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Abstract: Sensor nodes are widely distributed in the Internet of Things and communicate with each
other to form a wireless sensor network (WSN), which plays a vital role in people’s productivity and
life. However, the energy of WSN nodes is limited, so this paper proposes a two-layer WSN system
based on edge computing to solve the problems of high energy consumption and short life cycle
of WSN data transmission and establishes wireless energy consumption and distance optimization
models for sensor networks. Specifically, we propose the optimization objective of balancing load and
distance factors. We adopt an improved sparrow search algorithm to evenly distribute sensor nodes in
the system to reduce resource consumption, consumption, and network life. Through the simulation
experiment, our method is illustrated, effectively reducing the network’s energy consumption by
26.8% and prolonging the network’s life cycle.

Keywords: routing protocol; edge computing; cluster head selection; Internet of Things

1. Introduction

In recent years, the rapid development of wireless network technology has made
the Internet of Things (IoT) important in people’s productivity and life [1]. There is a
wide range of sensor nodes distributed in the IoT, and they connect and communicate
with each other to form a wireless sensor network (WSN), which plays an essential role
in data collection and monitoring in the IoT [2,3]. However, with the rapid increase in
devices connected to the network, cloud computing can no longer meet the low-latency
computing requirements of these devices, and edge computing has been proposed [4].
Edge computing is a new type of network architecture. Because it is closer to the user end,
it has low latency and high efficiency compared with cloud computing, and it also reduces
bandwidth pressure [5,6]. At present, edge computing is widely used in WSNs. By using
edge computing technology, it can effectively reduce the delay of WSN, improve the life of
the network, and enhance the real time and reliability of the entire network system [7–9].

However, the energy of WSN nodes is still limited, and researchers have to consider
designing some energy-saving routing protocols to reduce the energy consumption of WSN
nodes [10]. By clustering WSN nodes, the energy consumption of nodes can be effectively
reduced, and the network lifetime can be extended [11,12]. Usually, after the WSN nodes
are clustered, a cluster head node is selected in each cluster to collect node data in the cluster
and complete the transmission. Therefore, the quality of clusters and the selection of cluster
heads will have a crucial impact on the performance and lifetime of the network [13,14].

In the work of this paper, to solve the problems of excessive energy consumption of
nodes and short network life cycle caused by unreasonable clustering in the clustering
routing protocol, we propose an optimization model of a two-layer WSN based on edge
computing and an improved sparrow search algorithm is used to complete clustering.
For the optimization problem, we use an improved sparrow search cluster head selec-
tion method, including chaotic initialization, sine–cosine mutation, and adaptive factor,
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to improve the network life cycle and wireless sensor network performance. The main
contributions of this work are as follows:

(1) We propose a two-layer WSN system based on edge computing and establish an
optimization model of a two-layer WSN based on edge computing;

(2) According to the optimization model of the two-layer WSN based on edge computing,
we construct an optimization objective function to balance the load and distance
factors in the clustering process;

(3) To solve the proposed problem, we adopt an improved sparrow search algorithm,
which effectively improves the life cycle of the WSN.

The rest of this paper is organized as follows: Section 2 introduces the current research
on clustering protocols for WSNs; Section 3 describes the system model and explains the
problem model for clustering optimization in WSNs; Section 4 introduces the improved
algorithm; Section 5 presents the simulation and comparison results; finally, Section 6
concludes the paper.

2. Related Works

Edge computing and WSNs have spread throughout people’s daily lives, such as envi-
ronmental monitoring, smart grid, smart transportation, and intelligent agriculture [15,16].
The energy consumption of the WSN system can be effectively reduced through edge
computing technology, and the network’s life can be extended. Just as [17] constructed an
edge computing IoT architecture, the efficiency of calculation and the accuracy of calcula-
tion results are guaranteed through an adaptive hierarchical sampling method. Similarly,
Ref. [18] proposes a task model in edge computing and a cluster-based heterogeneous WSN
model and uses a task allocation algorithm that combines genetic algorithms and ant colony
optimization algorithms to balance loads and reduce system energy consumption. The
work in [19] aims at the problem that the traditional data cleaning method relying on sensor
nodes affects cloud processing and proposes a data cleaning method based on mobile edge
nodes, which can improve data cleaning efficiency while maintaining data reliability and
integrity and effectively reduce energy consumption. The work in [20] designs an IoT-based
cluster-based routing protocol and optimized cluster head selection, improving energy
efficiency and network life. Similarly, Ref. [21] uses UAVs to assist the auxiliary wireless
sensor network to complete the data collection work efficiently. The work uses drones as
edge servers to effectively improve the efficiency of data collection. However, the energy of
drones is limited and cannot complete data collection for a long time. Our edge servers
mainly rely on base stations, which can assist in data collection for a long time.

