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Abstract: Anomaly detection has been widely used in grid operation and maintenance, machine
fault detection, and so on. In these applications, the multivariate time-series data from multiple
sensors with latent relationships are always high-dimensional, which makes multivariate time-series
anomaly detection particularly challenging. In existing unsupervised anomaly detection methods for
multivariate time series, it is difficult to capture the complex associations among multiple sensors.
Graph neural networks (GNNs) can model complex relations in the form of a graph, but the observed
time-series data from multiple sensors lack explicit graph structures. GNNs cannot automatically
learn the complex correlations in the multivariate time-series data or make good use of the latent
relationships among time-series data. In this paper, we propose a new method—masked graph neural
networks for unsupervised anomaly detection (MGUAD). MGUAD can learn the structure of the
unobserved causality among sensors to detect anomalies. To robustly learn the temporal context from
adjacent time points of time-series data from the same sensor, MGUAD randomly masks some points
of the time-series data from the sensor and reconstructs the masked time points. Similarly, to robustly
learn the graph-level context from adjacent nodes or edges in the relation graph of multivariate
time series, MGUAD masks some nodes or edges in the graph under the framework of a GNN.
Comprehensive experiments are conducted on three public datasets. According to the experimental
findings, MGUAD outperforms state-of-the-art anomaly detection methods.

Keywords: unsupervised anomaly detection; multivariate time series; graph neural network;
masked strategy

1. Introduction

To guarantee that network systems operate normally, large amounts of industrial data
are monitored at all times. The data come from numerous interrelated monitoring sensors,
which are continuously generated through the operation of the system and constitute
multivariate time-series data. Time-series anomaly detection [1] is a core task of intelligent
operation and maintenance, and its goal is to analyze the time-series changes and find the
outliers or sequences that do not match the expectations from a large number of samples,
i.e., the anomalies of system hardware and software services. As the service system becomes
large and complex, the use of sensors and the Internet of Things (IoT) is progressively
expanding, and it is especially important to detect faults and ensure the system’s safety
via monitoring.

Unsupervised anomaly detection is more widely used since the prevailing scenarios
often lack stable anomaly signs and the anomaly changes irregularly. Intuitively, the task
can be accomplished by setting a threshold and identifying data that exceed the threshold
as anomalous. However, this approach cannot cope with the complexity and diversity
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of exceptions and data types. For example, anomalies may occur where the absolute
value of the deviation is not very large but the trend of the data is different. Traditional
unsupervised anomaly detection utilizes statistical learning methods, such as principal
component analysis [2], distance-based clustering, and density-based clustering, but these
methods require a priori knowledge about the anomalies. Machine learning methods,
such as random forest, isolated forest [3], and one-class support vector machine [4], have
also been applied to anomaly detection, but these methods are relatively simple in fitting
anomalous data distributions and are not sufficient to accurately detect anomalies in
multivariate time-series data.

Deep learning techniques have become popular in the area of anomaly detection by
allowing neural networks to learn characteristics because of their strong learning ability
and high adaptability [5,6]. For example, sequential models like recurrent neural networks
(RNN) and long-short-term memory (LSTM) [7] can learn complex temporal dependencies
in time series. However, their complex computation patterns lead to model performance
degradation. The parallel computation of Transformers [8] achieves performance improve-
ment but cannot exploit correlation information among multivariate sequences. Generative
models, such as variational auto-encoder (VAE) [9] and generative adversarial networks
(GANs) [10], reconstruct data to learn the normal data distribution and compare it with the
original data to obtain the anomaly score. However, this model also does not effectively
exploit the causality among different time series.

Recently, graph neural networks (GNNs) have been applied to anomaly detection [11].
GNNs are better suited for using spatial information causality between sensors for un-
supervised anomaly detection because they can benefit from the internal structure in-
formation [12]. In [13], the graph’s structure was manually constructed, and the spatial
information was encoded using a graph convolutional network (GCN) [14]. However, for
datasets without clear graph topologies (the relationship between sensors is sometimes
implicit), this approach becomes impractical. Deng et al. [15] proposed the graph deviation
network (GDN), which uses graph attention (GAT) [16] to encode spatial information and
the similarity between node embedding vectors to learn the graph structure among sensors.
However, the GDN disregards any possible temporal dependence present within the time
series and cannot learn the complex correlations among temporal samples. Also, the GDN
cannot robustly model the relationships between sensors.

To address the problems with the above methods, we propose a masked graph neural
network for unsupervised anomaly detection (MGUAD), a novel method that uses a GNN
with masking strategies to robustly learn the temporal context from time-series data and
the graph-level context from multiple time-series data (e.g., interactions between different
time series) for anomaly detection. The observed time-series data from multiple sensors
often lack explicit graph structures. MGUAD can model the relations among sensors as a
graph and dynamically update the graph structure based on time-series data over time. A
GAN framework (namely, the generator and discriminator) is used to train MGUAD. The
GNNs are employed as a generator, and a discriminator is present to distinguish between
the original and generated time-series sequences. To ensure that the proposed model is
robust and can make the most of the learned correlations among sensors, multi-masking
strategies are adopted to model the time series and graph structure. In terms of masking
on time-series data, MGUAD randomly masks time points from the sequence and then
reconstructs the time points through the neural network, which can adequately learn the
temporal correlation of the contexts in the sequence to recover the masked part. Meanwhile,
by masking the nodes or edges, MGUAD can learn the graph-level context from multiple
sensors robustly within the framework of the GNN.

To summarize, our main contributions are as follows:

1. For the purpose of unsupervised multivariate anomaly detection, we propose a novel
network design that can exploit the temporal correlations of time series and the
complex relationships among different sensors. MGUAD is the latest example of a
GNN applied to multivariate time-series anomaly detection.
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2. We are the first to introduce the masking operation into time series and graph struc-
tures, and we use two masking strategies to enhance the learning capabilities of
the model.

3. Extensive experiments on three publicly available datasets demonstrate that our
model outperforms all current state-of-the-art methods.

2. Related Works

The goal of anomaly detection is to identify samples that are aberrant and deviate
from the typical data trend. In this section, we review anomaly detection on time-series
data in the existing literature, especially unsupervised methods on multivariate time series.
Our model learns the distribution of temporal data through masking and GNNs, so we
also provide a summary of the related works on these two topics.

