feature fusion; filter; home automation; adaptive median filter; hand detection; deep
learning; noise reduction; gesture recognition

1. Introduction

In recent years, home automation has emerged as a research topic. Many researchers
have started investigating the demand criteria for home automation in different envi-
ronments. Human–computer interaction (HCI) [1] is considered a more interactive and
resourceful method of engaging with different appliances to make the system work. In
the conventional approach, different devices like a mouse, keyboard, touch screen, and
remote devices are used to fulfill requirements so that users can interact by only using their
hands with different home appliances, home healthcare, and home monitoring systems.
Usually, changing channels and controlling light on/off switches are more demanding
research areas for HCI [2]. Earlier systems were divided into two approaches for interacting
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with computers. The first approach is inertial sensor-based and the second approach is
vision-based. In the first approach, sensors are built with one or more arrays. They track the
position of the hand, the velocity, and acceleration. Then, these motion features are trained
and tested for hand gesture recognition. They are used to control home appliances like
TV, radio, and lights [3–7]. Despite its high sensitivity, this approach makes it difficult to
obtain higher accuracy. This approach demands a proper setup with high-quality sensors.
The use of high-quality sensors can attain better results, but they make the system more
expensive, and durability issues arise. With the advancement of technology, new sensors
are continually being launched in the market [8], the purpose of which is to minimize
sensitivity, making them more expensive.

The second approach is vision-based, which reduces the limitations arising from the
sensor-based approach [9]. With the help of this sensor, hand gestures are recognized
using images. The images consist of RGB and depth. The RGB images are collected using
cameras. The cameras are less expensive and easy to set up properly. The RGB image color,
shape, orientation, contours, and positions are calculated for hand gesture recognition. The
vision-based sensors with depth images gain more dimensions than RGB [10]. For depth,
thresholding techniques are either empirical or automated. Empirical techniques include
the trial-and-error method, in which the search space is excluded, and the computation
cost is a priority for hand localization. In automated solutions, the hand is considered the
main focus area for data acquisition [11]. The hand is localized as the closest object in front
of the camera’s in-depth image.

Vision-based sensors also pose some challenges for researchers, such as light intensity,
clutter sensitivity, and skin tone color [12]. Hand localization is a crucial step. For this,
the conventional systems are divided into different steps to obtain better accuracy while
keeping the challenges in view. First, data acquisition is performed, followed by hand
detection. For hand detection, multiple methods are used, including segmentation, tracking,
and color-based extractions. The features are extracted using different algorithms. After
that, the gesture is recognized. For the given approach, both images and videos are
collected [13]. The still images provide static gestures, whereas videos provide dynamic
hand gestures, as changes in hand gestures from one frame to another are noticed. Static
gestures are still images and require less computation cost [14–17], whereas dynamic
gestures contain three-dimensional motion. The movement in dynamic hand gestures
becomes a challenging task as the speed varies, and gesture acquisition is difficult due to
speed issues. In the literature, static and dynamic gesture recognition has been performed
using two different methods: supervised and unsupervised learning. Supervised learning
methods include decision trees, random forests, and SVM, whereas unsupervised learning
methods include k-means, hidden Markov model, and PCA [18].

In our proposed model, we have used dynamic gestures to challenge our limitations.
Our system proved its compatibility. In this paper, the videos are first converted into frames.
An adaptive median filter and gamma correction are applied to the images to reduce noise
and adjust the light intensity, respectively. Then, the hand is detected using saliency maps.
The extracted hand is then available for feature extraction. We have extracted different
features while keeping the issues hindered in classification. For this feature, we have
chosen three different state-of-the-art algorithms. These features are named the joint color
cloud, neural gas, and directional active model. The features are then optimized using an
active bee colony algorithm. The optimized features are passed through the RNN. Our
accuracies are shown to be better for model designs. The main contributions of our system
are as follows:

• The system approach is different from previous systems; it recognizes dynamic ges-
tures with complex backgrounds.

• Hands are detected from both images using two-way detection: first, the skin tone
pixels are extracted, and then the saliency map is applied for greater precision.

• Features are collected using different algorithms, like fast marching, neural gas, and
the 8-freeman chain model. All the features are extracted with modifications to the
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algorithms listed. The features are collected and fused to make a feature fusion
for recognition.

• The proposed system uses a deep learning algorithm such as RNN to achieve higher
accuracy.

The rest of the sections presented in this article are as follows: Section 2 includes a
related study of the existing methods. Section 3 presents the architecture of the proposed
system. Section 4 shows the experimental section with system performance evaluations.
Section 5 describes the strengths and weaknesses of our proposed system. Section 6 presents
the conclusion of the system and future work directions.

2. Literature Review

Multiple methods have been introduced to acquire hand gestures. This section presents
the most useful and popular methods. A literature review was conducted to study the
research work carried out in particular areas.

2.1. Hand Gesture Recognition via RGB Sensors

In hand gesture recognition systems, many researchers use sensors and cameras to
recognize gestures. The RGB videos can be collected using different cameras. Table 1
presents the methods used by researchers for hand gesture recognition using RGB videos.

Table 1. Related studies on hand gesture recognition using RGB sensors.

Authors Methodology

S. Nagarajan et al. [19]

The proposed system captures the American sign language and filters the images using Canny edge
detection. An Edge Orientation Histogram (EOH) for feature extraction was used, and these feature
sets were classified by a multiclass SVM classifier; however, some signs were not detected due to
hand orientation and gesture similarity.

