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Abstract: According to the survey statistics, most traffic accidents are caused by the driver’s behavior
and status irregularities. Because there is no multi-level dangerous state grading system at home and
abroad, this paper proposes a complex state grading system for real-time detection and dynamic
tracking of the driver’s state. The system uses OpenMV as the acquisition camera combined with the
cradle head tracking system to collect the driver’s current driving image in real-time dynamically,
combines the YOLOX algorithm with the OpenPose algorithm to judge the driver’s dangerous
driving behavior by detecting unsafe objects in the cab and the driver’s posture, and combines the
improved Retinaface face detection algorithm with the Dlib feature-point algorithm to discriminate
the fatigue driving state of the driver. The experimental results show that the accuracy of the three
driver danger levels (R1, R2, and R3) obtained by the proposed system reaches 95.8%, 94.5%, and
96.3%, respectively. The experimental results of this system have a specific practical significance in
driver-distracted driving warnings.

Keywords: YOLOX; driver danger levels; Dlib; Image Identification

1. Introduction

With the progress of science and technology and the improvement of people’s living
standards, the number of automobile owners and drivers is increasing rapidly. According
to the Traffic Management Bureau of the Ministry of Public Security report, there have
been more than 200,000 traffic accidents in China every year in the past ten years, with
more than 260,000 casualties and CNY 1.2 billion of direct economic losses [1–3]. Among
them, the driver is an essential factor affecting driving safety and road smoothness, and
it is necessary to analyze and pay attention to the driver’s behavior [4–6]. Some research
data from developed countries in Europe and the United States show that the proportion
of traffic accidents caused by human factors is as high as 80% to 90% [7–9]. Therefore, it is
of great significance to study a system for discriminating the degree of danger of a driver’s
state [10,11].

Hong S, Kwon H et al. [12] combined conventional photoelectric volumetric tracing
(PPG) and electrocardiographic tracing (ECG) in the ear canal and found that fatigue
detection was highly accurate. Sivaraman S, Trivedi M M et al. [13] at the University of
California analyzed driving status by determining the vehicle’s position concerning the rest
of the vehicles through video images. The Face LAB system [14], created by the Australian
National University in collaboration with Volvo, first recognizes the driver’s facial features.
It obtains data such as blinking frequency, pupil diameter, degree of eyelid closure, head
position and rotation frequency, and mouth and eyebrow movement parameters, which are
fused together to analyze and obtain the driver’s state.

The physiological parameter detection method is subjective; the vehicle behavior de-
tection method is affected by the road; and the machine vision detection method is costly. It
is impossible to prejudge dangerous behavior, and the detection effect of a single judgment
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standard is poor. Therefore, this paper proposes a comprehensive driver hazardous state
behavior discrimination system, which combines the YOLOX target detection algorithm
and OpenPose driver gesture recognition algorithm to detect the driver’s hazardous be-
havior. They are combined with driver dynamic fatigue tracking detection, driver unsafe
state, and the behavior hazard classification detection system [15–19]. The system sends
real-time warnings to the driver according to the degree of danger so that the driver can
adjust the state and behavior in time to ensure the safety of driving, thus improving the
driving safety coefficient and reducing the occurrence of traffic accidents.

2. Object Recognition in YOLOX Cab

The target detection problem is one of the more difficult problems in machine vision
due to the significant disparity in the target object’s shape and the influence of light intensity,
occlusion, and other factors in the detection process. Deep learning-based target detection
algorithms are divided into two categories: two stage and one stage. Two-stage algorithms
first generate a series of candidate frames before using a convolutional neural network
to classify the target, such as R-CNN, SPP-Net, Fast R-CNN, Faster R-CNN, and R-FCN,
etc. Whereas, one-stage algorithms extract features directly from the network to predict
object classification and location, e.g., YOLOv1, YOLOv2, RetinaNet, YOLOv3, and SSD.
Although the YOLO algorithm is less effective in the detection of small target objects, since
the targets in this paper, cigarettes, mugs, and phones in the cab, i.e., the images throughout
the detection process, are not small objects, and also the YOLOX detection rate is speedy,
the enhanced version can run at 45fps (frames per second) on the GPU, and the simplified
version can even reach 155fps. In addition, YOLOX has good generalization ability and can
correlate well with the background information when recognizing objects. Therefore, the
algorithm satisfies the most needed real-time in this study and can significantly reduce the
false detection of targets in the cab.