2.1. Unsupervised Anomaly Detection on Time Series

Numerous anomaly detection techniques have been developed as a result of the
diversity of anomalous patterns, data formats, and application contexts. Taken together,
the three types of efficient anomaly detection techniques are as follows: clustering-based
methods (Section 2.1.1), reconstruction-based methods (Section 2.1.2), and prediction-based
methods (Section 2.1.3).

2.1.1. Clustering-Based Methods

The clustering-based method is primarily predicated on the idea that normal data
samples are located closer to the local clustering centroid while anomaly samples are
located further away. The distance between each sample and the closest clustering centroid
serves as the anomaly score. Clustering-based methods mainly include the Gaussian
mixture model [17], K-nearest neighbor [18], K-means [19], local outlier factor [20], etc. The
one-class classification method can be considered a clustering-based method, which detects
anomalies by building the decision boundary between normal and abnormal samples, such
as in the one-class SVM [4] algorithm. However, clustering-based algorithms require some
a priori knowledge of the anomaly information, which imposes significant limitations on
the task of anomaly detection. These methods cannot effectively capture the temporal
correlations of time series and have difficulty in handling high-dimensional time-series data.

2.1.2. Reconstruction-Based Methods

The potential distribution of time-series data can be learned using a reconstruction-
based method. These methods are based on the idea that anomalies lose information when
mapped to a lower-dimensional space, making it impossible for them to be successfully
reconstructed. Because of this, the anomaly score is estimated using the reconstruction loss,
as seen in Principle Component Analysis (PCA) [2]. Autoencoders (AEs) are important
dimensionality reduction tools in representation learning [21], with VAEs [9] commonly
used in the field of anomaly detection [22,23]. However, dimensionality reduction by
AEs can often lead to overfitting. VAE learns the mean and variance from the real data,
whereas GANs [10] learn the distribution of the real data, resulting in better performance.
AnoGAN [24] used a GAN for anomaly detection, mapping samples to latent space and
reconstructing them, calculating an anomaly score through reconstruction error, but this
method was intended for processing images. MAD-GAN [25] utilized a GAN for multivari-
ate anomaly detection, capturing temporal correlations from time series by using LSTMs as
the generator and discriminator. For anomaly detection of heartbeat signals, BeatGAN [26]
utilized a combination of an autoencoder and a generative adversarial network. Although
the GAN model has better learning capabilities, GAN-based methods can hardly account
for the complex correlations among time sequences. GANs require the use of appropriate
foundational models to consider correlation and temporal dependence.
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2.1.3. Prediction-Based Methods

Prediction-based methods learn to fit the time series and then predict the values at the
next moment. If there is a significant disparity between the predicted data and the initial
sample (e.g., the three-sigma criterion [27]), this data point will be identified as an anomaly.
Prediction-based methods do not learn the distribution of the anomalous data directly, but
they are able to learn the original data distribution. The new unseen anomalies will be
different from the original data, so these methods can use this difference to determine the
occurrence of anomalies and can handle unseen anomalies. Traditional statistical models
like ARIMA and Holt–Winters [28] can fit time-series data, but these models generally
require strong assumptions about the data distribution. Classical deep learning methods
such as RNN and LSTM [7] can better capture the complex relationships within time
series, but the long-term dependence of serial computation can lead to the degradation
of model performance, while the learning mode of recursive operations is inefficient. The
Transformer [29]-based method can be used to learn the context dependence of time series.
Additionally, its multi-attention mechanism allows for parallel operations, effectively
addressing the shortcomings of recurrent neural networks. But Transformers cannot exploit
the dependencies between different time series. Recently, graph neural networks have been
applied to multivariate time-series data. The graph neural network assumes that each node
is affected by its neighbors, thus enabling the correlations among nodes to be effectively
used to model the graph-structured data. A GDN [15] treats each time series as a node in a
graph and uses the attention-based method to forecast future values.

2.2. Masking-Based Methods

The masking operation, a common method used to improve a model’s learning capa-
bilities, has received widespread application across several deep learning tasks. In general,
the masking operation removes or replaces a portion of the input to the neural network,
which can improve the model’s capacity by reconstructing the masked data. In the natural
language processing field, BERT [30] employs the masked language modeling task for
language representation learning. The model is pre-trained by predicting the words in the
blocked or replaced sentences. In computer vision tasks, certain portions of the image are
randomly masked, and then the model reconstructs the masked pixels [31]. This proxy
task is similar to the masking prediction in BERT but differs in that it predicts all the pixels
within the block. In terms of time series, ref. [32] explores the interpretability of time-series
prediction using dynamic masking methods. Ref. [33] performs temporal generation
using a masked autoencoder. Ref. [34] improves the learning capabilities of the model by
estimating time series through random masking for self-supervised learning. This study is
the first we are aware of to apply masking methods for time-series anomaly detection.

2.3. Graph Neural Networks

Large amounts of data in the real world, such as social networks, knowledge graphs,
complex file systems, etc., are unstructured. The emergence of GNNs addresses the lim-
itation of traditional neural networks, which are only effective in processing structured
data such as sequences and grids. GNNs are good at modeling intricate patterns in data
using a graph structure. In general, the key design element of GNNs is that graph nodes
exchange information with their neighbors to update their representations. Graph con-
volution networks (GCNs) [14,35] use convolutional operations similar to those in image
processing and provide a concrete derivation for this model type. Instead of focusing on
the entire dataset, graph attention networks (GATs) [16] direct attention to the important
portion of the data and introduce the self-attention mechanism, which assigns different
weights to each node in the graph based on its different characteristics. Various variants
of GNN-based models have also been applied to time-dependent tasks such as traffic
prediction [36] and time-series forecasting [37]. However, GNNs require graph-structured
data as input, which, in our case, are frequently unknown and must be captured from
the data. STGs [13] manually construct graph-structured data and use GCNs to encode
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spatial information. For datasets lacking clear graph topologies, this method can become
impractical. GDNs [15] treat each time series as a node in a graph, learn the graph structure
by calculating the node similarity, and use a GAT to calculate each node’s anomaly score.
However, GDNs do not consider the temporal correlation within the time series and cannot
learn the complex correlations within temporal samples. Moreover, these methods cannot
robustly model the relationships between sensors.