Mandeep et al. [20]

The hand gesture system used the skin color model and thresholding; the YCbCr segmented the
hand region, skin color segmentation was used to extract the skin pixels, and Otsu thresholding
removed the image’s background. In the last PCA, the template-matching method was used to
recognize a total of twenty images per gesture from five different poses from four gesture captures.
On the other hand, this system has some limitations in that skin color varies due to light colors, and
the background contains skin color pixels.

Thanh et al. [21]

Multimodal streams are used to increase the performance of hand recognition by combining depth,
RGB, and optical flow. A deep learning model is used for feature extraction from each stream;
afterward, these features are combined with different fusion methods for the final classification. This
system outperforms the results with multi-modal streams of different viewpoints collected from
twelve gestures.

Noorkholis et al. [22]

In dynamic hand gesture recognition, the dataset of RGB and depth images is preprocessed from the
Region of Interest (ROI) to extract the original pixel value of the hand instead of other unnecessary
points. To extract the feature set, a three-dimensional convolutional neural network (3DNN) and long
short-term memory (LSTM) combination of deep learning is used to extract the spatio-temporal
features that are further classified by finite state machine (FSM) model classification to solve the
problem of different gestures used in different applications for ease. This proposed system is
designed for a smart TV environment, and for this purpose, eight gestures perform robustly in
real-time testing out of 24 gestures.

K. Irie et al. [23]

In this paper, the hand gesture is detected by the emotion of the hand in front of the camera. The
hand motion is detected to control the electronic appliances in intelligent rooms with complete
control of hand gestures. The cameras have the ability to zoom in and focus on the user to detect the
hand gesture. The hand is detected via color information and motion direction using fingers.
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Table 1. Cont.

Authors Methodology

Chen-Chiung Hsieh
et al. [24]

This research was conducted to reduce issues like hand gesture detection from complex backgrounds
and light intensity issues. The hand gesture was detected with the help of the body skin detection
method. The gestures were classified with the help of a new hand gesture recognition model called
the motion history image-based method. A total of six hand gestures at different distances from the
camera were used as the dataset. The images were trained using a haar-like structure with up, down,
right, and left movements. The home automation-based system generated 94.1% accuracy using the
proposed method.

Zhou Ren et al. [25]

A new study was conducted on hand gesture recognition using the finger earth mover distance
(FEMD) approach. They noticed the speed and accuracy of the FEMD, shape context, and
shape-matching algorithm. The dataset was collected from the Kinect camera, so it contained both
depth and RGB images.

Jaya Prakash Saho [26]

Currently, convolutional neural networks (CNNs) exhibit good recognition rates for image
classification problems. It is difficult to train deep CNN networks such as AlexNet, VGG-16, and
ResNet from scratch due to the lack of big, labelled picture examples in static hand gesture images.
To recognize hand gestures in a dataset with a low number of gesture images, they used an
end-to-end fine-tuning strategy for a pre-trained CNN model with score-level fusion. They used two
benchmark datasets, and the efficacy of the proposed approach was assessed using
leave-one-subject-out cross-validation (LOO CV) and conventional CV tests. They proposed a
real-time American Sign Language (ASL) recognition system and also evaluated it.

Ing-Jr Ding [27]

In the proposed system, the suggested method consists of two sequential computation steps: phase 1
and phase 2. The deep learning model, a visual geometry group (VGG)-type convolutional neural
network (CNN), also known as the VGG-CNN, is used to assess the recognition rate. The
experiments proved that image extraction efficiently eliminates the undesirable shadow region in
hand gesture depth pictures and greatly improves the identification accuracy.

Jun Li [28]

They proposed MFFCNN-LSTM for forearm sEMG signal recognition using time-domain and
time-frequency spectrum features. They first extracted hand movements from the NinaPro db8
dataset, and then images were denoised via empirical Fourier decomposition. The images were
passed through the different channels using CNN to collect the time-domain and
time-frequency-spectrum features. The features were fused and passed to the LSTM. They achieved
98.5% accuracy with the proposed system.

2.2. Hand Gesture Recognition via Marker Sensors

Many researchers worked on marker sensors with proper equipment setup. Gloves
were attached to the hands to note down the locations and movements. Table 2 presents
the researchers’ methods for hand gesture recognition using marker videos.

Table 2. Related work for hand gesture recognition using marker sensors.

Authors Methodology

Safa et al. [29]

Currently, the hand gesture system deploys many recognition systems with sensors to locate the
correct motion and gesture of the hand without any distortion. Combining machine learning and
sensors increases the potential in the field of digital entertainment by using touchless and
touch-dynamic hand motion. In a recent study, a leap motion device was used to detect the dynamic
motion of the hand without touching it, analyse the sequential time series data using long short-term
memory (LSTM) for recognition, and separate unidirectional and bidirectional LSTM. The novel
model, named Hybrid Bidirectional Unidirectional LSTM (HBU-LSTM), improves performance by
considering spatial and temporal features between leap motion data and neural network layers.

Xiaoliang et al. [30]

The hand gesture system, with a novel approach, combines a wearable armband and customized
pressure sensor smart gloves for sequential hand motion. The data collected from the inertial
measurement unit (IMU), fingers, palm pressure, and electromyography was computed using deep
learning. Long and short-term memory models (LSTM) for testing and training were applied. The
experimental work showed outstanding results with dynamic and air gestures collected from ten
different participants.



Sensors 2023, 23, 7523 5 of 23

Table 2. Cont.

Authors Methodology

Muhammad et al. [31]

In a smart home, the automatic system developed for the elder’s care deployed a home automation
system with the gesture to control the appliances of daily use by using embedded hand gloves to
detect the motion of the hand. For hand movements, wearable sensors such as an accelerometer and
gyroscope were used to collect the combined feature set, and a random forest classifier was used to
recognize the nine different gestures.