Intelligent optimization algorithms have been widely used in the optimization of
wireless routing protocols and the optimization of cluster head nodes [22–25]. The work
in [13] uses a gray wolf optimization algorithm to select the best cluster head in WSN,
saving energy and prolonging the network’s life. The work in [26] proposes a new ant
colony WSN optimization strategy and designs a corresponding routing algorithm to
extend the entire network’s life cycle by balancing each sensor node’s energy consumption.
The work in [27] proposed an energy-saving cluster head selection algorithm based on
particle swarm optimization, which considers the distance and remaining energy of nodes
in the cluster and designs an efficient fitness function, which saves the energy of sensor
nodes and extends the WSN lifetime. The fitness function described in [28] takes into
account factors such as residual energy, distance to the sink, and node density to improve
the selection of cluster heads. An improved genetic algorithm is proposed to select the
best cluster head node, effectively improving network lifespan. The work in [29] proposes
a WSN clustering routing algorithm based on a hybrid genetic tabu search. The cluster
head selection process introduces node residual energy and node distance, effectively
improving routing efficiency. The work in [30] proposed an energy-aware cluster routing
protocol based on a seagull optimization algorithm for animal husbandry WSN, which can
prolong the life of the network and reduce the end-to-end delay. The work in [31] initializes
the population by selecting nodes in the monitoring area to increase the diversity of the
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population and uses the proposed optimization algorithm to choose a better cluster head
set, which balances the energy consumption of sensor nodes, thereby prolonging the life
cycle of the network.

Unlike the above studies, we propose a two-layer WSN system based on edge com-
puting. The edge server can monitor the underlying WSN nodes and assist in the selection
of cluster head nodes. Finally, the improved sparrow search algorithm (ICSSA-CHS) opti-
mizes the selection of cluster heads, balances the energy of sensor nodes, and improves the
life cycle of the network.

3. System Model

The two-layer WSN system based on edge computing mainly consists of an edge
layer and a sensor node layer. In the edge layer are edge computing nodes, responsible
for collecting relevant data information of sensor nodes, assisting cluster head selection,
and transmitting sensor data. Generally, the cluster head node is not fixed and must be
re-selected every round. When selecting the cluster head in each round, the nodes should
be evenly distributed, and the load of the cluster head nodes should be balanced. After the
cluster head selection is completed, ordinary nodes will join the nearest cluster according
to the distance, and member nodes are assigned time slots in the cluster to complete data
transmission. Nodes only transmit data in their assigned time slots and sleep in other time
slots to reduce power consumption. At the end of each rotation period, the cluster head
will be re-selected, and the new cluster head will re-select the cluster head according to the
energy consumption.

We use N = {n1, n2, n3, . . . , nk} to denote all sensor nodes and all edge nodes are given
by the set S = {s1, s2, s3, . . . , sk}. The set M = {m1, m2, m3, . . . , mj} represents all clusters,
we use Cq = {c1, c2, c3, . . . , cm}, Cq ∈ M to represent the q-th cluster, and the cluster head
node in the cluster is defined as Ch

q . When a node runs out of energy, we put it into the
set G.

Generally, in a WSN, once the corresponding sensors are arranged, they will not move
anymore. In set Ci, all sensor nodes can communicate with each other and can communicate
with edge nodes at the same time. Edge nodes can detect the remaining energy of different
sensor nodes in the set. After the cluster head selection is completed, data transmission
is mainly performed by the cluster head node and the edge node, as shown in Figure 1,
which is the network structure diagram after the cluster head selection is completed. In
the figure, all sensors at the sensor node layer may become cluster heads. The sensor node
layer can represent a cluster formed in different areas, and the node pointed at by the arrow
is defined as the cluster head. When cluster heads are re-selected, their regions may change.
In the edge layer, some servers may be far apart geographically.

......

...

sensor node layer

Edge layer

Figure 1. Edge network architecture.
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3.1. Node Energy Model

In the edge-side WSN, the sensor cannot be charged after the power is exhausted,
so battery consumption is a crucial issue. Specifically, energy consumption in a WSN at
the edge mainly comes from data sending and receiving. The energy consumption of the
node data transmission process is mainly related to the size of the transmitted data packet
and the transmission distance. The node data sending and receiving process satisfies the
multipath fading channel and free-space model. A free-space model is typically used when
the threshold distance exceeds the calculated distance. A multipath fading model is used
in another case where the threshold is smaller [32]. The threshold distance d0 is defined as

d0 =

√
ε f s

εmp
(1)

where ε f s is the energy required when using the free-space model, and εmp is the energy of
the power amplifier. Then its specific data transmission energy consumption formula is
as follows:

Etx(k, d) =
{

k ·En + k ·ε f s ·d2, d < d0
k ·En + k ·εmp ·d4, d ≥ d0

(2)

where Etx(k, d) is the energy consumed by transmitting k-bit data for d meters, and En is
the energy consumption per unit of data sent or received by the sensor node. Different
from sending data, the energy consumption when a node receives data is mainly related to
the size of the data packet. Then the received data energy consumption Erx is defined as

Erx = k× En (3)

Therefore, the network communication energy consumption model of sensor nodes at
the edge can be defined as

Etot = Etx + Erx + E0 (4)

where Etot represents the total communication energy consumption of the node, and E0 is
the energy consumption of the node when it is dormant.

3.2. Node Residual Energy and Average Energy

Nodes in the edge-side WSN must ensure the life cycle of the nodes and the network
during the cluster head selection process, so the remaining energy of the nodes needs to be
considered during the selection process.