3. Methodology
3.1. Overview

Our research attempts to address the issue of multivariate time-series anomaly de-
tection. A multivariate time series is represented by X = {xt}t∈T , where xt =

(
x1

t , ..., xn
t
)
,

which includes n variables (sensors), and t ∈ T ⊆ Z+ indicates a specific time point.
The anomalies often occur in a time point or slice, so the anomaly data are defined as
A =

{
xp, xp+1, ..., xp+r−1

}
, where p is the anomaly’s starting time point, and r ∈ (1, |T|) is

the anomaly’s duration. In short, our aim is to detect all the anomalies in the observed data.
Figure 1 illustrates the architecture of the MGUAD model. During the training process

(black line), we take multivariate time series from numerous sensors as the inputs and
model relationships between sensors as a graph. Then, MGUAD uses the masks to remove
a portion of each time series, adopts a GNN to generate time-series data, and minimizes
the difference between the reconstructed and the input data through a supervised loss
(Equation (7)). The model reconstructs the masked data, thereby obtaining a learned
distribution of normal data. Then, MGUAD randomly masks the edges of the graph,
uses a graph attention function over its neighbors to forecast the future values of each
sensor, and employs a discriminator to determine whether the predicted value is real.
During testing, we take time-series data as input, use the trained model to predict future
values, and compute the deviations as the anomaly scores between the predicted behavior
and the observed behavior. Finally, the anomaly scores can be used as judgments for
anomaly detection.

Figure 1. The proposed MGUAD architecture. A graph structure learning module is used to extract
the spatial temporal dependencies between various sensors, and a masked temporal learning module
is used to extract the correlation features between different timestamps. MGUAD uses a joint
optimization network to generate the reconstruction and prediction values. In the training phase, we
employ the reconstructed loss and the adversarial loss to optimize MGUAD. In the inference phase,
the prediction values are further used to determine the anomaly scores for anomaly detection.
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3.2. Graph-Structure Learning

In this section, we describe how to capture the relationships between multivariate
time series and build a graph to utilize the correlations between sensors. The graph’s nodes
correspond to individual sensors. Let G = (V, E) be a directed graph, where V is a finite
set of nodes and E is a finite set of edges. We use s(e) = (v1, v2) to denote that the edge
e ∈ E connects v1 ∈ Vand v2 ∈ V, which is an edge from a to b. The graph edge between
two nodes indicates that there is a dependency relationship between them. Therefore,
s(e) = (v1, v2) indicates that v1 has an influence on the monitoring data of v2. Since the
relationships are not necessarily mutual, directed instead of undirected graphs are used
in MGUAD. The graph structure is initialized before the training of each application and
when the application scenario changes, resulting in changes in the sensor relationships.
The graph model undergoes automatic updates by adjusting the node embeddings and
exploiting the similarity of the embeddings during the training process.

3.2.1. Graph-Structure Construction

To build a graph structure, we need to obtain the complex relationships between
the sensors. The similarity of data in time series can be used to calculate the correlation
between two sensors. The first m samples of each time series are selected to represent
the initial behavior of these sensors, and we calculate the Pearson correlation coefficient
between them to obtain the correlation between two time series. The values of the similarity
are normalized and are used as the weights of the edges between nodes. To control the
scale of the graph, which can eliminate unnecessary edges and improve the efficiency of
the operation, we use two strategies to control the number of edges: filtering out edges
between nodes with a similarity lower than s and constraining the maximum number of
neighbors per node to n.

We select the data within the first m time points in each time series to calculate the
initial correlations between time series. xk =

(
xk

t , ..., xk
t+m−1

)
is the kth time series with an

m number of timestamps. We calculate the Pearson correlation coefficient between two
series to obtain their similarity. As shown in the formula below, E(xk) denotes the mean of
the series, σxk denotes the standard deviation of the series, and Cov(xk1, xk2) represents the
covariance between the two series.

E(xk) =
∑m+t−1

i=t xk
i

m
, σxk =

√
∑m+t−1

i=t (xk
i − E(xk))2

m
, Cov(xk1, xk2) =

∑m+t−1
i=t (xk1

i − E(xk1))(xk2
i − E(xk2))

m
(1)

The relationship Rt(vk1, vk2) between two sensors can be calculated as follows:

Rt(vk1, vk2) =
Cov(xk1, xk2)

σxk1 σxk2
=

∑m+t−1
i=t

(xk1
i −E(xk1))

σxk1

(xk2
i −E(xk2))

σxk2

m
(2)

We can obtain the similarity between one node and the others and then select the largest
n among them as candidate neighbors i: Nc(i) = {v1, v2, ..., vn}. Ec(i) = {Rt(vi, v1),
Rt(vi, v2), ..., Rt(vi, vn)} is the set of correlation values between i and each node in Nc(i). We
normalize Rt to be the weights of the edges ei,j for graph attention-based prediction as follows:

ei,j = Norm(Rt(vi, vj)) =
Rt(vi, vj)−min(Ec(i)))

max(Ec(i))−min(Ec(i))
(3)

Then, we eliminate the edges with weights lower than s to streamline the graph
structure. Next, we obtain the initial composition of the graph structure.

3.2.2. Graph-Structure Updating

Relationships between sensors can change over time (e.g., the closing of flow control
valves can lead to relationships transforming in a local scope, as the water flow is suddenly
reduced and cannot affect other sensors anymore), and MGUAD should update the graph
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structure as the state changes. For graph-structure learning, we map each sequence as a
node embedding (high-dimensional vector). We use node embedding to represent each
sensor’s features. The node embedding vectors are initialized randomly and are updated
with the model training. We represent embeddings as Vi ∈ Rd, and the similarity between
them indicates their behavioral similarity, which can be used in graph-structure updates.

By calculating the cosine similarity between node embeddings, we can obtain the
correlations between node features using Rn(v1, v2), where V1 and V2 are the embeddings
corresponding to nodes v1 and v2.

Rn(v1, v2) =
V1 ·V2

‖V1‖‖V2‖
(4)

Graph-structure learning also needs m samples of the time series from the current
time period. Similar to how we proceed during the initial graph creation, these samples
represent the behaviors of the sensors during this time period. MGUAD uses both node
embedding and sampling in tandem for graph-structure learning. We calculate Rt(v1, v2)
using Equation 2 based on the current m samples and normalize and assign weights to the
sum to obtain the new similarity. We then update the graph structure in a similar way to
graph building as follows:

ei,j = γ1Norm(Rt(vi, vj)) + γ2Norm(Rn(vi, vj)) (5)

where γ1 and γ2 are two adjustable weights, and their relative size determines whether the
sensor relationships focus on sample values or node embeddings in MGUAD.