YOLOX can be divided into three parts: CSPDarknet, FPN, and YOLO Head, and the
YOLOX network structure is shown in Figure 1.
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Figure 1. YOLOX network structure.

The backbone feature extraction network of YOLOX is CSPDarknet; after inputting the
image, the feature extraction is first carried out in the backbone network, which is called
the feature layer, storing the feature set of all the input images. The backbone of YOLOX
is composed of residual convolution; the residual network has the advantages of easy
optimization and improvement of accuracy. After the input image, it first passes through
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the Focus structure, which compresses the width and height to 1/2 of the original, extends
the number of channels by four times, and then passes through the Resblock_body structure
four times. The three feature layers extracted are located in the middle, lower middle,
and bottom layers of the CSPDarknet, respectively. When the input is (640,640,3), the
shape sizes of the three feature layers are feature1 = (80,80,256), feature2 = (40,40,512), and
feature3 = (20,20,1024). The three feature layers are then fed into the FPN layer, the feature
pyramid that fuses different types of shape feature layers for better feature extraction.
Also, the structure of PANet is used in YOLOX to obtain the final effective feature layer by
upsampling and downsampling the features.

YOLO Head is the classifier and regressor of YOLOX, and the three enhanced ade-
quate feature layers obtained are fed into YOLO Head through the CSPDarknet and FPN
network structure, each of which has width, height, and number of channels with standard
convolution and activation functions. The prediction consists of three parts: Reg, Obj, and
Cls. The Reg part is the regression parameter judgment of the feature points; the Obj part is
the judgment of whether the feature points contain objects; and the Cls part is the kind of
objects contained in the feature points.

Figure 2 shows the flow chart of the target detection system framework based on the
YOLOX algorithm, which is divided into three parts: input layer, recognition layer, and
entity layer.
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Recognition layer: a series of image processing and target detection are performed 
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Figure 2. Target detection system framework.

Input layer: a camera that collects images is placed in the cab, the driver’s state
image is collected in real-time through the camera, and the image is transmitted to the
YOLOX model.

Recognition layer: a series of image processing and target detection are performed
through the recognition layer, and the trained YOLOX model is used to recognize the target
objects (cigarettes, water cups, and telephones) in the cab.

Entity layer: by analyzing the target detection results, it can provide early warning to
the driver, regulate the driver’s driving behavior, and reduce accidents.

No open-source dataset is available on the market for reference for the research on
driver behavior and state detection. Therefore, the dataset used in this paper includes the
Kaggle driving posture area image set [20,21], the collection of different drivers in different
driving states. Images and some image files are downloaded from the Internet by adding
noise, flipping, and increasing contrast, 6000 images are obtained, and data annotation is
performed, as shown in Figure 3. The pictures are divided into three categories: smoke,
drink, and phone, and a dataset is created.

The YOLOX-S model is adopted, which pays more attention to the rate and meets
the real-time requirements. The training process is divided into two stages: freezing and
thawing. In the freezing stage, the epoch is set to 100, and the backbone of the model
is frozen, which will not affect the feature extraction network and requires only a tiny
amount of video memory. At the same time, freezing training helps to improve training
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speed, preventing weights from breaking in the initial stage. In the thawing stage, the
epoch is also set to 100, the backbone of the model is thawed, and the feature extraction
network changes. This stage takes up a lot of memory, and the parameters of the network
change. The backbone network is first frozen and then unfrozen, the total number of
training generations is set to 20, and multiple threads are started to read data to speed up
the data reading process, the number of threads is set to 4, the graph is shown in Figure 4.
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The prediction phase uses two files: yolo.py and predict.py. Modify model_path and
classes_path in yolo.py. Modify model_path to the trained weight file ep200-loss2.450-
val_loss2.579.pth, classes_path points to the txt file corresponding to the detection category,
and predict the target image containing specific objects (water cups, cigarettes, and tele-
phones), as shown in Figure 5.