In the edge WSN, it is necessary to save the power of sensor nodes as much as possible
to ensure the energy balance of sensor nodes and prolong the life of the network. Cluster
head nodes need to consume more energy than ordinary nodes. Therefore, we need to
select nodes that have consumed less energy as cluster head nodes as much as possible.
The energy consumption Er

i of nodes is defined as

Er
i =

Es
i − Ei

Es
i

(5)

where Es
i is the initial energy of the i-th sensor node; Ei is the remaining energy of the

current node of the i-th node. The smaller the value, the more abundant the energy of the
cluster head node, the more suitable it is as the cluster head node.

In order to narrow the selection range of cluster head nodes and ensure that the
cluster head nodes have a longer life cycle and can better assume the responsibility of data
forwarding and aggregation, the edge layer nodes select the sensor nodes whose residual
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energy is greater than the average energy Eavg of the selected nodes as candidate cluster
head nodes and join the set of candidate nodes.

Eavg =

∑
i∈N∧i/∈G

Ei

N − G
(6)

where Eavg is the average energy of all surviving nodes in the network, Ei is the current
remaining energy of sensor node i, and G is the number of dead nodes. When the remaining
energy of the node is greater than Eavg, we put it into the set H.

3.3. Node Distance

In the edge-side WSN, the distances between nodes mainly include the distance
between sensor nodes and edge nodes, the distance between cluster head nodes and
common nodes, and the distance between cluster heads.

A Sensor node to edge node
In the WSN at the edge end, the edge end needs to manage and monitor the sensor
nodes, and the distance between them will affect the energy consumption of the nodes.
Therefore, when selecting the cluster head, the node closer to the edge end should be
selected as the cluster head node as much as possible. Specifically, the distance De

i
between the edge end and the i-th sensor node can be defined as

De
i =

Di
Dmax

(7)

where Di is the distance between the i-th sensor node and the edge node, and Dmax is
the distance between the furthest sensor node and the edge node.

B Inter-cluster node distance
When selecting the cluster head nodes, ensure that the cluster head nodes in the
network are evenly distributed as much as possible, so that the energy consumption
of the cluster head nodes can be as uniform as possible, which can improve the
network life cycle. Therefore, in the process of cluster head selection, the distribution
of cluster head nodes and intra-cluster nodes needs to be considered. Specifically, we
define the inter-cluster node distribution factor Dc

i . When it is smaller, the distribution
of each intra-cluster node is more uniform. The specific definition is as follows:

Dc
i =

∑
i∈Cq

(
Cavg

i − Cavg

)2

Q
(8)

where Cavg
i represents the average number of neighbor nodes of all nodes in the i-th

cluster, Cavg represents the average number of neighbor nodes of N nodes in the
entire network, and Q represents the total number of clusters.

C Distance between cluster heads
In the process of cluster head selection, when the distance between cluster heads is
large, the data need to go through more hops to reach the destination, which increases
the delay of data transmission. Therefore, the distance between cluster heads is
an important parameter in the cluster head selection algorithm, which determines
whether the WSN can achieve the best routing performance. Therefore, the distance
factor Dh between cluster heads can be defined as

Dh =

∑
i∈M

De
i

∑
∀i,j∈M

Dh
i,j

(9)
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where Dh
i,j represents the distance between cluster heads i and j, which is used to

adjust the distance between cluster heads. De
i represents the distance from the cluster

head node i to the edge node. In order to make Dh smaller, it is necessary to reduce
the distance between cluster heads and edge nodes and, at the same time, increase
the distance between cluster heads so that the distribution of cluster heads in the
entire network is more dispersed.

3.4. The Optimization of the Target

In the cluster head selection process of the edge-side WSN, in order to balance the
node energy and distance in the cluster head selection process, improve the distribution
uniformity between clusters, and reduce the distance between cluster head nodes, our final
optimization objective problem is expressed as

min W = θ1 ∑
i∈H

Er
i + θ2 ∑

i∈H
De

i + θ3 ∑
j∈Cq ,q∈M

Dc
q,j + θ4Dh (10)

s.t. C1 θ1 + θ2 + θ3 + θ4 = 1 (11)

C2 0 < θ1, θ2, θ3, θ4 < 1 (12)

C3 Ei ≤ Es
i (13)

where θ1, θ2, θ3, and θ4 are the weight factors, and C3 is the energy consumption constraint
of the node.

4. Improved SSA Algorithm

To solve problem 10, we adopt an improved sparrow search algorithm. The sparrow
search algorithm (SSA) is proposed by Xue et al. by simulating the foraging mechanism
of sparrows [24,33]. To enhance the optimization efficiency of the SSA, we suggest using
chaotic mapping and sine–cosine mutation. Additionally, we have introduced an adaptive
population adjustment strategy. The following content will introduce the SSA and our
improvement strategy.