3.3. Masked Temporal Feature Reconstruction

Regarding reconstructive learning, by randomly masking multivariate sequences,
MGUAD can be forced to reconstruct the sequences by leveraging the context of each
sequence and the correlations between different sequences, thereby enhancing the model’s
ability to handle complex data. To learn the time correlations in time series, we initially
remove a portion of the input time series and then instruct the network to recreate the
original input time series. We remove a random portion of the sequence determined by
the sliding window. For example, when using a 20% masking ratio for a sliding window
with a length of 20, we randomly mask four time points. Our goal is to learn contextual
information within time series, so to break the continuity in the time series on a large scale, we
specify the maximum sequence length for the masked subsequences. Generally, the maximum
continuous masking length will not exceed half of the masking ratio. Thus, the longest
consecutive masked time points for a 20% masking ratio of 20-length inputs would be 2.

To reconstruct the masked time series, the model can learn the temporal dependencies
between different time points. Specifically, MGUAD generates values at the masked time
points and calculates the reconstruction loss by comparing these values to the original data
before masking. For example, a sequence xk =

(
xk

t , ..., xk
i , ..., xk

t+w−1

)
∈ Xt input with a

length of w will be randomly masked and become [xk] =
(

xk
t , ..., [mask], ..., xk

t+w−1

)
∈ [Xt],

where G(...) represents the graph structure model, and the xk
i is reconstructed using G(...).

G([Xt]) =⇒
(

xk
t , ..., x̂k

i , ..., xk
t+w−1

)
(6)

The reconstruction loss, lossrec, can be calculated as

lossrec =
1

n× |mask|

n

∑
i=1

|mask|

∑
j=1

∥∥∥x̂i
j − xi

j

∥∥∥, xj ∈ [mask] (7)

G(...) is optimized by minimizing lossrec , which is carried out through joint training
with the entire model.
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3.4. Masked Graph Predictions

This section includes instructions for using graph structures to formulate predictions.
To enhance the robustness of the model, we mask the nodes or edges of the graph. During
prediction, the model can only use incomplete data after applying a random mask as input,
which enhances its capability to extract complex information from within and between
sequences, ultimately improving its ability to leverage unbalanced or ambiguous data.
The idea of using graph structures to calculate predicted values through an attention
mechanism comes from GAT [16], where we aggregate information about a node and
its correlation with its neighbors. We can apply node embeddings to the graph attention
mechanism, which permits heterogeneous effects for various kinds of sensors. The attention
coefficients αi,j between graph nodes need to be calculated. The value of αi,j demonstrates
how significant node j’s features are to those of node i. We denote the neighbors of node i as
N(i). To calculate αi,j, we consider the influence of two nodes simultaneously and calculate
the attention value εi,j between them:

εi,j = LeakyReLU(a((Wxi
t ⊕Vi)⊕ (Wxj

t ⊕Vj))) (8)

where LeakyReLU is a nonlinear activation function, a is a vector of learning coefficients for
the attention mechanism, ⊕ denotes concatenation, and W is a trainable linear transforma-
tion matrix with shared weights at each node. By combining the node embedding Vi with
the current moment’s feature xi

t, a comprehensive attention factor can be created. When
aggregating neighbor information, the attention of all neighbors needs to be normalized.
The attention weights after normalization are the aggregation coefficients αi,j, which are
calculated as follows:

αi,j = softmaxj(εij) =
exp(εij)

∑k∈N(i) exp(εik)
(9)

We obtain the aggregated representation χi
t of each node using the aggregation coeffi-

cients αi,j as follows:

χi
t = LeakyReLU(αi,iWxi

t + ∑
j∈N(i)

αi,jWxj
t) (10)

Then, we input the aggregated representation χi
t of all nodes into a multi-layer fully

connected network M(...) to obtain the predicted values for each node. We denote this
whole prediction process as G(...):

X̂t+1 = G(Xt) = M(χ1
t , χ2

t , ..., χn
t ) (11)

Similar to the dropout operation [38] in deep learning, MGUAD randomly removes
nodes and their connected edges before prediction to improve the robustness of the model.
This means that the input of the graph attention network is a masked graph from which
some relationships between sensors have been removed. To this end, we employ two graph-
masking strategies: one involves excluding a random portion of nodes when constructing
and updating the graph, whereas the other involves setting the weights of some edges
to 0 during training, preventing them from participating in graph attention operations.
Experimentally, we found the latter approach to be more effective, as it allowed us to
control the retention of edges with higher weights, thus preventing the model from losing
important inter-series correlation information. We mask the edges during training to ensure
that the model comprehends the full relevance information during inference. Through
forecasting, we obtain a model that has enough power to predict future values.

3.5. Adversarial Training

The main goal of prediction-based anomaly detection methods is to develop a model
that can accurately anticipate future values. Anomaly scores are computed by the difference
between the true value and the predicted value. The deviation between the expected and
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actual behavior of the time series is the key to anomaly detection. MGUAD should model
the behavior of time series, so MGUAD needs to learn to predict the future value close to
the true value. We apply an adversarial learning approach to learn the “normal” behavior
of time series. In such a structure, the two players in a two-player min-max game are the
generator and the discriminator. The generator attempts to produce samples that may
deceive the discriminator, whereas the discriminator attempts to discern between real
samples and generated ones.

Specifically, when training in an adversarial manner, we need to optimize the generator
to fool the discriminator. The input obtained through the time window is represented
by {x1, ..., xt−1}. We can obtain xt using the graph-based model G(...). The loss of the
generator, lossG, can be calculated using Equation (12):

lossG =
1
n

n

∑
i=1

log
(
−D

(
G
(

xi
1, ..., xi

t−1

)))
(12)

We use a Transformer as a discriminator, denoted as D(...). Transformers are effective
in processing time-series data [39,40]. They are also more efficient compared to traditional
models like RNNs because of their parallel calculation capability. MGUAD uses a Trans-
former as a discriminator, which must differentiate between the time-series sequences
generated using G(...) and the real time-series sequences. The input of the discriminator
is two time series: one is a normal time series, except for the last time point, which con-
tains the predicted values using G(...), and the other is the normal data. Specifically, the
discriminator can distinguish between two time series that only differ at the last time point,
one of which is the true series and the other containing a predicted value. We denote this
discriminator as D(...). Let xt be the real data and x̂t be the prediction. The input can be
presented as xt ⇒ D(x1, ..., xt), x̂t ⇒ D(x1, ..., x̂t). Then, the discriminatory loss, lossd, can
be calculated as

lossD =
1
n

n

∑
i=1

[
− log D

(
xi

1, ..., xi
t

)
− log

(
1− D

(
xi

1, ..., x̂i
t

))]
(13)

Ultimately, we sum three loss functions, the reconstruction loss, lossrec, which rep-
resents the reconstruction accuracy of the masked timestamp, the generation loss, lossG,
which reflects the ability of the generator to predict future values, and the discriminant
loss, lossD, which is used to distinguish between the real and generated time series. We
train the entire model uniformly by integrating the three loss functions using weights:

losstotal = λ1lossrec + λ2lossG + λ3lossD (14)

where λi, i ∈ 1, 2, 3 controls the relative importance of the three terms. lossG and lossD
undergo an asynchronous training process, which is demonstrated in Algorithm 1.