The model precision and recall are calculated as shown in (1) and (2).

Precision =
TP

TP + FN
× 100% (1)

Recall =
TP

TP + FP
× 100% (2)

The test results are shown in Table 1.
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Table 1. Test results.

Recall Rate Accuracy Rate

smoke 98.2% 97.8%
drink 98.5% 97.0%
phone 97.8% 96.6%

average 98.2% 97.1%

From the test results, we can conclude that the accuracy rates of the three target objects,
cigarettes, water cups, and telephones, are all over 95%.

In order to verify the reasonableness and feasibility of the model, other classical target
detection algorithm models are applied to this dataset, and the detection results are shown
in Figure 6. Comparing the results, the YOLOX algorithm has the highest accuracy and
a fast detection speed, which has obvious advantages and meets the requirements of the
designed system.
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3. OPENPOSE Driver Posture Detection

OpenPose mainly estimates the current posture of the human body through the
relative position of the critical points of the human body. By observing the positions of
various essential parts of the human body, the posture of the human body can be accurately
measured, and the target’s posture can be predicted, such as drinking water, calling,
smoking, etc. First, the posture of the driver’s body part is detected. After inputting the
picture, after OpenPose processing, the bone connection points are extracted. The model
used in this paper for the driver’s body is Body_25, which includes 25 human bone points.
The joint point connection implementation diagram is shown in Figure 7.
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The OpenPose network implementation consists of the following three phases (shown
in Figure 8):
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Phase 1: create a feature mapping for the input image using the first ten layers of VGGNet.
Stage 2: Create a CNN network with a two-branch multi-stage. One branch predicts

a set of 2D confidence maps for body part locations (e.g., eyes, elbows, knees, etc.), and
the other predicts a set of 2D vector fields for partial affinities. In the first stage (left half),
the network produces an initial set of detection confidence maps S and a set of partial
affinity fields L. Then, in each second stage (right half), the predictions from the two
branches of the previous stage are connected to the original image features F to produce
more accurate predictions. This step increases the depth of the neural network to capture
more accurate predictions.

Stage 3: generate 2D key points by reasoning and parsing the confidence and affinity
maps through the greedy algorithm [22].

Repeating the above steps can predict the location of the key points and their con-
fidence maps. Finally, the skeletal connectivity map of the target human body can be
obtained by connecting the critical points through the greedy algorithm.
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It can be seen from the detection effect that the body posture of the driver can judge
whether the driver is performing behaviors that endanger driving safety, such as making
a phone call, smoking, etc. Whether the driver answers the phone or not is judged by
calculating the distance from the right hand to the right ear, that is, the distance from point
4 to point 17, or the distance from the left hand to the left ear, that is, the distance from
point 7 to point 18. Similarly, smoking and drinking water are judged by calculating the
distance from the hands to the nose, that is, the distance from points 4 and 7 to point 0.

Through the coordinate value of the horizontal position of the hand key point and the
horizontal position of the ear key point, that is, the y-axis coordinate value, it is judged
whether the hand and the ear are on the same horizontal line, and thus to determine
whether the driver is answering the phone (handheld phone), as shown in Figure 9. It
can be seen from the common sense of making and answering calls that our hands do not
coincide with the position of our ears when making calls, so this paper sets a threshold
when making a judgment. If the difference between the y-axis coordinates of the hand and
the ear is within the set threshold, it is initially considered to be receiving a call. After the
assumption method and continuous experimentation, the threshold is set to 15, and the
flowchart is shown in Figure 10.
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As shown in Figure 9a, the y-axis coordinate value of the hand is 166, and as shown in
Figure 9b, the y-axis coordinate value of the ear is 161, and the difference between them is
5, which is within the set threshold range, so it was initially judged to be on the phone.
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In the same way, the driver’s smoking behavior is determined by the y-axis coordinate
value of the hand and the y-axis coordinate value of the nose, and the threshold is set to
10 through the assumption method and continuous experimentation; the drinking behavior
is similar to the smoking behavior. The y-axis coordinate value of the hand and the y-axis
coordinate value of the nose can also be calculated for discrimination. However, the
position of drinking water is more uncertain than smoking, so the threshold is set to 15.