4.1. The Sparrow Search Algorithm

The algorithm realizes optimization by simulating the three roles of producer, follower,
and vigilant in the sparrow population. Among them, the producer is responsible for the
global search for food-sufficient locations and provides foraging directions for followers.
Generally, the producer in the sparrow population changes. Once a sparrow individual
finds better food, it will be converted into a producer, but its proportion in the population
is fixed. The producer’s location update can be defined as

Xt+1
i,j =

{
Xt

i,j · exp
(
− i

α·Tmax

)
, R < ST

Xt
i,j + Q · L, R ≥ ST

(14)

where Xt
i,j is the j-th dimension of the i-th sparrow individual; t is the current number

of iterations; Tmax indicates the maximum number of iterations; α is a random number
that follows a uniform distribution within the range of (0, 1]. Q is a random number that
follows a normal distribution. The vector L is one-dimensional and has a length of d,
with all elements set to 1. R is a uniformly distributed random number that represents
the warning value of the population. ST represents the safety threshold of the population.
Then, the follower’s position update can be defined as

Xt+1
i,j =

 Q · exp
(

Xt
worst−Xt

i,j
i2

)
,i > n/2

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣ · A+ · L ,i ≤ n/2
(15)
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where Xt
worst represents the global worst position in the current iteration; Xp is the optimal

position currently occupied by the producer; A is a one-dimensional vector whose elements
are all 1 or −1, and A+ = AT(AAT)

−1. When i > 2, the i-th follower sparrow receives
very little food. In this case, the sparrow updates its position using the normal distribution
law to search for more food. On the other hand, when i ≤ 2, the individual sparrows jump
to look for food near the finder. The vigilant’s location update can be defined as

Xt+1
i,j =


Xt

best + β ·
∣∣∣Xt

i,j − Xt
best

∣∣∣ , fi > fg

Xt
i,j + K ·

(
|Xt

i,j−Xt
worst |

( fi− fw)+ε

)
, fi = fg

(16)

where fi is the fitness value of the sparrow individual; fg is the current optimal fitness value;
fw is the current worst fitness value; Xt

best is the current global optimal position; β controls
the step size and follows a standard random normal distribution; K is a random number
in [−1, 1], used to control the moving direction of the sparrow; ε is a small constant that
prevents the denominator from being zero. If fi > fg, the sparrow is at the outermost edge
of the population and will move towards the optimal position. If fi = fg, the sparrow in the
middle of the population has recognized the danger and will move to a different location.

4.2. Improved Strategy

To improve the optimization efficiency of the sparrow search algorithm, we pro-
pose a chaotic map to improve the initial distribution of the population; we introduce
a sine–cosine mutation and an adaptive population adjustment strategy to improve the
search performance.

4.2.1. Improved Circle Chaos Initialization Population

To improve the efficiency of the sparrow search algorithm in the cluster head selection
process, we redesigned the initialization method of the population. Specifically, we intro-
duce a circle chaotic map to improve the initial population distribution so that the sparrow
population can search the entire space more widely, thereby improving the optimization
efficiency of the algorithm. The specific formula is as follows:

Xt
i,j = mod

(
3.845Xt

i,j −
(

0.69
3.845π

sin
(

3.84π · Xt
i,j

)
, 1
)

(17)

where Xt
i,j is the location of the i-th sparrow in the j-th dimension of the search space at the

t-th iteration.

4.2.2. Sine and Cosine Mutation Strategy

In order to improve the local search performance of the sparrow search algorithm,
we introduce the sine–cosine mutation strategy. The sine–cosine algorithm can effectively
improve the local search efficiency. Specifically, in the process of updating the position
of the vigilante, we performed sine–cosine mutation on the position of the vigilante to
improve the local search ability of the vigilante. The specific position update formula is
as follows:

Xt+1
i =


(
Xt

best + β ·
∣∣Xt

i − Xt
best

∣∣) · sin r1 +
(

2 sin r1 ·
∣∣r2Xt

best − Xt
i

∣∣ · (1− t
Tmax

))
, fi > fg(

Xt
i + K ·

(
|Xt

i−Xt
worst |

( fi− fw)+ε

))
· cos r1 +

(
2 cos r1 ·

∣∣r2Xt
best − Xt

i

∣∣ · (1− t
Tmax

))
, fi = fg

(18)

where r1 is a random number in the interval [0, 2π], and r2 is a random number in the
interval [0, 2].
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4.2.3. Adaptive Population Adjustment Strategy

In the sparrow search algorithm, the number of producers is usually fixed. However,
in the process of cluster head selection, if there are fewer producers in the early stage of
the iteration, the search cannot be entirely performed; similarly, in the later stage of the
iteration, there should be more followers to perform a local search to prevent falling into the
local optimum untie. Therefore, we introduce adaptive parameters to adjust the number of
producers and followers dynamically. The specific formula is as follows:

a = 0.15 ·
(

2e−(2t/Tmax) − 0.1k
)
+ 0.1

P = a · N
S = (1− a) · N

(19)

where N is the total population, k is a random number in the [0, 1) interval, P is the number
of producers, and S is the number of followers.

The specific steps of the flow chart of optimizing the clustering scheme of WSN based
on ICSSA-CHS are as follows Figure 2, and in Algorithm 1 the pseudocode is provided.

START

nitialize the number of sensor nodes, 

the initial energy etc.

END

Update the finder and follower by 

formula  14 and formula 15.