3.6. Anomaly Score

In the inference phase, we calculate an anomaly score for each time series. A higher
score means the time series is more likely to be anomalous. The anomaly scores consist
of two components: deviation scores from the deviation between the predicted value
and the true value, and critic scores from the discriminator. Intuitively, the deviation is a
measurement that indicates the abnormal behavior of the time series.

To reduce the effect of the relative sizes of the different series, we use smoothing
scores when calculating the anomaly scores, i.e., by subtracting the mean of each series and
dividing by the standard deviation.

devn =

∣∣∣xn
t − x̂n

t

∣∣∣− µ

σ
(15)
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where µ and σ are the mean and standard deviation of each series.
The largest normalized anomaly score of all the sequences can be selected as the

anomaly score ADSt for moment t.

ADSt = max{lossn}n∈N (16)

We consider moments where the anomaly score exceeds a threshold as anomalous
time points, and nodes with large anomaly scores as anomaly sensors.

The overall algorithm is shown in Algorithm 1.

Algorithm 1 Multivariate Time-Series Anomaly Detection Algorithm

Training:
Input: XTrain = {x1, ...xt } ⊆ Train dataset;
Output: model parameters such as generator parameters: G()

if epochs within the number of training iterations then
for each epoch do

node embedding: N = (n1, ..., nm)⇒ E(N)

Node masking, drop graph nodes by a certain percentage
for each nodes n ∈ N do

Calculate the embedding similarity with other nodes
Fill in the adjacency matrix with the Top-k nodes with the highest similarity as
neighbors

end for
Time-series masking: X = {x1, ...xt−1 } ⇒ M(X)

Calculate the attention scores by the adjacency matrix
Reconstruct the masked data through the attention mechanism: M(x1, ..., xt−1) ⇒
G(X) = X̂
Predict the next moment t through the attention mechanism: X(x1, ..., xt−1) ⇒
G(X) = x̂t

Discrimination: xt ⇒ D(x1, ..., xt), x̂t ⇒ D(x1, ..., x̂t)

Update discriminator: min 1
n ∑n

i=1

[
− log D

(
xi

1, ..., xi
t
)
− log

(
1− D

(
xi

1, ..., x̂i
t

))]
Update generator: min ∑n

i=1 log
(
−D

(
G
(
xi

1, ..., xi
t−1
)))

+ ∑n
i=1 ∑

|mask|
j=1

∥∥∥x̂i
j − xi

j

∥∥∥, xj ∈
[mask]
Record parameters in the current iteration

end for
end if
Inference:
Input: XTest = {x1, ...xt } ⊆ Test dataset;
Output: Time points when anomalies occurred: Ta = {ta1, ta2, ..., tan}
Predicting the value: XTest = {x1, ...xt−1 } ⇒ G

(
XTest) = X̂

for each nodes n ∈ N do
Calculate the loss between the predicted value and the true value for each node:

lossn =
|xn

t −x̂n
t |−µ

σ

end for
time t’s anomaly detection score: ADSt = max{lossn}n∈N
Get anomaly time points Ta = {ta1, ta2, ..., tan} by ADSt

4. Experiments

We first describe the utilized datasets and experimental settings in this section. Then,
the results of the experiments are shown, and we subsequently analyze them.
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4.1. Datasets

Three public datasets are utilized in our experiments to evaluate our model, as shown
in Table 1: SWaT [41] (https://mlad.kaspersky.com/swat-testbed/, accessed on 10 Au-
gust 2022), WADI [42] (https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/, ac-
cessed on 10 August 2022), and KDDCUP99 (http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html, accessed on 10 August 2022). They are all multivariate time-series datasets
and contain sufficient data for training and testing.

The SWaT dataset is related to attack tests on water distribution systems and water
security treatment systems conducted at the Cyber Security Centre of the Singapore Uni-
versity of Technology and Design. This dataset represents tests for water purification used
in cyber security research. The SWaT dataset comprises 264 h of numerical and network
traffic data that were gathered over the course of 11 consecutive days by 51 sensors and
processors. It comprises 4 days of abnormal data collected when the system was under
assault under various conditions, as well as 7 days of normal data collected when the sys-
tem was functioning as normal. Specific malware attacks include historian data exfiltration
attacks and process disruption attacks. These attacks may result in a change in the sensor
detection data, a sudden pause in normal supply, etc.

The WADI and SWaT datasets originate from the same laboratory. The KPIs of the
WADI dataset are derived from the data collected by 123 sensors and actuators in a water
distribution system. This distribution system, which consists of a large number of water
distribution pipes, is more vulnerable and, therefore, the WADI dataset contains more
features compared to the SWaT dataset. Data were collected from the network, sensors,
and actuators for 16 consecutive days, including 14 days of normal operation and 2 days
of abnormal operation. Fifteen attacks using the same attack model are contained in the
anomaly data. Due to the anomaly rate being lower compared to the other datasets, the
WADI dataset is more unbalanced.

The KDDCUP99 dataset was derived from competition data from the 1999 KDD
CUP competition, which simulated the US Air Force LAN environment and monitored
34 categories of key performance indicators. The competition’s main requirement was to
create a network intrusion detector that could determine whether a network connection
was being attacked or experiencing intrusion. Subsequently, each network connection was
classified as either “attack” or “normal”. The anomalies were the result of simulated attacks
on the local area network. These attacks encompassed 39 different anomaly types, 22 of
which appeared in the training set and the remaining 17 appeared exclusively in the test set.

These three datasets share a common characteristic, i.e., there is a close relationship
among various time series, which can help demonstrate the performance of MGUAD.

Table 1. General information about the datasets.