Dong-Luong-Dinh
et al. [32]

In hand gesture recognition for home appliances, a novel approach towards detection is provided in
this paper. They controlled home appliances using hand gestures by detecting hands and generating
control commands. They created a database for hand gestures via labelling part maps and then
classifying them using random forests. They generated a system for TV, lights, doors, changing
channels, fans, temperature, and volume using hand gestures.

Muhammad Muneeb
et al. [33]

Smart homes for the elderly and disabled people need special attention, as awareness of geriatric
problems is necessary to resolve these issues. Researchers have developed many gesture recognition
systems in various domains, but the authors of this paper presented a way to deal with elderly issues
in particular. They used gloves to record the movements of the rotation, tilting of the hand, and
acceleration. The nine gestures were classified using random forest, attaining an accuracy of 94%
over the benchmark dataset.

Chi-Huang Hung et al. [34]

They proposed a system for an array lamp that performed ON/OFF actions and dimmed the light.
They used a gyroscope and an accelerometer for hand detection. The noise was removed using a
Kalman filter, and signals were decoded after receiving them from the devices to convert them into
the desired gestures.

Marvin S. Verdadero
et al. [35]

Remote control devices are common, but the setup is very expensive. The static hand gestures are
taken from an Android mobile, and the signals are passed to the electronic devices. The distance
should be 6 m from the device to pass the signals accurately for gesture recognition.

Zhiwen Deng [36]

Sign language recognition (SLR) is an efficient way to bridge communication gaps. SLR can
additionally be used for human–computer interaction (HCI), virtual reality (VR), and augmented
reality (AR). To enhance the research study, they proposed a skeleton-based self-distillation
multi-feature learning method (SML). They constructed a multi-feature aggregation module (MFA)
for the fusion of the features. For feature extraction and recognition, a self-distillation-guided
adaptive residual graph convolutional network (SGA-ResGCN) was used. They tested the system on
two benchmark datasets, WLASL and AUTSL, attaining accuracies of 55.85% and
96.85%, respectively.

Elahe Rahimian [37]

For the reduction in computation costs in complex architectures while training larger datasets, they
proposed a temporal convolution-based hand gesture recognition system (TC-HGR). The 17 gestures
were trained using attention mechanisms and temporal convolutions. They attained 81.65% and
80.72% classification accuracy for window sizes of 300 ms and 200 ms, respectively.

3. Materials and Methods
3.1. System Methodology

The proposed architecture detects hand gestures in a dynamic environment. Primarily,
for a dynamic image, the images are first converted into frames. The acquired images are
passed through an adaptive mean filter for noise reduction, and then gamma correction
is applied to the images to adjust the image intensity for better detection. On the filtered
images, skin color is detected, and a saliency map is applied over it for hand extraction.
The extracted hand is trained over a pre-defined model for the hand skeleton. After that,
the detected hand and skeleton are used for feature extraction. The features include a joint
color cloud, neural gas, and a directionally active model. The features are optimized to
reduce complexity via graph mining. Finally, for the gestures, an RNN is implemented for
classification. The architecture of the proposed system is presented in Figure 1.
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3.2. Images Pre-Processing

In the acquired image, noise reduction is necessary to remove extra pixel information,
as extra pixels hinder detection [38–41]. An adaptive median filter is used to detect the
pixels affected by noise. This filter maintains the image quality, and the image blurring
effect is negated. The pixels in the noised image are compared with the values of their
neighboring pixels. A pixel showing a dissimilar value is labelled as a noisy pixel and a filter
is applied over it. The pixel value is adjusted and replaced with the value of its neighboring
pixels. For every pixel, the local region statistical estimate is calculated, resulting in â; a is
the uncorrupted image, and â is obtained from this image. The mean square error (MSE) is
minimized between these two images, â and a. The MSE is presented as follows:

m2 = Ea− â2 (1)

Conventional filters change all pixel values to denoise the image, but adaptive median
filters work in two ways to change only the dissimilar pixels. Between level A and level B,
level A is presented as follows:

A1 = Qmed −Qmin
A2 = Qmed −Qmax

(2)

where Qmed represents the median of the gray level in the original image Ixy; Qmin is the
minimum gray level in Ixy; Qmax is the maximum gray level in Ixy. If A1 > 0 and A2 < 0,
there is a shift to level B. Otherwise, the window size is increased if the window size is
less than or equal to Imax repeat level A, whereas Imax represents the maximum size of Ixy.
Otherwise, the gray level coordinates Qxy are shown. Level B is presented as follows:

B1 = Qxy −Qmin
B2 = Qxy −Qmax

(3)

If B1 > 0 and B2 < 0 then Qxy is shown, otherwise Qmed is shown. Figure 2 shows a
flowchart of the algorithm implemented for the filter.
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Figure 2. Sequential model representation for adaptive median filter algorithm.

The denoised image intensity is adjusted via gamma correction, as brightness plays a
key role in the detection of a region of interest [42]. The power law for gamma correction is
defined as follows:

Wo = GWγ
I (4)

where WI is the input non-negative value with power γ and G is the constant usually equal
to 1, and the range can lie between 0 and 1. Wo is the output value [43–45]. The denoised
intensity-adjusted image, including the plot, is shown in Figure 3.
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Figure 3. Pre-processed images with histograms of HaGRI dataset gestures: (a) ok; (b) stop.