Select 20% of the individuals in the population as vigilantes, 

and update the position of vigilantes by formula 18.

N

Y

N

Y

Adaptively adjust the population 

using formula  19

Edge nodes broadcast cluster head information, 

and other nodes join the cluster

All nodes die?

Nodes send information to 

edge nodes

maxt T

Use formula 10 to calculate 

the objective function value

Record the current optimal and worst clustering 

scheme, the set of cluster head nodes, and the 

global optimal clustering scheme

The cluster head node collects the data collected by other 

nodes, and sends them to the edge nodes after fusion

Initialize the sparrow population by 

formula 17

Figure 2. The flow chart of optimizing the clustering scheme of WSN based on ICSSA-CHS.
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Step 1: Initialize the number of sensor nodes, the initial energy, the size of the node
distribution area, and use Formula (17) to initialize the sparrow population.

Step 2: Each node in the network sends its own position and energy information to
the edge nodes. At this time, update the position and energy information of each node in
the WSN at the edge node.

Step 3: If the maximum number of iterations is reached, go to step 6; otherwise go to
step 4.

Step 4: Use Formula (10) to calculate the objective function value, and obtain the
current optimal and worst clustering scheme, the cluster head node set, and the global
optimal clustering scheme.

Step 5: Adaptively adjust the population according to Formula (19), select the currently
optimal P sparrow individuals as discoverers and S sparrow individuals as followers,
and update the discoverers and followers through Formulas (14) and (15).

Step 6: Randomly select 20% of individuals in the population as vigilantes, and update
the position of the vigilantes through Formula (18), and execute step 3.

Step 7: Edge nodes broadcast cluster head information. After the cluster head node
receives the information that it is selected as the cluster head node, it broadcasts to other
nearby nodes, and other nodes join the cluster.

Step 8: The cluster head node collects the data collected by other nodes, and sends
them to the edge nodes after fusion.

Step 9: Repeat until the lifetime of the WSN network ends Algorithm 1.

Algorithm 1: ICSSA-CHS
Input: population number N, the maximum number of iterations Tmax, number of

vigilantes R
Output: cluster head election result

1 initialize the population according to Equation (17);
2 while t < Tmax do
3 obtain P, S, and a according to Equation (19);
4 for i← 0 to N do
5 Calculate the Fitness function Fi value according to Equation (10);
6 end
7 BF← BestFitness(F);
8 for i← 0 to P do
9 obtain the position of the producer according to Equation (14);

10 end
11 for i← 0 to S do
12 obtain the position of the follower according to Equation (15);
13 end
14 for i← 0 to S do
15 obtain the position of the vigilante according to Equation (18);
16 end
17 record the optimal cluster head scheme;
18 end

5. Simulation and Result

In this section, the proposed method is evaluated by evaluating the remaining energy
consumption of nodes, the number of survivors, etc. Simulations were performed using
Python on a computer with an Intel Core I7-7700HQ 2.8 GHz CPU and 16 GB RAM.
The experimental parameter settings are shown in the Table 1.
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Table 1. Average optimization result.

Parameter Value

Experimental area 150× 150
The number of sensor network nodes 100

Number of edge nodes 10
packet size/bit 4000

The maximum number of running rounds of the network 2500
Node initialization energy/J 0.7

Fusion Data Consumption/J · bit−1 · packet−1 0.01
En/nJ · bit−1 50

ε f s/pJ · bit−1 ·m−2 10
εmp/pJ · bit−1 ·m−2 0.0013

Population size 100
Iterations 300

Ratio of vigilantes 0.2

In order to verify the effectiveness of the improved sparrow search algorithm, we
compared the improved cluster head selection method with LEACH, ILEACH, and WOA-
RCP algorithms [31,34]. In the WSN, the remaining energy of nodes can effectively reflect
the optimization of system energy consumption. As shown in Figure 3, there are 100 sensor
network nodes in the monitoring area, and we analyze the remaining energy of our method
and other methods after running 1000 rounds. Specifically, after running 1000 rounds,
the remaining energy of our method is 34.08 J, which is 26.8% more energy than WOA-RCP.

L E A C H I L E A C H W O A - R C P I C S S A - C H S
0

5

1 0

1 5

2 0

2 5

3 0

3 5

No
de 

rem
ain

ing
 en

erg
y

A l g o r i t h m
Figure 3. Node remaining energy after running 1000 rounds of different algorithms.

Further, As shown in Figure 4, we compared the number of packets received at the
edge end after running 2000 rounds. On the one hand, the more data packets the edge end
receives, the more stable the system network transmission will be. On the other hand, it
fully demonstrates that the ICSSA-CHS algorithm can effectively improve the network life
cycle. Our system has a stronger data transmission capability when the edge end receives
more data packets. The number of packets transmitted by our algorithm is 18.25× 104,
which is 11.2% higher than WOA-RCP.
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L E A C H I L E A C H W O A - R C P I C S S A - C H S
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 10

^4

A l g o r i t h m
Figure 4. The number of data packets received by the edge end after running 2000 rounds of
different algorithms.