Dataset SWaT WADI KDDCUP99

Dimension 51 123 34
Training Size 16,097 9075 21,242
Testing Size 9700 6208 12,186
Train Rate 0.2772 0.2570 0.1799
Test Rate 0.0743 0.1369 0.5164

4.2. Baselines

Nine baselines were applied in this experiment, including a statistics method (prin-
cipal component analysis (PCA)), a machine learning method (isolation forest), and a
traditional deep learning method (LSTM). The remaining baselines were complicated com-
bined models, which have proven to achieve outstanding performance in related tasks in
recent years.

https://mlad.kaspersky.com/swat-testbed/
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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1. PCA: Principal component analysis [2] is a linear dimensionality reduction method
that projects time-series data in different directions, reflecting the difference in the
variance of the original data and the intrinsic characteristics of the series variation.
PCA judges data samples that deviate greatly from other data samples in certain
directions as outliers.

2. Isolation Forest: Isolation forest [3] is an efficient machine learning anomaly detection
algorithm, which divides data points in a time series into a tree and clusters data with
the same properties into one class. It uses the position of the divided nodes in the
tree for anomaly determination. The lower the depth of a node, the easier the data
division, which implies their status as outliers.

3. LSTM: LSTM [7] is a classical deep learning model that mines the contextual relation-
ships in time series through recursive operations. The anomaly detection algorithm
based on LSTM mainly works through the method of prediction, i.e., using LSTM
to learn the complex patterns of the sequence to predict the value of the sequence
at the next moment. Samples with large deviations from the true value are judged
as anomalous.

4. LSTM_VAE: VAE is a common deep learning framework that learns the representa-
tion of data after dimensionality reduction by fitting the distribution of the data. This
self-encoding architecture mainly performs anomaly detection through reconstruction,
that is, it treats anomalous data as noise, considering that the data are compressed to
retain only normal information while losing anomalous information. It discriminates
anomalies by comparing reconstructed data with the original data. LSTM_VAE [22]
combines LSTM with VAE, using LSTM to replace the feedforward network in VAE.

5. DAGMM: DAGMM [17] combines an autoencoder with a Gaussian mixture model
simultaneously optimizing the parameters of the deep autoencoder and the mixture
model in an end-to-end manner. DAGMM uses the deep autoencoder to downscale
the input data points to a low-dimensional representation while obtaining the re-
construction error. The low-dimensional representation of the data is fed into the
Gaussian mixture model, which then combines the reconstruction loss to decide
whether the data are anomalous.

6. MadGAN: MadGAN [25] is a reconstruction-based anomaly detection algorithm.
During training, to create false data, the generator receives input from the training data
and random hidden variables, and the discriminator’s results are used to update the
model parameters. When testing, the hidden variables that best match the distribution
of the test data are first learned, and then the hidden variables are used to reconstruct
the data, calculate the difference between the reconstructed sequence and the actual
sequence, and finally combine them with the discriminator’s results to obtain the
anomaly score.

7. USAD: USAD [43] is an unsupervised anomaly detection approach for multivariate
time series based on a GAN-inspired self-encoder architecture. Adversarial training
enables USAD’s encoder–decoder design to learn how to increase the reconstruction
error of inputs containing anomalies, thereby achieving more stability compared to
conventional GANs architecture.

8. GDN: GDN [15] is a prediction-based multivariate temporal anomaly detection
method that treats each feature dimension of the data as a node in a graph neu-
ral network, learns the graph structure through node similarity, and calculates the
anomaly score of each node using a graph attention mechanism. Finally, the method
combines the anomaly scores of all temporal sequences and determines whether the
moment is anomalous according to a threshold.

9. CAE: CAE [23] is a diversity-driven, convolutional ensemble that combines several
convolutional sequence-to-sequence autoencoder-based fundamental outlier detection
models. CAE also uses a novel diversity-driven training method to maintain diversity
among the base models, thus improving accuracy. This method allows for a high
degree of parallelism in training and has improved efficiency.
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4.3. Experimental Settings

Empirically, we set the size of the sliding window to 5, and the embedding dimension
of the nodes to 64 (SWaT, KDDCUP99) and 128 (WADI). We trained our model using the
Adam optimizer. The learning rates of the generator and discriminator were set to 0.001
and 0.0001, respectively. The maximum number of neighbors of a graph node n was set to
15 (SWaT, WADI) and 20 (KDDCUP99). The time-series masking ratio was set to 20%. The
weights of the edge values when building the graph were set to γ1 = γ2 = 0.5. The ratio of
the weights between the three losses λ1 : λ2 : λ3 during training was 1 : 2 : 1. We trained
the models for up to 100 epochs and used early stopping with a patience of 10. MGUAD
and its variants were implemented on a Tesla T4 graphics card. We ran the model and the
nine baselines on three datasets to determine the model with the best performance.

4.4. Quantitative Analysis

To evaluate the anomaly detection performance, three metrics were used in our work:
Precision, Recall, and F1_score. They are defined below. TP indicates the number of pos-
itive samples correctly classified, i.e., the anomaly samples were labeled as anomalies.
Conversely, FP indicates the number of normal samples misclassified as anomalies. Simi-
larly, TN is the number of normal samples correctly recognized as normal, whereas FN is
the number of abnormal samples incorrectly identified as normal.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1 = 2× Precision× Recall
Precision + Recall

(17)

Precision reflects the percentage of projected positive cases that are actual positive
examples. That is, it indicates how many detected anomalies are true anomalies. Recall
represents the percentage of true positive samples from the test set that the classifier has
selected. In simple terms, this is the proportion of anomalies we detect out of the total
number of anomalies in the sample. The Precision and Recall are diagnostic instruments for
binary classification models. The F1_score is the average of Precision and Recall. Consider-
ing only one of Precision or Recall is not sufficient to evaluate the overall performance of a
model; thus, the F1_score is used to take both into account as a comprehensive evaluation
metric for a model. The values of these three metrics shown in Table 2 display the model’s
performance with the optimal selection of parameters. The highest value of the metric in
each dataset is bolded in the table.

