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Abstract: Recently, with the trend of redundancy design, the importance of synchronous motion
control of multiple motors has been emphasized in various fields such as automotive, construction,
and industrial engineering. Therefore, this paper proposed a novel passive decomposition-based
robust synchronous control strategy for a multi-motor system, guaranteeing that both the tracking
error of each motor and the synchronous error between motors are ultimately and synchronously
bounded, even under the presence of parametric uncertainty and unstructured external disturbance.
Specifically, a passive decomposition is used to obtain the locked and shape systems from the original
system, and then a sliding mode control system along with robust compensations is designed for
each decomposed system to achieve the precise synchronous motion control of the n number of
motors. Here, the controller for the locked system reduces the tracking errors of motors for a given
desired trajectory, while the controller for the shaped system decreases the synchronous errors
between motors. Furthermore, the control system is generally and conveniently formulated to adopt
the arbitrary n number of motors that must track a given desired trajectory and be synchronized.
Compared to other related studies, this work especially focused on increasing the robustness of the
entire system using both high-order sliding mode control and two separate compensation terms for
model uncertainty and unstructured external disturbance. Finally, to validate the effectiveness of the
proposed synchronous control strategy, the extensive experimental studies on two/three/four-geared
BLDC motors with a high dead-zone effect were conducted, and we also compared the synchronous
control performance of the proposed control strategy with the other representative control approaches,
a master–slave control scheme and an independent one to address the superiority of the proposed
control system. Regardless of the number of motors, due to the robustness of the control system, it is
found that the proposed control ensures the tracking and synchronous errors are less than 1 degree
for the sine-wave trajectory while it guarantees that the errors are below 1.5 degree for the trapezoidal
trajectory. This control approach can be widely and generally applied to the multiple motor control
required in various engineering fields.

Keywords: synchronous motion control; passive decomposition; locked and shape systems; high-
order sliding mode control; multiple motors; parametric uncertainty; external disturbance

1. Introduction

To generate one perfect motion using the multiple motors (or actuators), the syn-
chronous motion control has long been an important research topic, and its importance has
been emphasized with the recent trend of redundancy design in many mechanical-electrical
systems such as automotive, construction, and industrial active systems. For instance, the
recent dual-motor-based Steer-by-Wire system in the vehicle requires the synchronous
angular position control between two motors to guarantee the reliable and robust fault-
tolerant control and produce a large torque [1–5]. Ref. [1] employed the coordinated control
of dual steering motors. With dual motor-microcontroller architecture, ref. [2] developed a
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control algorithm, allowing the system to reconfigure itself automatically in the event of a
single point fault without degrading the control system performance. Ref. [3] proposed
dual-servo synchronization motion control for the angular position tracking of the road
wheel reference input by controlling two actuators synchronously and cooperatively.

Refs. [1–3] provides the fundamental structure for the synchronous motion control of
a multi-motor but have no treatment of model uncertainty and external disturbance.

Furthermore, ref. [4] proposed the novel master–slave control scheme using both a
continuous sliding mode control and a disturbance observer to ensure strong robustness
against model uncertainties and external disturbances, but it requires an additional effort
for designing a disturbance observer. Ref. [5] guaranteed a precise, stable, and fast response
for the collaborative control of multiple motors using both the conventional PID controller
and a radial basis function neural (RBF) network for tuning processing of the PID controller.
Here, the control performance increased due to flexible gain of PID via RBF but it will be
difficult to implement this scheme with a cost-effective microcontroller.

The synchronous control of a multi-motor is also applied to the conveyer belt system
and continuous production line system [6,7]. Ref. [6] presented the practical control strategy
of multi-motor drives of high-power belt conveyors and [7] designed the fuzzy model-based
optimal control of a continuous production line using multi-motors.