We also analyze how the remaining surviving nodes change when the number of
running rounds increases. Generally, the more running rounds and remaining nodes,
the stronger the life cycle and data transmission capability of the network. As shown in
Figure 5, as the number of running rounds increases, the number of generated nodes begins
to decline after remaining unchanged. This is because as the number of running rounds
increases, and the energy of some nodes is exhausted. The original LEACH protocol first
dropped to 0. We introduce edge nodes through a two-layer network structure, reducing
the burden on the cluster head nodes and energy consumption speed. At the same time,
as the control node, the edge node uniformly adjusts and allocates the cluster head node
and member nodes during data fusion and transmission, saving energy consumption in
the cluster and improving the network life. Ultimately, our proposed method sustains the
network lifespan over 2000 rounds.
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Figure 5. The number of remaining nodes of different algorithms after the number of running
rounds increases.
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In addition, we analyze the relationship between the number of running rounds and
the remaining energy of network nodes. Usually, the more energy left in each round,
the lower the energy consumption of the node during the transmission process, which
shows that our method can effectively improve the life of the network. As shown in Figure 6,
it can be observed that as the number of rounds increases, the energy of network nodes
decreases. This is because of the energy consumption caused by node operation. However,
compared with other protocols, the ICSSA-CHS protocol performs well in reducing the
remaining total energy of nodes, and the energy consumption of each round of the network
is also less, making the node run up to 2206 rounds, which is higher than the other three
methods and the limited extension of the network life cycle.
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Figure 6. The remaining energy of nodes of different algorithms after the number of running rounds
increases.

In addition, we analyze the number of packets received by edge nodes, which is used
to evaluate the information transmission capacity of the network. As shown in Figure 7,
as the number of running rounds increases, the number of packets received by edge-end
nodes increases gradually. This is because, with the operation of the network, the data
exchanged by the sensor nodes gradually increase. However, the CMASSA-CHS protocol
shows a higher level of data packet transmission than the LEACH, ILEACH, and WOA-RCP
protocols, which shows that the CMASSA-CHS algorithm is more reasonable in selecting
cluster heads and network clustering, which makes network transmission more stable and
extends the network life cycle.
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Figure 7. The number of edge-end data packets received by different algorithms after the number of
running rounds increases.

6. Conclusions

WSN plays an essential role in the data collection of the IOT. To reduce the energy
consumption of sensor nodes and prolong the network’s life, this paper constructs a
two-layer protocol structure system model of WSN. Then, we design an optimization
problem that balances distance and energy consumption based on the proposed model.
Finally, we optimize the cluster head selection through the improved sparrow search
algorithm, including chaotic initialization, sine–cosine mutation, and adaptive population
adjustment strategy. This effectively reduces node energy consumption, improves network
performance, and prolongs the network life cycle. Specifically, compared with WOA-RCP
by the ICSSA-CHS algorithm, we reduce energy consumption by 26.8%, improve network
packet transmission, and prolong the network lifetime. In the future, we will further study
issues such as node data collection and fusion compression under the double-layer WSN
structure to improve network efficiency.

Author Contributions: Conceptualization, S.Q. and A.L.; methodology, S.Q. and J.Z.; software, A.L.;
validation, X.Z.; formal analysis, J.Z.; investigation, X.Z.; resources, S.Q.; data curation, A.L.; writing—
original draft preparation, A.L.; writing—review and editing, J.Z.; visualization, F.C.; supervision,
Y.W.; project administration, Y.W. and F.C.; funding acquisition, S.Q. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by a fund project of the Equipment Development Department of
the Central Military Commission grant number [No. 6140002010101, No. 6140001030111] and The
APC was funded by Dalian University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.



Sensors 2023, 23, 7572 14 of 15

References
1. Gulati, K.; Kumar Boddu, R.S.; Kapila, D.; Bangare, S.L.; Chandnani, N.; Saravanan, G. A review paper on wireless sensor

network techniques in Internet of Things (IoT). Mater. Today Proc. 2022, 51, 161–165. [CrossRef]
2. Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.W. Applications of Wireless Sensor

Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022,
22, 2087. [CrossRef] [PubMed]

3. Shahraki, A.; Taherkordi, A.; Haugen, Ø.; Eliassen, F. Clustering objectives in wireless sensor networks: A survey and research
direction analysis. Comput. Netw. 2020, 180, 107376. [CrossRef]

4. Qiu, S.; Zhao, J.; Lv, Y.; Dai, J.; Chen, F.; Wang, Y.; Li, A. Digital-Twin-Assisted Edge-Computing Resource Allocation Based on the
Whale Optimization Algorithm. Sensors 2022, 22, 9546. [CrossRef] [PubMed]

5. Jararweh, Y.; Doulat, A.; AlQudah, O.; Ahmed, E.; Al-Ayyoub, M.; Benkhelifa, E. The future of mobile cloud computing: Integrat-
ing cloudlets and Mobile Edge Computing. In Proceedings of the 2016 23rd International Conference on Telecommunications
(ICT), Thessaloniki, Greece, 16–18 May 2016; pp. 1–5. [CrossRef]

6. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728. [CrossRef]
7. Maiti, P.; Shukla, J.; Sahoo, B.; Turuk, A.K. Efficient Data Collection for IoT Services in Edge Computing Environment. In