Therefore, the driver must meet the following two conditions when smoking:

(1) The difference between the y-axis coordinate value of the driver’s hand joint point
and the y-axis coordinate value of the nose joint point does not exceed 10.

(2) The YOLOX target detection system detected the presence of cigarettes.

Drivers must meet the following two conditions when drinking water:

(1) The difference between the y-axis coordinate value of the driver’s hand joint point
and the y-axis coordinate value of the nose joint point does not exceed 15.

(2) There is a water cup in the detection result of the YOLOX target detection system.

The driver must meet the following two conditions when making a phone call:

(1) The difference between the y-axis coordinate value of the driver’s hand joint point
and the y-axis coordinate value of the ear joint point does not exceed 15.

(2) The detection result of the YOLOX target detection system has the presence of a phone.

Since the driver’s state is continuous, it is impossible to complete these dangerous
behaviors instantaneously, and the detection of the driver’s driving state image is relatively
independent; there is no contextual connection, and practical information exchange cannot
be performed. Some unexpected situations, such as the vehicle turning quickly, road
potholes, vehicle bumps, etc., will cause sudden jumps in the captured images. The
expected effect cannot be achieved in a period, so it cannot be accurately and stably
obtained—test results.

Based on this, this paper introduces a voting mechanism to reduce false detections due
to image jumps, enhancing the algorithm’s robustness. Based on the hardware conditions
and reasonable assumptions of the camera used in this paper, a 12-frame voting queue is
set up as a voter for driver behavior prediction. If, and only if, the same behavior exists in
the 12-frame voting queue for more than eight frames, the output driver state will change.
Otherwise, the output state will remain unchanged. Table 2 shows the comparison results
of the detection accuracy with and without the voting mechanism.

Table 2. Driver risky behaviors voting detection.

Risky Behavior
Classification No Voting Queue. (Accuracy Rate) There is a Voting Queue.

(Accuracy Rate)

Drink water 190/200 = 0.95 196/200 = 0.98
Smokes 186/200 = 0.93 190/200 = 0.95
Call up 188/200 = 0.94 196/200 = 0.98

The test results show that the detection accuracy of drivers drinking water has in-
creased from 95% to 98%; the detection accuracy of smoking has increased from 93% to
95%; and the detection accuracy of phone calls has increased from 94% to 98%.

4. Fatigue Detection

In this paper, the driver’s face is detected based on the RetinaFace algorithm, proposed
by Insight Face in 2019, incorporating excellent modeling ideas such as a feature pyramid
network and enhanced feature extraction, and performs well on the WiderFace dataset [23].

The MobileNetV1-0.25 backbone network was chosen to significantly reduce the
computation and speed up the computation rate to meet the real-time nature of face
detection. The MobileNet model is a lightweight deep neural network that uses the core
idea of depthwise separable convolution, whose structure is shown in the following figure.
Its structure is shown in Figure 11.



Sensors 2023, 23, 7536 9 of 16

Sensors 2023, 23, x FOR PEER REVIEW 9 of 16 
 

 

pyramid network and enhanced feature extraction, and performs well on the WiderFace 
dataset [23]. 

The MobileNetV1-0.25 backbone network was chosen to significantly reduce the 
computation and speed up the computation rate to meet the real-time nature of face de-
tection. The MobileNet model is a lightweight deep neural network that uses the core idea 
of depthwise separable convolution, whose structure is shown in the following figure. Its 
structure is shown in Figure 11. 