Furthermore, this synchronous motion control technique is used for the driving sys-
tem in an electrical vehicle [8,9] and a robotic manipulator [10], as well as a gantry crane
system [11]. Ref. [8] points out that the electrical vehicle must be a fault-tolerant sys-
tem, (i.e., multi-motor-based driving system) and [9] described the implementation of the
electrical vehicle drive control algorithm with torque distribution on an FPGA platform.
Ref. [10] proposed the cross-coupling ring control based on the fuzzy theory (CRCF) for the
multi-motor coordinated control of intelligent robots. Ref. [11] showed the application of
adjustable speed induction motor drives for the gantry cranes. Regarding [6–11], due to the
absence of (or partial) compensation for parametric uncertainty and external disturbance,
the control performance will be sensitive to those disturbing effects.

Moreover, for a decade, many synchronous control schemes of multi-motor systems
have been proposed [12–21]. Refs. [12–14] proposed the passivity based synchronous
control approach for a tele-operated manipulator system by introducing the concept of
passivity and the passive decomposition technique. Ref. [12] guarantees synchronized
motion between master and slave using the passivity observer and controller. Ref. [13]
investigated a passive bilateral feed-forward control scheme for linear dynamically similar
(LDS) tele-operated master–slave manipulator. The proposed technique is robust for model
uncertainty and inaccuracy of force measurements and individually secures the aspects
for the coordination error and overall motion. Furthermore, ref. [14] proposed a passive
bilateral tele-operation synchronous control law for the multiple DOF nonlinear master–
slave robotic systems using the passive decomposition for 2n-DOF nonlinear tele-operated
dynamics without contravening passivity. Although [12–14] are pioneering works for
synchronous motion control for tele-operating manipulator systems using the concept of
passive decomposition, the effectiveness and robustness of designed controllers have been
tested with advanced and expensive motors (vs. cost-effective ones featured with a high
dead-zone property).

In line with [12–16], they applied the cross-coupling scheme structure to the syn-
chronous speed control of multiple-motor. Ref. [15] presents a control scheme of syn-
chronous motion based on the artificial potential field and cross-coupled structure and,
ref. [16] introduced an adjacent cross-coupling synchronous control to address the problem
of phase and speed synchronization control of multi-exciters in vibration. Even though
well-structured control systems using every synchronous combination between agents are
developed in [15,16], the effectiveness of the control systems was only validated through a
semi-physical model [15] or simulation [16].

Refs. [17–27] used the sliding mode control technique, fuzzy sliding mode control,
and adaptive control to achieve the synchronous motion control. Ref. [17] described the
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fuzzy adaptive sliding mode controller for uncertain nonlinear multi-motor systems to
address the chattering problem in the two-motor synchronization problem. Ref. [18]
designed a sliding mode (SM) feedback linearization control system for a multi-motors
web winding system. Refs. [17,18] presented only simulation results based on limited
control scenarios and the direct extension of a control strategy for n arbitrary agents is
also doubtful. Ref. [19] proposed the multi-motor improved relative coupling cooperative
control based on a sliding mode controller, and showed a more significant control effect on
the system error of each motor in comparison with the traditional relative coupling control
structure. However, the effectiveness of the control system was only validated through
the tracking of constant speed. Ref. [20] used the second Lyapunov method together
with a reference model to ensure asymptotic stability of a Continuous Strip Processing
Line with Multi-Motor Drive but requires relatively exact parameters of the system to
achieve accurate control. Ref. [21] proposes an adaptive output feedback controller for
the multi-motor driving system to guarantee all the tracking errors constrained within
the prescribed bounds. And, a modified barrier Lyapunov function (MBLF) is applied to
derive the adaptive law in the proposed control system. Here, the adaptive tuning law
could lead to unwanted results if the system runs with the control scenario containing no
(or a little) persistent excitation. Furthermore, ref. [22] presented a hybrid adaptive fuzzy
multi-agent consensus scheme for leader-follower multi-motor speed coordination. Here,
it is found that the performance of the control system highly depends on the fuzzy sets,
thus the sets may be tuned whenever the desired trajectory is changed. Ref. [23] proposed
an adaptive robust H-infinity control scheme, combining a robust tracking controller
with a distributed synchronization controller, to guarantee both the load tracking and
synchronization. Ref. [24] designed an adaptive control strategy based on the optimal
sliding surface for multi-motor driving systems along with a leaky echo state network-
based observer. Due to the complicated design of the control system and observer in [23,24],
the practical application of [23,24] may be challenging as a cost-effective micro-controller.
Recently, ref. [25] proposed synchronous motion control between the actuators in a 2-DOF
tele-operating system using passive decomposition, sliding mode control as well as an
RLS filter to deal with the dead-zone effect of the actuator. Ref. [25] requires extra effort to
estimate the dead-zone parameters via the RLS filter.