3.3. Hand Detection

In this section, the hand is detected from the images using a two-way model. First, the
skin tone from pixels is detected using hand gestures to localize the region of interest [46–50].
Then, a saliency map is applied over the image to obtain a better view of the desired ges-
ture. The saliency map goal is to find the appropriate localization map, which is computed
as follows:

Mh
s ∈ Ru∗v = ReLU

(
∑i αh

i Hi
)

αh
i = 1

R

(
∑
i

∑
j

)
(5)
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where Mh
s is the localization map for the region of interest; u ∗ v represents the width and

height of the image; i is the region of interest; αh
i represents the global average pooling; R

is the gradient via backpropagation. The average of the feature map is calculated using
the weights assigned to the pixel gradient. Then, the ReLU is applied over the feature map.
The image view range is set between 0 and 1, and the image is upscaled and overlay on the
original image, resulting in a saliency map [51–53]. Figure 4 presents the saliency map for
the HaGRI dataset “stop” and “ok” gestures.
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Figure 4. Hand detection using saliency map on the gestures (a) stop and (b) ok.

3.4. Hand Skeleton

For hand skeleton mapping, hand localization is the foremost step [54]. In our research,
we first separated the palm and fingers for an accurate classification of the skeleton points.
For palm extraction, a single-shot multibox detector (SSMD) is used; it excludes the fingers,
and only the palm is bound by the blob. Then, the palm is first converted into binary, and a
four-phase sliding window is moved across the whole area for the detection of the four
extreme left, right, top, and bottom points. The second phase of the system includes finger
identification; again, SSMD is used to detect the fingers. The palm is excluded, and the
four-phase sliding window is moved to the extracted fingers again. It identified the extreme
top, bottom, left, and right points [55]. From the extreme tops, the curves of the pixels are
noted and marked. As a result, five points on the fingers and four points on the palm are
obtained. Figure 5 shows the hand skeleton results for the HaGRI dataset.
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Figure 5. Hand skeleton mapping presenting palm and finger extreme points over gestures: (a) call;
(b) stop; (c) two up.

3.5. Fusion Features Extraction

In this section, we illustrate how to extract various features from the acquired hand
gestures. In hand gesture recognition systems, feature extraction contains two types of
features: full-hand and point-based [56]. The full-hand feature set is made up of two
techniques: a joint colour cloud and neural gas. A directionally active model is included in
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the point-based feature. Both the extracted features are fused together to generate a feature
set for recognition.

3.5.1. Joint Color Cloud

For this feature, the algorithm used to generate the cloud with different colors, which
helps to obtain the skeleton point accuracy, and the geodesic distance for all fingers,
including the palm, is extracted for the feature set. The color cloud is generated using a
fast-marching algorithm [56–58]. This algorithm is defined as follows:

(1) Suppose we are interested in the region of interest function value f (i, j). This leads to
two types of spatial derivative operators.

S+i f = f (i+t, j)− f (i,j)
t

S−i f = f (i,j)− f (i+t, j)s
t

(6)

where S+i f is the forward operator, as it uses the f (i + t, j) to propagate from right to
left by finding the value of f (i, j). On the other hand, S−i f represents the backward
operator, propagating from left to right.

(2) For the difference operator, a discrete function is used to calculate fi,j. For this purpose,
at a specific point, the speed function Pi,j is defined as follows:

 max
(

S−i
i,j f ,−S+i

i,j f , 0
)2

+max
(

S−j
i,j f ,−S+j

i,j f , 0
)2


1
2

=
1

Pi,j
(7)

The above equation is interpreted as follows, where (i, j) is the arrival time of fi,j.[
Max

(
fi,j − fi−1,j, fi,j − fi+1,j, 0

)2

+max
(

fi,j − fi,j−1, fi,j − fi,j+1, 0
)2

] 1
2

=
1

Pi,j
(8)

(3) For the neighbor pixel value calculation, only fi,j point included in the set point (i, j)
can be used. The fi,j value computation is defined as follows:

p = min
(

fi−1,j, fi+1,j
)

q = min
(

fi,j−1, fi,j+1
) (9)

(4) The quadratic equation is formulated for fi,j: if 1
fi,j

> |p− q|, which leads to the following:

fi,j =
p + q +

√
2
(

1
fi,j

)2
− (a− b)2

2
(10)

otherwise, fi,j =

(
1
fi,j

)2

+ min(a, b)

These computations have only been performed on the neighbors of the new points
added. If the neighboring value and calculated point (i, j) are equal then the values are
compared, and the smaller value calculated before is added. In every iteration, a smaller
value is found and stored. To save time, the min heap is used in the fast-marching algorithm
to store the minimum values quickly with less time consumption. These iterations continue
until the endpoint is achieved [59,60]. Figure 6 shows the results for the point-colored cloud.



Sensors 2023, 23, 7523 10 of 23

Sensors 2023, 23, x FOR PEER REVIEW 10 of 23 
 

 

(3) For the neighbor pixel value calculation, only 𝑓𝑖,𝑗  point included in the set point 

(𝑖, 𝑗) can be used. The 𝑓𝑖,𝑗 value computation is defined as follows: 

𝑝 = min (𝑓𝑖−1,𝑗 , 𝑓𝑖+1,𝑗)

𝑞 = min (𝑓𝑖,𝑗−1, 𝑓𝑖,𝑗+1)
 (9) 

(4) The quadratic equation is formulated for 𝑓𝑖,𝑗: if 
1

𝑓𝑖,𝑗
>  |𝑝 − 𝑞|, which leads to the fol-

lowing: 

 𝑓𝑖,𝑗 =  

𝑝 + 𝑞 + √2 (
1

𝑓𝑖,𝑗
)

2

− (𝑎 − 𝑏)2

2
 

(10) 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑓𝑖,𝑗 = (
1

𝑓𝑖,𝑗
)

2

+ min (𝑎, 𝑏)   

These computations have only been performed on the neighbors of the new points 

added. If the neighboring value and calculated point (𝑖, 𝑗) are equal then the values are 

compared, and the smaller value calculated before is added. In every iteration, a smaller 

value is found and stored. To save time, the min heap is used in the fast-marching algo-

rithm to store the minimum values quickly with less time consumption. These iterations 

continue until the endpoint is achieved [59,60]. Figure 6 shows the results for the point-

colored cloud. 