 
(a) (b) 

3×3 Depthwise Conv

BN

1×1 Conv

BN

ReLU

ReLU

 
(c) 

Figure 11. (a) Depthwise convolutional filters; (b) pointwise convolution filters; (c) depthwise sep-
arable convolution. 

The prediction result of RetinaFace is divided into three, which are classification pre-
diction result (Class Head), regression prediction result of the box (Box Head), and regres-
sion prediction result of face key points (Landmark Head), while the fatigue detection 
system in this paper is added with a cradle head tracking system in order to avoid affect-
ing the accuracy of the algorithm in case of an undetectable driver’s face. Meanwhile, the 
Dlib algorithm is used to obtain the critical points of the driver’s face for fatigue detection. 

Figure 11. (a) Depthwise convolutional filters; (b) pointwise convolution filters; (c) depthwise
separable convolution.

The prediction result of RetinaFace is divided into three, which are classification
prediction result (Class Head), regression prediction result of the box (Box Head), and
regression prediction result of face key points (Landmark Head), while the fatigue detection
system in this paper is added with a cradle head tracking system in order to avoid affecting
the accuracy of the algorithm in case of an undetectable driver’s face. Meanwhile, the
Dlib algorithm is used to obtain the critical points of the driver’s face for fatigue detec-
tion. Therefore, the improved version of RetinaFace subtracts the regression prediction
results of the face key points, significantly reducing the computation and improving the
detection rate.

The three adequate feature layers obtained are equivalent to dividing the input im-
age into grids of different sizes, and there are several a priori frames at each grid point;
RetinaFace defaults to two a priori frames, and prediction results determine whether the a
priori frames contain faces or not, and if they do, then the a priori frames are adjusted to
obtain the prediction frames. Class Head determines whether the a priori frame at each
grid point contains a face. Using 1 × 1 convolution, the number of channels in the feature
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layer is adjusted to num_anchors× 2; num_anchors is the number of a priori frames, which
is defaulted to two in the RetinaFace network. Two is used to judge whether the a priori
frame contains a face or not; two inside the serial number of one is more significant, as it
means that the a priori frame contains a face. Two inside the serial number zero is more
significant, meaning Box Head is used to adjust the center, width, and height of the a priori
box to obtain the prediction box. Using 1 × 1 convolution, the number of channels of the
feature layer is adjusted to num_anchors × 4, which is used to represent the adjustment
parameters of each a priori box. Four represents the four adjustment parameters of the a
priori box, the first two are used to adjust the center of the a priori box to obtain the center
of the prediction box. The last two are used to adjust the width and height of the a priori
box to obtain the width and height of the final prediction box. The process of actual frames
can be divided into three steps:

(1) Calculate the degree of overlap between all actual frames and a priori frames, and use
the a priori frames with IoU greater than 0.35 for prediction to obtain real frames;

(2) Coding these a priori frames that have a greater degree of overlap with the proper frame;
(3) The coding operation can be divided into classification prediction results and regres-

sion prediction results of the boxes.

The improved algorithm reduces the recognition process of face feature points in the
face detection part; firstly, the face is detected and boxed out using the RetinaFace algorithm,
and then combined with the Dlib algorithm to detect 68 feature points on the driver’s face,
which not only better accomplishes the recognition of 68 key points on the driver’s face,
but also improves the rate of the RetinaFace face recognition algorithm. Figure 12 below
shows the partial results of face detection after the improvement; five points are recognized
before the improvement of the face feature point, and after the improvement of the feature
point, this prediction step is removed.
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Compared to the pre-improved network, the improved face detection rate is greatly
improved with guaranteed accuracy, with fps going from an average of 16 to an average of
30, as shown in Figure 13.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 16 
 

 

  
(a) (b) 

Figure 13. (a) Pre-optimization detection rate and (b) optimized detection rate. 