To maximize the control performance of a PMSM, a new IDA-PBC paired with a
high order sliding mode and non-linear observer technique is proposed in [26]. In [27],
a novel generalized non-linear robust predictive controller has been explored for aiming
the tracking reference speed of PMSM, ensuring robustness to external disturbances and
parameters. However, the validity of proposed schemes in [26,27] must be tested with an
actual implementation containing various control scenarios since [26] used relatively high
control gains and [27] is designed under the assumption that the disturbance is slow and
has a simple scenario. Ref. [28] proposed a novel control strategy using a composite sliding
mode observer (back-EMF error extraction) with a modified feed-forward phase-locked
loop (PLL) for ensuring high accuracy position and speed control of shaftless RDT (rim-
driven thruster) motors. The limitation of [28] relies on the fact that the rate of change of
the motor speed is small when designing the observer, and the validity of the proposed
method is investigated only by simulation.

Ref. [29] provides the holistic reviews of the multi-motor control strategies for auto-
motive applications along with the fault-tolerant multi-motor drive topologies.

In this paper, in the line with many control techniques [12–28], based on the ideas of
both the passive decomposition [12–14] and sliding mode control techniques [17–21,25]
without any adaptive compensation law [4,5,17,21–24], a novel passive decomposition-
based robust synchronous motion control of multi-motors is presented.

Specifically, based on a passive decomposition, the locked and shape system is
achieved from the original system. This implies that the controllers for each system
(locked + shaped system) reduce not only the tracking errors (locked motion) of motors for
a given desired trajectory but also the synchronous errors between motors (shape motion).
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And then a robust high-order sliding mode control along with additional compen-
sation components for model uncertainty and external disturbance is designed for each
decomposed system. Unlike [17–19], the high-order sliding surface (including an integral
of error) used here attenuates the influence of external disturbances more effectively than a
control using a standard first-order sliding surface. This point of view is briefly mentioned
in Appendix A.

In this study, besides the high-order sliding mode control, the control system addition-
ally contains two separate compensation terms for rejecting both model uncertainty and
external disturbance to achieve further robustness of the entire system.

These two compensation terms are designed by a simple but effective signum (or sat)
function. Therefore, the control system proposed here is designed in a relatively pragmatic
manner for better implementation in cost-effective ECUs by avoiding the inclusion of any
adaptive control strategies (i.e., the integral type of adaptive tuning law) consuming more
computational load and sometimes leading in the wrong direction when the tuning law
produces unwanted outcomes.

The final control law is obtained via a transformation matrix from locked and shape
coordinates to the original one. Furthermore, the technique presented here is systematically
formulated to use and adopt the arbitrarily n number of agents that must be synchronously
controlled and track the desired trajectory. The frame of this technique can be generally
extended to any multi-motor driving setting.

Compared to several works [15–18,22,23,26,27], to validate the effectiveness of the
proposed synchronous control strategy, the extensive experimental studies on 2/3/4-geared
cost-effective BLDC motors were also performed based on two representative control
scenarios (sine-wave and trapezoidal trajectories).

Moreover, the other representative control approaches, a master–slave control scheme
and an independent one, were introduced here, and the proposed control method was
compared and evaluated with these control methods.

According to the contributions above, this work will be a valuable asset for those who
wish to systematically design the synchronous motion control of a multi-motor system in
any field.

The rest of this paper is as follows. Sections 2 and 3 present the problem formulation
and passive decomposition technique, respectively. Furthermore, the synchronous control
scheme is described in Section 4, other control approaches are presented in Section 5,
and the experimental tests and results are included in Section 6. Finally, the conclusions
are remarked.