 

(a) (b) (c) 

Figure 6. Wave propagation of point-colored cloud over HaGRI datasets gesture. (a) ok; (b) stop; 

(c) dislike. 

3.5.2. Neural Gas 

Neural maps organize themselves and form neural gas; it shows the ability to rank 

neighborhood vectors, which determine the neighborhood data space [61,62]. The neural 

gas is composed of multiple neurons, 𝑛, comprising weight vectors  𝑊(𝑟) that result in 

forming clusters. During training, every single neuron presents a change in position with 

an abrupt movement. Randomly, a feature vector is assigned to every single neuron. From 

the formed neural gas network, random data 𝑟 is selected from the feature vector. With 

the help of this data vector 𝑟, the Euclidean distance is calculated from all the weight 

vectors. The distance values computed determine the center adjustment with the selected 

data vector [63–65]. The feature vector itself is defined as follows: 

Figure 6. Wave propagation of point-colored cloud over HaGRI datasets gesture. (a) ok; (b) stop;
(c) dislike.

3.5.2. Neural Gas

Neural maps organize themselves and form neural gas; it shows the ability to rank
neighborhood vectors, which determine the neighborhood data space [61,62]. The neural
gas is composed of multiple neurons, n, comprising weight vectors W(r) that result in
forming clusters. During training, every single neuron presents a change in position with
an abrupt movement. Randomly, a feature vector is assigned to every single neuron. From
the formed neural gas network, random data r is selected from the feature vector. With the
help of this data vector r, the Euclidean distance is calculated from all the weight vectors.
The distance values computed determine the center adjustment with the selected data
vector [63–65]. The feature vector itself is defined as follows:

Wm+1
fn

= Wm
fn
+ ε. e−n/h.

(
r – Wm

fn

)
,

n = 0, . . . . , N − 1
(11)

where the probability distribution W(r) of the data vector n with a finite number of sets
s f , f = 1, . . . .., N. A data vector n for probability distribution W(r) is presented at each
time step m. The distance order is determined from the feature vector of the given data
r. If no is the index of the closed feature vector, n1 is the second, and nN−1 is distant to
the data vector n, then ε represents adaptation step size and h represents neighborhood
range. After most of the adaptation steps, the data space is covered with a feature vector
with minimum errors. Algorithm 1 defines the pseudocode for neural gas formation, and
Figure 7 presents the structure of the neural gas over the HaGRI dataset gesture.
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Algorithm 1: Pseudocode for Neural Gas Formation

Input: I : Input space;
Output: G = (n0, n1, . . . .., nN) : the map;
I← []
Method:
I← N(n0, n1), where n0 represents the first node and n1 represents the second node
n0← 0;
nN← 100;
Whereas, the input signal Φ is as follows:

I← [Φ]
Calculate winning nodes nearest Φ

p1 ← argmino ∈O ‖ Φ− wn ‖
p2 ← argmino ∈{p1} ‖ Φ− wn ‖

Adjust p1 and p2
edge← edge ∪ (p1 , p2)
edge← 0

error p1 ← error p1+ ‖ Φ− wp1 ‖
Adjust edge

I← [ni+1]
repeat

until nN← 100
end while
return G = (n0, n1, . . . .., nN)

3.5.3. Directional Active Model

The next feature is extracted using an 8-Freeman chain code algorithm, which measures
the change in the directions of the curves at the boundary of the hand gesture [66]. Eight
Freeman chain codes are shape descriptors, and they change structural schemes with a
contour-dependent scheme. A shape description possesses a set of lines oriented in a
particular manner. The oriented vectors are in eight and four directions, and the chain code
vectors have integer numbers represented in a possible direction, as shown in Figure 8.
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Figure 8. Direction representation of eight Freeman chain codes.

First, the boundary of the hand is identified to obtain the curves. Suppose the points
on the curve are denoted by c on the boundary d. The starting point t on the top-right
side of the thumb orientation is checked for its vector position. The curve points on the
boundary Pb are calculated for all points, so it becomes Pb = {t0, t1, . . . . . . , tn−1}. After
attaining the vector position of t0 and t1, both of the curve point directions are compared;
if they both have the same values, the value of t1 is not considered and the next point t2
vector position is checked; otherwise, both of the curve point values are added to the list.
Hence, this whole procedure continues until tn−1 is reached. Figure 9 depicts the flow of
the point extraction in a directionally active model.
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Figure 9. Flow sheet of point extraction in a directionally active model.