In Table 2, we compare the anomaly detection results of the proposed model to
those of the baselines for the three datasets. The results show that our model achieved
the best Precision and F1_score values across all three datasets. On the SWaT dataset,
MGUAD performed the best in all three metrics. Precision reached a value of 0.9851, and
the combined F1_score metric improved by more than 6% compared to the second-best
baseline, USAD. On the WADI dataset, although the Recall values were lower than the two
baselines, they were achieved by sacrificing Precision, and our model achieved a Precision
value well above the second-best baseline, with the F1 value 6.22% higher than the second-
best baseline, GDN. The WADI dataset is unbalanced and has higher dimensionality than
the other datasets. MGUAD performed as well on this dataset as it did on the other
datasets. On the first two datasets, the deep learning method outperformed the traditional
method, whereas on the KDDCUP99 dataset, the isolation forest model still exhibited good
performance, indicating that the anomalous performance of the KDDCUP99 dataset is
relatively typical. On this dataset, our model maintained the best performance, with all
three metrics exceeding 0.96. Our model performed well on both the WADI dataset, which
has highly dispersed features, and the KDDCUP99 dataset, which has only 34 features,
indicating that the proposed model can adapt well to different feature dimensions. Table 3
shows the overall performance of MGUAD on the three datasets. The highest value of the
metric in each dataset is bolded in the table. In general, the overall performance of our
model was better compared to all the baselines.
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Table 2. Performance of MGUAD and 9 baselines on three datasets.

Dataset Method Precision Recall F1_score

PCA 0.4712 0.4423 0.4563
Isolation Forest 0.2201 0.6413 0.4270

LSTM 0.5945 0.5276 0.5591
DAGMM 0.7031 0.4713 0.5643

LSTM_VAE 0.9540 0.5949 0.7328
MAD-GAN 0.9333 0.6245 0.7483

USAD 0.9635 0.6446 0.7724
GDN 0.9499 0.6415 0.7658
CAE 0.9845 0.5856 0.7343

SWAT

MGUAD 0.9851 0.7204 0.8332

PCA 0.3826 0.1822 0.2468
Isolation Forest 0.1192 0.3425 0.1769

LSTM 0.7242 0.2793 0.4043
DAGMM 0.1691 0.7869 0.2783

LSTM_VAE 0.4587 0.3212 0.3778
MAD-GAN 0.1356 0.7273 0.2289

USAD 0.8632 0.2787 0.3490
GDN 0.8647 0.3508 0.5079
CAE 0.4736 0.1652 0.2249

WADI

MGUAD 0.9281 0.4114 0.5701

PCA 0.8544 0.3458 0.4923
Isolation Forest 0.7896 0.9667 0.8692

LSTM 0.7015 0.9038 0.7900
DAGMM 0.8531 0.9746 0.9098

LSTM_VAE 0.9285 0.8274 0.8751
MAD-GAN 0.9628 0.7106 0.8178

USAD 0.9569 0.9181 0.9370
GDN 0.8494 0.9636 0.9029
CAE 0.9241 0.5334 0.7288

KDDCUP99

MGUAD 0.9640 0.9818 0.9728

Table 3. Average performance of our model and the baselines on all datasets.

Precision Recall F1_score

PCA 0.7360 0.3553 0.4792
Isolation Forest 0.5994 0.9040 0.7209

LSTM 0.6905 0.8339 0.7554
DAGMM 0.7696 0.8980 0.8289

LSTM_VAE 0.9210 0.7811 0.8453
MAD-GAN 0.8231 0.6988 0.7559

USAD 0.9567 0.8524 0.9071
GDN 0.8587 0.9017 0.8797
CAE 0.9258 0.5313 0.6751

MGUAD 0.9658 0.9339 0.9495

4.5. Qualitative Analysis

The correlations among nodes support the construction of the graph. To analyze
the effectiveness of the generated graph structure, we first analyzed the variation trend
among the sensors and the similarity of the embeddings and then verified whether the
connection relationships of the graph were reasonable. We selected two typical sensors:
1_MV_001, which represents the state of an electronically controlled valve, and the flow rate
detected by 1_FIT_001_PV, which is controlled by this valve. As shown in Figure 2a, the
two nodes exhibited the same transformation moments and trends, and there was a strong
correlation between the two sensors. Figure 3a shows the graph structures associated with
the sensors, named 1_FIT_001_PV and 1_MV_001_STATUS, and the PCA projection of
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the node embeddings. As shown in Figure 3a, the projection distance between the two
sensors is close, which indicates that embeddings can be used as node features to depict
dependencies between nodes.

(a) (b)

Figure 2. Detection data and prediction data of sensors during abnormal times. (a) Trends between
two highly correlated sensors. (b) Nodes affected by anomalous attacks.

Part of the graph structure learned by the model can be seen in Figure 3b, where the two
sensors are directly connected. The weights of the edges are darker in color, indicating that
the graph structure adequately captures the dependency information between these nodes.

(a) Node embedding (b) Graph structure

Figure 3. The structure of sensors in model learning. Sensors in close proximity in (a) exhibit more
similar characteristics, and adjacent nodes in (b) show some correlation.

The yellow part in Figure 2a,b shows the time interval when the anomaly occurred.
Meanwhile, the electric valve 1_MV_001 was maliciously opened. Although these two sen-
sors did not directly show a large numerical change, the other affected sensors showed
abnormal monitoring values. As shown in Figure 3a,b, all three sensors—TOTAL_CONS_
REQUIRED_FLOW, 2_FIC_401_CO, and 2_LT_001_PV—are closely related to 1_MV_001
and exhibit significant anomalies in Figure 2b. Our model determined anomalies based on
the anomaly scores among individual sensors, and although no anomalies were detected for
the two sensors in Figure 2a, their monitoring values fluctuated for the sensors connected
to the electronically controlled valve that was affected by anomalies, as shown in Figure 2b.
Our model, combined with the general performance of the sensors, adequately captured
the relationship between the sensors, enabling the identification of the interval where the
abnormal occurrence took place. In summary, it can be seen that the graph structure can
make full use of the correlation between nodes to detect anomalies.
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4.6. Ablation Study

To assess the plausibility of the model architecture and the necessity of the masking
operation, it was necessary to carry out ablation experiments. In our model, we aimed to
verify whether the masking operation leads to performance improvement and whether
multi-masking yields better results than individual masking. For this purpose, three
approaches were used for comparison:

1. Without masking: Retaining the original model without any masking operations
implies that the model does not reconstruct the masked data and can utilize all nodes
in the generated graph for predictions.

2. With graph masking: Stochastically adding masks to the base model for graph nodes.
This means that the model can only use some of their neighbors for predictions.
The graph structure is not fully accessible, enhancing the model’s ability to utilize
correlations among different time series.