The 68 critical points of the driver’s face are detected by the Dlib algorithm, as shown 
in Figure 14. The opening and closing of the driver’s eyes are determined by the eye aspect 
ratio (EAR), as shown in Figure 15; P1–P6 are the six feature points of the eyes. 

 
Figure 14. Keypoint detection. 

 
Figure 15. Eye feature points. 

When the driver opens or closes his eyes, the aspect ratio will change. The formula 
of EAR is 

2 6 3 5

1 4

P P P P
2 P P

EAR
− + −

=
−

 (3) 

The threshold for eye fatigue is set to 0.28; if the EAR is more than this, the eyes are 
considered open; if the EAR is less than it, the eyes are considered closed, as shown in 
Figure 16. 

 
Figure 16. Eyes open. 

Figure 13. (a) Pre-optimization detection rate and (b) optimized detection rate.



Sensors 2023, 23, 7536 11 of 16

The 68 critical points of the driver’s face are detected by the Dlib algorithm, as shown
in Figure 14. The opening and closing of the driver’s eyes are determined by the eye aspect
ratio (EAR), as shown in Figure 15; P1–P6 are the six feature points of the eyes.
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When the driver opens or closes his eyes, the aspect ratio will change. The formula of
EAR is

EAR =
‖P2 − P6‖+ ‖P3 − P5‖

2‖P1 − P4‖
(3)

The threshold for eye fatigue is set to 0.28; if the EAR is more than this, the eyes are
considered open; if the EAR is less than it, the eyes are considered closed, as shown in
Figure 16.
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Combined with the PERCLOS (Percentage of Eyelid Closure over the Pupil) value, the
fatigue state of the driver is detected, and if Equation (3) is satisfied, it is considered that
fatigue driving is performed.

PERCLOS =
F
T
× 100% (4)

The F in Formula (4) represents eye closure frames, and the T in Formula (4) represents
the total number of frames in the detection period.
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Referring to the relevant data [24–26], the fatigue limit is PERCLOS = 20%; we use
100 frames of images as a loop. If 20 frames of closed-eye images are detected in 100 frames,
it is considered fatigued and the output is tired; otherwise, the output is relaxed, as shown
in Figure 17.
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In order to test the effectiveness of the driver fatigue tracking detection algorithm
in this paper and the influence of the dynamic tracking system after adding the gimbal
to the driver fatigue detection effect. This paper conducts eIn order to ensure that the
driver’s face is always within the monitoring range of the camera, ensure real-time and
accurate detection, and avoid false detection caused by the driver’s face not being in the
detection frame; the cradle head tracking system is added, as shown in Figure 18. The
tracking gimbal of OpenMV first obtains the x and y coordinates of the center of the face,
sends the coordinate information of the center point to OpenMV, and then controls the
motion of the two servos of the gimbal by calculating the deviation between the coordinates
of the center of the face and the center of the picture, to realize driving—personnel face
tracking detection.
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In order to test the effectiveness of the driver fatigue tracking detection algorithm, and
the influence of the dynamic tracking system after adding the cradle head tracking system
to the driver fatigue detection effect, this paper conducts experiments on the subjects. This
is done by testing whether the system recognizes and detects when the subjects are relaxed
and fatigued using the driver fatigue detection system without the cradle head tracking
system and the driver fatigue detection system with the cradle head tracking system, as
shown in Figure 19.

Two kinds of driver fatigue detection systems without cradle head tracking system
and cradle head tracking system are tested, respectively, and the two states of driver’s
relaxation and fatigue are detected, respectively. Two thousand four hundred frames
of images are identified and detected for each state. The detection results are shown in
Tables 3 and 4. The exact number of detections is used to ensure the effectiveness of the
accuracy comparison.