For our proposed system feature vector, we considered only 12 positions: 8 with an
angle of 45◦ and 5 with an angle of 90◦. The angle description is shown in Figure 10, which
illustrates a better demonstration of the feature vector [67].
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3.6. Feature Analysis and Optimization

After feature extraction from all datasets, the extracted features are passed through
an artificial bee colony algorithm (ABCA) for optimization [68]. This helps reduce the
computation time and also the complexity of the data. ABCA consists of two groups: one
is known as the employer bee and the other is the onlooker bee. Both groups of bees have
the same number, which is similar to the solutions in the group of honey bees, known as a
swarm. The swarm size generates a randomly distributed initial population. Suppose the
number of j-th solutions in the swarm is denoted as Xj =

(
xj,1, xj,2, . . . .., xj,n

)
. Employed

bees find their food sources as follows:

aj,i = xj,i +∅j,i . (xj,i, xj,l) (12)

where Xl represents the candidate solution and is randomly selected when j 6= l. ∅j,i repre-
sents a random number from the range [–1, 1]. l is the dimension index from {1,2,3,. . .N}.
When the food search by employee bees is completed, they share all the information be-
tween the onlookers and nectar. Then, they choose the food amount equal to the nectar
amount. The fitness function of the new candidate solution is defined as follows:

Pnj =
f it(j)

∑N
j=1 f it(j)

(13)

where Pnj is the probability of the food source, which is higher if the solution better than j
is achieved. f it represents the fitness value in the j-th swarm size. With predefined function
iterations, if the position is not changed, then the value of the food source Xj is replaced
with Xj,i found by scout bees:

Xj,i = kbi + rand(0, 1). (obi − kbi) (14)

where obi and kbi are the lower and upper boundaries of the i-th dimension; rand(0, 1)
represents the random values between 0 and 1, respectively. Figure 11 presents the overall
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flowchart of the artificial bee colony to determine the decision steps, while Figure 12
presents the best fitness result over the “call” gesture in the HaGRI dataset.
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3.7. Gesture Classification Using RNN

We used a recursive neural network (RNN) on our optimized feature vectors to classify
gestures [69]. An RNN is a deep neural network that has the ability to learn distributive
and structured data. Therefore, it is ideal for our proposed system of classification. In an
RNN, the last output is typically used as the input for the next layer with hidden states. For
each timestamp ts, the activation function d〈ts〉 and the output o〈ts〉 defined are as follows:

d〈ts〉 = k1

(
Uddd〈ts−1〉 + Udbb〈ts〉 + gd

)
(15)

o〈ts〉 = k2

(
Uodd〈ts〉 + gy

)
(16)

where Udd, Udb, Uod, , gd, gy are the coefficients shared temporarily. k1, k2 are activation
functions. Figure 13 presents the overall flow of the RNN architecture.
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4. Experimental Setup and Evaluation

Experiments were performed on a system with the specifications of an Intel Core
i7-9750H with 2.60GHz processing power, and 16GB RAM with ×64 based Windows 10.
The MATLAB tool and Google Colab were used for attaining the results. The system
accessed the performance of the proposed architecture on four benchmark datasets: HaGRI,
Geogesture, Jester, and WLASL. The k-fold cross-validation technique was applied to
all three datasets to verify the reliability of our proposed system. This section includes
a dataset description, the experiments performed, and a system comparison with other
state-of-the-art systems.

4.1. Dataset Descriptions
4.1.1. HaGRI Dataset

The HaGRI Dataset [70] is specially designed for home automatic, automatic sector,
and video conferencing. It consists of 552,992 RGB frames with 18 different gestures. The
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dataset includes 34,730 subjects who performed gestures with different backgrounds. The
subjects were aged between 18 and 65 years old. The gestures were performed indoors
with different light intensities. The gestures used in our experiments were call, dislike, like,
mute, ok, stop, and two up. Figure 14 presents the gestures from the HaGRI dataset.
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4.1.2. Egogesture Dataset

The Egogesture [71] contains 2081 RGB videos and 2,953,224 frames with 83 different
static and dynamic gestures. The gestures contain indoor and outdoor scenes. For our
system training and testing, we selected seven dynamic gesture classes: scroll hand towards
the right, scroll hand downward, scroll hand backward, zoom in with fists, zoom out with
fists, rotate finger clockwise, and zoom in with fingers. The dataset samples with different
gestures and different backgrounds are presented in Figure 15.
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4.1.3. Jester Dataset

The Jester dataset [72] contains 148,092 video clips of pre-defined human hand gestures
collected in front of cameras; it comprises 27 gestures. The video quality of the gestures is
set to 100 pixels at 12 fps. Seven hand gestures are selected for system training and testing
for the following: sliding two fingers down, stop sign, swiping left, swiping right, turning
the hand clockwise, turning the hand counterclockwise, and zooming in with two fingers.
The example gestures of the Jester dataset are shown in Figure 16.
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4.1.4. WLASL Dataset

The WLASL dataset has the largest number of videos of American Sign Language
hand gestures [73]. It has a total of 2000 hand gesture classes. The dataset was created
specifically for communication between the deaf and hearing communities. We used seven
classes to test the validity of our proposed model on hand gesture recognition datasets:
hungry, wish, scream, forgive, attention, appreciate, and abuse. The WLASL dataset sample
images are shown in Figure 17.
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4.2. Evaluation via Experimental Results

We evaluated the performance of our proposed system on all three datasets, and the
experiments proved the system’s efficiency. Tables 3–6 illustrate the confusion matrices
for the HaGRI, Egogesture, Jester, and WLASL datasets, achieving accuracy of 92.57%,
91.86%, 91.57%, and 90.43%, respectively. The experiments were repeated many times to
evaluate the efficiency of the results. The HaGRI dataset presented the highest accuracy
over the other datasets because of the higher resolution, and the hand extraction showed
better results than the other datasets. Tables 7–10 depict the gesture evaluation matrices
for the HaGRI, Egogesture, Jester, and WLASL datasets. This presents the gesture class
accuracy, precision, recall, and f1 score for all the benchmark datasets used. This section
also compares the selected classifier’s accuracies to those of other conventional methods
to demonstrate why they are preferred over other algorithms. Figure 18 demonstrates the
comparison of the accuracy of RNN with other-state-of the art algorithms. Table 11 presents
a comparison of our system with other conventional systems in the literature.