Proceedings of the 2017 International Conference on Information Technology (ICIT), Bhubaneshwar, India, 21–23 December 2017;
pp. 101–106. [CrossRef]

8. Wang, T.; Qiu, L.; Sangaiah, A.K.; Liu, A.; Bhuiyan, M.Z.A.; Ma, Y. Edge-Computing-Based Trustworthy Data Collection Model in
the Internet of Things. IEEE Internet Things J. 2020, 7, 4218–4227. [CrossRef]

9. Cai, S.; Zhu, Y.; Wang, T.; Xu, G.; Liu, A.; Liu, X. Data Collection in Underwater Sensor Networks based on Mobile Edge
Computing. IEEE Access 2019, 7, 65357–65367. [CrossRef]

10. Wang, T.; Qiu, L.; Sangaiah, A.K.; Xu, G.; Liu, A. Energy-Efficient and Trustworthy Data Collection Protocol Based on Mobile Fog
Computing in Internet of Things. IEEE Trans. Ind. Inform. 2020, 16, 3531–3539. [CrossRef]

11. Kumar, N.; Rani, P.; Kumar, V.; Verma, P.K.; Koundal, D. TEEECH: Three-Tier Extended Energy Efficient Clustering Hierarchy
Protocol for Heterogeneous Wireless Sensor Network. Expert Syst. Appl. 2023, 216, 119448. [CrossRef]

12. Diwakaran, S.; Perumal, B.; Vimala Devi, K. A cluster prediction model-based data collection for energy efficient wireless sensor
network. J. Supercomput. 2019, 75, 3302–3316. [CrossRef]

13. Rami Reddy, M.; Ravi Chandra, M.L.; Venkatramana, P.; Dilli, R. Energy-Efficient Cluster Head Selection in Wireless Sensor
Networks Using an Improved Grey Wolf Optimization Algorithm. Computers 2023, 12, 35. [CrossRef]

14. Yadav, R.K.; Mahapatra, R.P. Hybrid metaheuristic algorithm for optimal cluster head selection in wireless sensor network.
Pervasive Mob. Comput. 2022, 79, 101504. [CrossRef]

15. Wang, T.; Liang, Y.; Shen, X.; Zheng, X.; Mahmood, A.; Sheng, Q.Z. Edge Computing and Sensor-Cloud: Overview, Solutions,
and Directions. ACM Comput. Surv. 2023, accepted. [CrossRef]

16. Wang, T.; Lu, Y.; Cao, Z.; Shu, L.; Zheng, X.; Liu, A.; Xie, M. When Sensor-Cloud Meets Mobile Edge Computing. Sensors 2019,
19, 5324. [CrossRef]

17. Zhang, D.g.; Ni, C.h.; Zhang, J.; Zhang, T.; Yang, P.; Wang, J.x.; Yan, H.r. A Novel Edge Computing Architecture Based on
Adaptive Stratified Sampling. Comput. Commun. 2022, 183, 121–135. [CrossRef]

18. Wen, J.; Yang, J.; Wang, T.; Li, Y.; Lv, Z. Energy-efficient task allocation for reliable parallel computation of cluster-based wireless
sensor network in edge computing. Digit. Commun. Netw. 2023, 9, 473–482. [CrossRef]

19. Wang, T.; Ke, H.; Zheng, X.; Wang, K.; Sangaiah, A.K.; Liu, A. Big Data Cleaning Based on Mobile Edge Computing in Industrial
Sensor-Cloud. IEEE Trans. Ind. Inform. 2020, 16, 1321–1329. [CrossRef]

20. Vaiyapuri, T.; Parvathy, V.S.; Manikandan, V.; Krishnaraj, N.; Gupta, D.; Shankar, K. A Novel Hybrid Optimization for Cluster-
Based Routing Protocol in Information-Centric Wireless Sensor Networks for IoT Based Mobile Edge Computing. Wirel. Pers.
Commun. 2022, 127, 39–62. [CrossRef]

21. You, W.; Dong, C.; Cheng, X.; Zhu, X.; Wu, Q.; Chen, G. Joint Optimization of Area Coverage and Mobile-Edge Computing With
Clustering for FANETs. IEEE Internet Things J. 2021, 8, 695–707. [CrossRef]

22. Jacob, D.I.J.; Darney, D.P.E. Artificial Bee Colony Optimization Algorithm for Enhancing Routing in Wireless Networks. J. Artif.
Intell. Capsul. Netw. 2021, 3, 62–71. [CrossRef]

23. Ghawy, M.Z.; Amran, G.A.; AlSalman, H.; Ghaleb, E.; Khan, J.; AL-Bakhrani, A.A.; Alziadi, A.M.; Ali, A.; Ullah, S.S. An Effective
Wireless Sensor Network Routing Protocol Based on Particle Swarm Optimization Algorithm. Wirel. Commun. Mob. Comput.
2022, 2022, e8455065. [CrossRef]

24. Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020,
8, 22–34. [CrossRef]