Sensors 2023, 23, 7536 13 of 16Sensors 2023, 23, x FOR PEER REVIEW 13 of 16 
 

 

  
(a) (b) 

Figure 19. (a) Dynamic tracking of the detection process 1 (b) Dynamic tracking of the detection 
process 2 

Two kinds of driver fatigue detection systems without cradle head tracking system 
and cradle head tracking system are tested, respectively, and the two states of driver’s 
relaxation and fatigue are detected, respectively. Two thousand four hundred frames of 
images are identified and detected for each state. The detection results are shown in Tables 
3 and 4. The exact number of detections is used to ensure the effectiveness of the accuracy 
comparison. 

Table 3. Fatigue test results without cradle head tracking system. 

State Test Numbers Error Numbers Accuracy 
Relax 2400 180 92.50 

Fatigue 2400 210 91.25 

Table 4. Fatigue detection results when adding cradle head tracking system. 

State Test Numbers Error Numbers Accuracy 
Relax 2400 120 95.00 

Fatigue 2400 140 94.17 

The experimental results show that the detection accuracy of the driver’s relaxed state 
has increased from 92.5% when the gimbal is never added to 95% when the gimbal is 
added. The accuracy of the fatigue state has also increased to 94.17%, compared with that 
when the cradle head tracking system is not added. The accuracy of fatigue detection re-
sults is significantly improved, and dynamic tracking fatigue detection achieves better re-
sults. 

5. Design of The Diver’s State Risk Level Discrimination System 
This paper realizes the design of the driver’s state risk level discrimination system by 

integrating the driver’s fatigue detection and the detection of several dangerous driving 
behaviors. Through years of driving experience and analysis of related research, we found 
that fatigue driving is the most influential factor in car driving [27,28]. When driving, if 
the driver is drowsy, it will confuse the brain, and the vision will also become blurred, not 
to mention the fatigue of driving for a long time. Therefore, when performing risk classi-
fication, if there is fatigue driving, it is high-risk driving. We conducted a risk-level dis-
crimination experiment on three behaviors of smoking, drinking, and making a phone call 
in the laboratory (non-driving environment). The experimental results show that when a 
person concentrates on one thing and suddenly receives a call, his attention will be di-
verted immediately. He will even drop his job if he is on the phone with someone im-
portant; if on the phone and he learns something that breaks him down, he can become 
out of control, let alone get on with the job at hand. Simultaneously, when answering the 
phone, you have to look at the mobile phone screen and tap the screen with your hand for 

Figure 19. (a) Dynamic tracking of the detection process 1 (b) Dynamic tracking of the detection
process 2.

Table 3. Fatigue test results without cradle head tracking system.

State Test Numbers Error Numbers Accuracy

Relax 2400 180 92.50
Fatigue 2400 210 91.25

Table 4. Fatigue detection results when adding cradle head tracking system.

State Test Numbers Error Numbers Accuracy

Relax 2400 120 95.00
Fatigue 2400 140 94.17

The experimental results show that the detection accuracy of the driver’s relaxed state
has increased from 92.5% when the gimbal is never added to 95% when the gimbal is added.
The accuracy of the fatigue state has also increased to 94.17%, compared with that when
the cradle head tracking system is not added. The accuracy of fatigue detection results is
significantly improved, and dynamic tracking fatigue detection achieves better results.