Table 3. Confusion matrix for gesture classification by the proposed approach using the Ha-
GRI dataset.

Gesture Classes Call Dislike Like Mute Ok Stop Two Up

call 0.93 0 0 0.03 0 0 0.04
dislike 0 0.92 0 0 0.05 0 0.03

like 0.05 0 0.95 0 0 0 0
mute 0 0.04 0 0.94 0 0.02 0

ok 0 0 0.07 0 0.93 0 0
stop 0 0.05 0 0.05 0 0.90 0

two up 0 0 0.04 0 0 0.05 0.91

Mean Accuracy = 92.57%
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Table 4. Confusion matrix for gesture classification by the proposed approach using the Egoges-
ture dataset.

Gesture Classes Scroll Hand
towards Right

Scroll Hand
Downward

Scroll Hand
Backward

Zoom in
with Fists

Zoom Out
with Fists

Rotate Finger
Clockwise

Zoom in with
Fingers

scroll hand
towards the right 0.90 0 0 0.03 0 0.07 0

scroll hand
downward 0 0.93 0.07 0 0 0 0

scroll hand
backward 0 0 0.92 0 0.05 0 0.03

zoom in with
fists 0 0.03 0 0.93 0 0.04 0

zoom out with
fists 0.04 0 0 0 0.94 0 0.02

rotate finger
clockwise 0 0.07 0 0 0.02 0.91 0

zoom in with
fingers 0.04 0 0 0.06 0 0 0.90

Mean Accuracy = 91.86%

Table 5. Confusion matrix for gesture classification by the proposed approach using the Jester dataset.

Gesture Classes Sliding Two
Fingers Down Stop Sign Swiping Left Swiping Right Turning Hand

Clockwise

Turning Hand
Counterclock-

wise

Zoom in with
Two Fingers

Sliding two
fingers down 0.91 0 0 0 0 0.09 0

stop sign 0 0.92 0 0.05 0 0 0.03
swiping left 0.01 0 0.93 0 0.06 0 0

swiping right 0.06 0 0 0.92 0 0.02 0
turning hand

clockwise 0 0.04 0 0 0.92 0 0.04

turning hand
counterclock-

wise
0 0 0.08 0 0 0.92 0

zoom in with
two fingers 0.06 0 0 0 0.05 0 0.89

Mean Accuracy = 91.57%

Table 6. Confusion matrix for gesture classification by the proposed approach using the
WLASL dataset.

Gesture Classes Hungry Wish Scream Forgive Attention Appreciate Abuse

hungry 0.91 0 0 0.08 0 0 0.01
wish 0 0.90 0.09 0 0.01 0 0

scream 0.02 0.06 0.92 0 0 0 0
forgive 0 0 0 0.90 0.07 0.03 0

attention 0 0 0.04 0 0.89 0 0.07
appreciate 0 0.09 0 0.01 0 0.90 0

abuse 0.01 0 0 0 0 0.08 0.91

Mean Accuracy = 90.43%
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Table 7. Performance evaluation of the proposed approach using the HaGRI dataset.

Gesture Classes Accuracy Precision Recall F1 Score

call 0.98 0.93 0.95 0.94
dislike 0.97 0.92 0.91 0.92

like 0.97 0.95 0.90 0.92
mute 0.98 0.94 0.92 0.93

ok 0.98 0.93 0.95 0.94
stop 0.97 0.90 0.93 0.91

two up 0.97 0.91 0.93 0.92

Table 8. Performance evaluation of the proposed approach using the Egogesture dataset.

Gesture Classes Accuracy Precision Recall F1 Score

scroll hand towards the right 0.97 0.90 0.92 0.91
scroll hand downward 0.97 0.93 0.90 0.92
scroll hand backward 0.98 0.92 0.93 0.92

zoom in with fists 0.98 0.93 0.91 0.94
zoom out with fists 0.98 0.94 0.93 0.94

rotate finger clockwise 0.97 0.91 0.89 0.90
zoom in with fingers 0.98 0.90 0.95 0.92

Table 9. Performance evaluation of the proposed approach using the Jester dataset.

Gesture Classes Accuracy Precision Recall F1 Score

Sliding two fingers down 0.96 0.91 0.88 0.89
stop sign 0.98 0.92 0.96 0.94

swiping left 0.97 0.93 0.92 0.93
swiping right 0.98 0.92 0.95 0.93

turning hand clockwise 0.97 0.92 0.89 0.91
turning hand counterclockwise 0.97 0.92 0.89 0.91

zoom in with two fingers 0.97 0.89 0.93 0.91

Table 10. Performance evaluation of the proposed approach using the WLASL dataset.

Gesture Classes Accuracy Precision Recall F1 Score

hungry 0.98 0.91 0.97 0.94
wish 0.96 0.90 0.86 0.88

scream 0.97 0.92 0.88 0.90
forgive 0.97 0.90 0.91 0.90

attention 0.97 0.89 0.92 0.90
appreciate 0.97 0.90 0.89 0.90

abuse 0.97 0.91 0.92 0.91

Table 11. Comparison of the proposed method using conventional systems.