25. Gai, J.; Zhong, K.; Du, X.; Yan, K.; Shen, J. Detection of gear fault severity based on parameter-optimized deep belief network
using sparrow search algorithm. Measurement 2021, 185, 110079. [CrossRef]

26. Chu, K.C.; Horng, D.J.; Chang, K.C. Numerical Optimization of the Energy Consumption for Wireless Sensor Networks Based on
an Improved Ant Colony Algorithm. IEEE Access 2019, 7, 105562–105571. [CrossRef]

27. Rao, P.C.S.; Jana, P.K.; Banka, H. A particle swarm optimization based energy efficient cluster head selection algorithm for
wireless sensor networks. Wirel. Netw. 2017, 23, 2005–2020. [CrossRef]

http://doi.org/10.1016/j.matpr.2021.05.067
http://dx.doi.org/10.3390/s22062087
http://www.ncbi.nlm.nih.gov/pubmed/35336261
http://dx.doi.org/10.1016/j.comnet.2020.107376
http://dx.doi.org/10.3390/s22239546
http://www.ncbi.nlm.nih.gov/pubmed/36502247
http://dx.doi.org/10.1109/ICT.2016.7500486
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/ICIT.2017.40
http://dx.doi.org/10.1109/JIOT.2020.2966870
http://dx.doi.org/10.1109/ACCESS.2019.2918213
http://dx.doi.org/10.1109/TII.2019.2920277
http://dx.doi.org/10.1016/j.eswa.2022.119448
http://dx.doi.org/10.1007/s11227-018-2437-z
http://dx.doi.org/10.3390/computers12020035
http://dx.doi.org/10.1016/j.pmcj.2021.101504
http://dx.doi.org/10.1145/3582270
http://dx.doi.org/10.3390/s19235324
http://dx.doi.org/10.1016/j.comcom.2021.11.012
http://dx.doi.org/10.1016/j.dcan.2022.06.014
http://dx.doi.org/10.1109/TII.2019.2938861
http://dx.doi.org/10.1007/s11277-021-08088-w
http://dx.doi.org/10.1109/JIOT.2020.3006891
http://dx.doi.org/10.36548/jaicn.2021.1.006
http://dx.doi.org/10.1155/2022/8455065
http://dx.doi.org/10.1080/21642583.2019.1708830
http://dx.doi.org/10.1016/j.measurement.2021.110079
http://dx.doi.org/10.1109/ACCESS.2019.2930408
http://dx.doi.org/10.1007/s11276-016-1270-7


Sensors 2023, 23, 7572 15 of 15

28. Verma, S.; Sood, N.; Sharma, A.K. Genetic Algorithm-based Optimized Cluster Head selection for single and multiple data sinks
in Heterogeneous Wireless Sensor Network. Appl. Soft Comput. 2019, 85, 105788. [CrossRef]

29. Xiuwu, Y.; Ying, L.; Yong, L.; Hao, Y. WSN Clustering Routing Algorithm Based on Hybrid Genetic Tabu Search. Wirel. Pers.
Commun. 2022, 124, 3485–3506. [CrossRef]

30. Sankar, S.; Somula, R.; Parvathala, B.; Kolli, S.; Pulipati, S.; Srinivas, T.A.S. SOA-EACR: Seagull optimization algorithm based
energy aware cluster routing protocol for wireless sensor networks in the livestock industry. Sustain. Comput. Inform. Syst. 2022,
33, 100645. [CrossRef]

31. Zhao, F.; Gao, N.; Zhang, K. WSNs Clustering Routing Protocol Based on Whale Optimization Algorithm and Beetle Antennae
Search. Transducer Microsyst. Technol. 2022, 41, 42–45. [CrossRef]

32. Sarkar, A.; Senthil Murugan, T. Cluster head selection for energy efficient and delay-less routing in wireless sensor network.
Wirel. Netw. 2019, 25, 303–320. [CrossRef]

33. Qiu, S.; Li, A. Application of Chaos Mutation Adaptive Sparrow Search Algorithm in Edge Data Compression. Sensors 2022,
22, 5425. [CrossRef] [PubMed]

34. Vivekanand, C.V.; Bagan, K.B. Secure Distance Based Improved Leach Routing to Prevent Puea in Cognitive Radio Network.
Wirel. Pers. Commun. 2020, 113, 1823–1837. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asoc.2019.105788
http://dx.doi.org/10.1007/s11277-022-09522-3
http://dx.doi.org/10.1016/j.suscom.2021.100645
http://dx.doi.org/10.13873/J.1000-9787(2022)09-0042-04
http://dx.doi.org/10.1007/s11276-017-1558-2
http://dx.doi.org/10.3390/s22145425
http://www.ncbi.nlm.nih.gov/pubmed/35891110
http://dx.doi.org/10.1007/s11277-020-07294-2

	Introduction
	Related Works
	System Model
	Node Energy Model
	Node Residual Energy and Average Energy
	Node Distance
	The Optimization of the Target

	Improved SSA Algorithm
	The Sparrow Search Algorithm
	Improved Strategy
	Improved Circle Chaos Initialization Population
	Sine and Cosine Mutation Strategy
	Adaptive Population Adjustment Strategy


	Simulation and Result
	Conclusions
	References