5. Design of The Diver’s State Risk Level Discrimination System

This paper realizes the design of the driver’s state risk level discrimination system by
integrating the driver’s fatigue detection and the detection of several dangerous driving
behaviors. Through years of driving experience and analysis of related research, we found
that fatigue driving is the most influential factor in car driving [27,28]. When driving, if
the driver is drowsy, it will confuse the brain, and the vision will also become blurred,
not to mention the fatigue of driving for a long time. Therefore, when performing risk
classification, if there is fatigue driving, it is high-risk driving. We conducted a risk-level
discrimination experiment on three behaviors of smoking, drinking, and making a phone
call in the laboratory (non-driving environment). The experimental results show that
when a person concentrates on one thing and suddenly receives a call, his attention will
be diverted immediately. He will even drop his job if he is on the phone with someone
important; if on the phone and he learns something that breaks him down, he can become
out of control, let alone get on with the job at hand. Simultaneously, when answering the
phone, you have to look at the mobile phone screen and tap the screen with your hand
for a long time, which will affect the driver’s driving concentration. The reflection of the
mobile phone will also interfere with the driver, making the driver unable to concentrate,
resulting in traffic accidents. Therefore, we regard answering the phone as one of the most
dangerous behaviors when driving, except for fatigue driving [29–31]. As far as smoking
and drinking water are concerned, our lived experience tells us that drinking water has a
more significant impact on driving because the cup is larger than the cigarette, it is easy to
affect the driver’s vision, and in some cases, the driver must raise his head when drinking
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water, which will significantly affect the driver’s attention. Based on the above analysis,
we rank the risk levels of the driver’s unsafe state behaviors studied in this paper (starting
from the most dangerous) as follows: fatigue driving, making phone calls, drinking water,
and smoking.

We combine the above four behavior state information and the 12-frame voting queue
to determine the driver’s state danger level. We divide the driver’s dangerous state into
three dangerous states: R1, R2, and R3. R1 represents very dangerous; we are continuously
alert this situation and advise to stop driving; R2 stands for medium danger; we issue a
danger warning to remind the driver to modify the current state of dangerous behavior in
time, and continue to drive after correcting; and R3 represents a low-risk state, no alarm is
required, and only the alarm flashing light needs to appear. The status level of the driver is
queried according to Table 5 below.

Table 5. Driver status level.

Action State Type Queue Frames < 8 8 < Queue Frames< 16 16 < Queue Frames

call R2 R2 R1
drink R3 R2 R1
smoke R3 R2 R2

In the experimental part, this paper collected 6000 frames of driver driving images,
including 1920 frames of R1 risk level video, 2290 frames of R2 risk level video, and
1790 frames of R3 risk level video. The test results are shown in Table 6.

Table 6. Danger level detection results of driving state.

Driver’s Driving
State Danger Level Number to be Checked False Detection Rate Detection Accuracy

R1 1920 81 95.8%
R2 2290 125 94.5%
R3 1790 66 96.3%

From the detection results of the driver’s driving state risk level, it can be concluded
that the driver’s driving state risk level (R1, R2, and R3) has an accuracy rate of more
than 90%. The accuracy rate of R3 hazard level detection even reached 96.3%, with a high
accuracy rate. In experimental testing, we obtain better results, achieve the expected goals,
and meet our needs for driving safety in real life.

6. Conclusions

In this paper, the YOLOX algorithm is used to detect specific target objects (cigarettes,
water cups, and telephones) in the driver’s cab, and combined with the OpenPose posture
detection algorithm to judge the driver’s dangerous behavior, and the accuracy of the
detection results all reach 95%. The improved RetinaFace face detection algorithm is
proposed, combined with the Dlib algorithm to determine the driver fatigue driving
state according to the PERCLOS value, and the gimbal system is added to realize the
dynamic tracking detection of the driver. A driver state danger level discrimination system
is designed to classify four dangerous driving behavior states, namely, fatigue driving,
drinking water, smoking, and making phone calls, and the experimental results show
that the accuracy of R1, R2, and R3 danger level detection reaches 95.8%, 94.5%, and
96.3%, respectively.

With the development of deep learning and neural networks, the application in various
fields is more and more comprehensive, the research scope and research data of this paper
still need to be standardized and improved. In this paper, we only recognize the target
objects (cigarettes, water cups, and telephones) in the driver’s cab, and the target objects are
still relatively single, lacking the dataset of scenes in low-light and harsh environments, and
insufficient for real-vehicle driving tests. Next, we will increase the variety of scenes and
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target objects in complex environments to make the dataset richer to test the robustness of
the algorithm, modify the original information fusion structure of the network to enhance
the feature fusion ability, modify the detection layer of the original network to enhance the
ability of the network to extract and localize the effective information, and conduct a large
number of practical scenes to test the discriminative system.
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