3. With time-series masking: Masking a portion of the input of the model, obtained
through sliding windows, and then having the model reconstruct the masked samples
using the unmasked generated graph structure.

4. With both edge masking and time-series masking: The model’s predictions are ob-
tained by combining the two masking strategies with a fine-tuned masking ratio. This
operation can be called multi-masking.

To fix the other hyperparameters during the experiment, we set the masking ratio at
each step to 20%. Since fixed hyperparameters were used to maintain the consistency of the
experiments, the results may be slightly lower than the optimal hyperparameter settings.
However, they are sufficient for determining the performance trend of the model under
different masking strategies.

Table 4 shows the Precision, Recall, and F1_score metrics, reflecting the effects of
anomaly detection under different masking strategies. The highest value of the metric in
each dataset is bolded in the table. Figure 4 visualizes the performance improvements
resulting from the masking operation, where a, b, c, and d represent the model without
masking, time-series masking, node masking, and multi-masking, respectively. The red
column in the diagram represents the F1_score, and it can be seen that the three mask-
ing operations improved the overall performance of the model compared to the model
without the masking operation. When using the same masking ratio in all our experi-
ments, we can see that the multi-masking operation led to significant improvements in the
model’s performance across all metrics and had the most substantial impact among all the
masking strategies.

Table 4. Performance of the three masking strategies.

Data Mask Precision Recall F1

No mask 0.9598 0.6444 0.7712
Time mask 0.9824 0.6435 0.7776
Edge mask 0.9477 0.6540 0.7739SWAT

Multi-mask 0.9851 0.6547 0.7835

No mask 0.7758 0.3015 0.4221
Time mask 0.8815 0.3366 0.4872
Edge mask 0.8253 0.3608 0.4923WADI

Multi-mask 0.8671 0.3701 0.5162

No mask 0.8405 0.9269 0.8816
Time mask 0.8992 0.9125 0.9058
Edge mask 0.8322 0.9658 0.8940KDDCUP99

Multi-mask 0.9447 0.9426 0.9434

We analyzed the specific characteristics of the different masking strategies, and the
results are shown in Table 4. The bolded data indicate the best values for each indicator
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on each dataset. First, in terms of time-series masking, it can be seen that it improved
the performance of the model mainly in terms of Precision, based on the superiority of
the F1_score compared to the model without the masking operation. In particular, on the
WADI dataset, time-series masking achieved the highest Precision value among all the
masking strategies.

Figure 4. Performance comparison of four masking strategies on three datasets. From left to right,
the performance on the SWaT, WADI, and KDDCUP99 datasets is shown. In each graph, a, b, c, and
d represent the model without masking, with time-series masking, with node masking, and with
multi-masking, respectively, where the red part in each graph indicates the F1_score and the yellow
and blue parts represent Recall and Precision.

The use of graph masking led to non-negligible improvements in the Recall metric.
Similar to time-series masking, the F1_score achieved through graph masking was also
considerably improved on the WADI dataset. As can be seen, for the WADI dataset with
sparse data and high dimensionality, the large improvements resulting from the use of both
masking operations demonstrate their excellent capability in handling complex datasets.
The Recall metric for time-series masking exhibited a slight reduction on the SWaT and
KDDCUP99 datasets compared to the model without a masking operation, as did the
Precision metric for graph masking. However, the indicators for multi-masking are not
available due to the model’s lack of masking.

As shown in the table, the combined performance of multi-masking outperformed
that of individual masking, demonstrating that multi-masking can combine the advantages
of two individual masking operations and can be adapted to different datasets, making full
use of the respective advantages of different masking strategies in the Precision and Recall
metrics. In general, the masking operation is effective in improving the model’s ability to
capture relationships and contextual features among temporal sequences.

We also found it interesting that in the absence of graph masking operations, the
initial graph structure input can significantly affect the training and convergence speed
(requiring an additional 5+ epochs), despite our strategy to assist in the initial graph
creation. However, after we performed the graph node masking operation, we were able
to significantly reduce the convergence time of the training. That is, graph node masking
enhances the model’s ability to construct graph structures and reduces the instability caused
by node embedding when building the graph.

4.7. Hyperparameter Analysis

To evaluate the effect of different masking ratios on the model’s performance, we kept
other hyperparameters fixed and adjusted the masking ratio of the time series and graph.
We changed the input window of the model to 10 to achieve a masking ratio accuracy of
0.1 for the temporal sequences, meaning that MGUAD would randomly set the time at
one moment of each sequence to 0. Note that the model may not score optimally on the
metric due to the change in the timing window, but we can determine the trend through
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experiments using different sizes of the timing window. Given the proven necessity of the
masking operation, we conducted experiments using masking ratios ranging from 0.1 to
0.6, and the results are shown in Figure 5.

Figure 5. The performance of MGUAD under different masking ratios, where the horizontal coor-
dinates represent the different masking ratios and the vertical coordinates represent the indicators
corresponding to the model at that ratio

In Figure 5, we show the performance of the model on the KDDCUP, SWaT, and
WADI datasets using different masking ratios. The blue line represents Precision, the green
line represents Recall, and the red indicator represents the F1_score. On the KDDCUP
dataset, the model achieved a Recall close to 1.0 at a masking ratio of 0.1, which decreased
significantly after the masking ratio exceeded 0.3. On the SWaT dataset, the model was
not very sensitive to the masking ratio and performed more consistently. On the WADI
dataset, MGUAD performed relatively well when the control masking rate was around
0.2. In summary, to efficiently complete the anomaly detection task, we can initially set the
masking rate at 0.2, which then can be adjusted within a small range between 0.1 and 0.3
when the model is tested on different datasets.

5. Conclusions

Unsupervised multivariate time-series anomaly detection is particularly important in
real-world applications. In this paper, we propose a novel multi-masking model, MGUAD,
which can effectively capture the temporal and spatial correlations present in the input
data. MGUAD can automatically build the graph structure of dependency relationships
between sensors and update this structure as the relationships change. An ablation study
has been conducted to verify the contribution of the multi-masking strategy in the proposed
model, which enhances the robustness and learning abilities of the model and makes it
easy to deal with difficult and unbalanced data. We have also conducted comprehensive
experiments on three public datasets. The experimental results demonstrate that our model
outperforms state-of-the-art anomaly detection methods. For future work, we intend to
extend our experiments to optimize MGUAD in terms of building initialization graphs,
the hyperparameters of the model, masking strategies, etc. We also aim to conduct further
research on the interpretability of this GNN-based model.
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