Methods HaGRID Egogesture Jester

P. Molchanov et al. [74] - 0.78 -
D. Tran et al. [75] - 0.86 -

R. Cutura et al. [76] 0.89 - -
P. Padhi [77] 0.90 - -

J. Yang et al. [78] - - 0.67
S. Li et al. [79] - - 0.73

Proposed Method 0.92 0.91 0.91
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5. Discussion

The proposed hand gesture recognition system model is designed to achieve state-
of-the-art performance over RGB images. Initially, images with a variety of gestures and
complex backgrounds are used as inputs from benchmark datasets, such as HaGRI, Egoges-
ture, and Jester. Our suggested two-way method is used to process the images provided
for hand extraction. There were also some shortcomings in the proposed approach that
prevented concealed information from being accurately obtained from the hand skeletons.
Frames with no suitable camera angle made it difficult to acquire the exact key points at
hand. As presented in Figure 5a, the extreme key points are localized on the knuckles of the
fingers due to the absence of the fingertips in the frame. The suggested system performed
well on frames that initially presented the entire hand, followed by the movement of the
hand. After the hand and skeleton extractions, the region of interest was passed through
the fusion of features. The full-hand and one-point-based features were optimized and
passed through RNN for recognition. The accuracy attained over the four datasets via
RNN produced better results, with an accuracy of 92.57% using the HaGRI dataset; for
Egogesture, it was 91.86%; for Jester, it was 91.57%; and for WLASAL, it was 90.43%.

6. Conclusions

This paper provides a novel way of recognizing gestures in a home automation system.
Home appliances like TVs, washing machines, lights, cleaning robots, printers, stoves, etc.
can be controlled using hand gestures. Our system proposed a way to fulfill the requirement
of detecting hands from a complex background via six steps, namely noise removal, hand
detection, hand skeleton, feature extraction, optimization, and classification. The hand
gestures were trained by preprocessing them first using the adaptive median algorithm.
Then, the hand detection was performed using the two-way method, and after that, the
hand skeleton was extracted using SSMD. From the extracted hand and skeleton points,
fusion features were extracted, namely joint colour cloud, neural gas, and directional active
model. The features were optimized using the active bee colony algorithm, which provided
promising results for all four datasets. The accuracies attained using the HaGRI dataset
was 92.57%; for Egogesture, it was 91.86%; Jester provided 91.57%; and WLASL showed
90.43%. The proposed system is for smart home automation, which was designed using
different techniques. It provides a set of features for recognition, rather than conventional
features, using only deep learning methods.

The proposed system needs to be trained with more gestures, and various experiments
can be performed in different environments like healthcare, robotics, sports, and industries.
The computation time needs to be considered to remove the complexity of the system.
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The computational cost of the system can be managed by considering the architecture.
In the future, we plan to work under different circumstances using computational cost
management. Also, we will add more features and robust algorithms to make our system
more efficient and standard for all environments.

Author Contributions: Conceptualization: H.A., N.A.M. and B.I.A.; methodology: H.A. and B.I.A.;
software: H.A. and S.S.A.; validation: S.S.A., B.I.A. and A.A. (Abdulwahab Alazeb); formal analysis:
A.A. (Abdullah Alshahrani) and N.A.M.; resources: A.J., S.S.A., B.I.A. and A.A. (Abdulwahab Alazeb);
writing—review and editing: N.A.M. and B.I.A.; funding acquisition: N.A.M., A.A. (Abdullah
Alshahrani), S.S.A., B.I.A. and A.A. (Abdulwahab Alazeb). All authors have read and agreed to the
published version of the manuscript.

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2023R440), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The
authors are thankful to the Deanship of Scientific Research at Najran University for funding this
study under the Research Group Funding program grant code (NU/RG/SERC/12/6).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Panwar, M.; Mehra, P.S. Hand gesture recognition for human computer interaction. In Proceedings of the IEEE 2011 International

Conference on Image Information Processing, Shimla, India, 3–5 November 2011.
2. Khan, R.Z.; Ibraheem, N.A. Hand gesture recognition: A literature review. Int. J. Artif. Intell. Appl. 2012, 3, 161. [CrossRef]
3. Wu, C.H.; Lin, C.H. Depth-based hand gesture recognition for home appliance control. In Proceedings of the 2013 IEEE

International Symposium on Consumer Electronics (ISCE), Hsinchu, Taiwan, 3–6 June 2013.
4. Solanki, U.V.; Desai, N.H. Hand gesture based remote control for home appliances: Handmote. In Proceedings of the 2011 IEEE

World Congress on Information and Communication Technologies, Mumbai, India, 11–14 December 2011.
5. Hsieh, C.C.; Liou, D.H.; Lee, D. A real time hand gesture recognition system using motion history image. In Proceedings of the

IEEE 2010 2nd International Conference on Signal Processing Systems, Dalian, China, 5–7 July 2010.
6. Chung, H.Y.; Chung, Y.L.; Tsai, W.F. An efficient hand gesture recognition system based on deep CNN. In Proceedings of the 2019

IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC, Australia, 13–15 February 2019.
7. Wang, M.; Yan, Z.; Wang, T.; Cai, P.; Gao, S.; Zeng, Y.; Wan, C.; Wang, H.; Pan, L.; Yu, J.; et al. Gesture recognition using a

bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nat. Electron.
2020, 3, 563–570. [CrossRef]

8. Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y.; et al. A
wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 2021, 4, 54–63.
[CrossRef]

9. Dang, L.M.; Min, K.; Wang, H.; Piran, M.J.; Lee, C.H.; Moon, H. Sensor-based and vision-based human activity recognition: A
comprehensive survey. Pattern Recognit. 2020, 108, 107561. [CrossRef]

10. Mujahid, A.; Awan, M.J.; Yasin, A.; Mohammed, M.A.; Damaševičius, R.; Maskeliūnas, R.; Abdulkareem, K.H. Real-time hand
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