2. Problem Formulation

This section introduces the mathematical model for n motors to be synchronously
controlled. Consider E.O.M of n number of motors,

Jm.i
..
θi(t) + Bm.i

.
θi(t) = τi(t) + di(t) for i = 1, 2, 3, · · · , n (1a)


Jm.1

..
θ1(t) + Bm.1

.
θ1(t) = τ1(t) + d1(t)

Jm.2
..
θ2(t) + Bm.2

.
θ2(t) = τ2(t) + d2(t)

...
Jm.n

..
θn(t) + Bm.n

.
θn(t) = τn(t) + dn(t)

(1b)

where θi (rad) (for i = 1, 2, . . . n) is the rotational angular positions of motors. And Jm.i
(kg m2) and Bm.i (kg m2/s) (for i = 1, 2, . . . n) are the inertia and the viscous damping
coefficient of motors, respectively. Here, even though Jm.i can be fairly determined via
the design aids such as CAD/INVENTOR, the parametric uncertainty of Bm.i cannot be
negligible, so this study will be concerned with this aspect in designing the control system.
Thus, it is assumed that

∣∣Bm.i − B̂m.i
∣∣ ≤ k ∈ R, where B̂m.i is the nominal value of Bm.i.
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Also, τi(t) (Nm) and di(t) (Nm) (for i = 1, 2, . . . n) represent the control torques and the
unstructured external disturbances, respectively. It is also assumed that di(t) is bounded
such that |di(t)| ≤ do ∈ R.

The set of equations in (1) can be formulated as,

M
..
X(t) + C

.
X(t) = T(t) + D(t) (2)

where X =
[
θ1 θ2 · · · θn

]T ∈ Rn×1 is the rotational angular position vector of
the motors. Also, M > 0 = diag

[
Jm.1 Jm.2 · · · Jm.n

]
∈ Rn×n and

C > 0 = diag
[
Bm.1 Bm.2 · · · Bm.n

]
∈ Rn×n are the inertia matrix and the viscous

damping matrix, respectively. In addition, T(t) =
[
τ1 τ2 · · · τn

]
∈ Rn×1 and

D(t) =
[
d1 d2 · · · dn

]
∈ Rn×1 are the vectors for the control torques of motors

and the external disturbances, respectively. It is also clear that ‖D(t)‖ ≤ Do ∈ R due to
|di(t)| ≤ do ∈ R.

Remark 1. This study proposed a synchronous control system to achieve perfect motion synchroniza-
tion between the motors and tracking the desired trajectory (i.e., θ1 = θ2 = · · · = θn = θd,
where θd is a given desired trajectory). If each motor has a different gear ratio, the synchronous
solution can be ρ1θ1 = ρ2θ2 · · · = ρnθn = ρdθd, (where ρi ∈ R for i = 1,2, . . . n ) are the
constant scaling factors. However, it is assumed that each motor has an identical gear ratio for
this study.

3. Passive Decomposition

In this section, we decomposed the set of dynamics in (2) into two systems according to
two aspects, gross motion (i.e., locked system) and coordination (i.e, shape system). Ref. [12]
shows that, for LDS, the two decomposed systems can be individually controlled, and as
long as the individual controller guarantees that each closed-loop system is energetically
passive, the combined system is also energetically passive.

There is only one gross motion (i.e., a locked coordinate) regardless of how many
agents are synchronously controlled. However, for n agents, the number of possible
coordinates in the shape system can have multiple choices. In this study, we consider all
combinations between the two agents (i.e., fully cross-coupled network structure).

Therefore, Figure 1 shows n agents to be controlled, describing one case for a locked
system and all possible combinations of pairs between agents for the shape system.

Specifically, the entire coordinates, a locked one and the shaped ones, are given
by [12,13,25]

q(t) =
[
qL(t) qS(t)

]T (3)

qL(t) = 1/n∑n
i=1 θi(t) (4)

qS(t) =
[
θ1/2 θ1/3 · · · θ1/n θ2/3 θ2/4 · · · θ2/n θ3/4 θ3/5 · · · θ3/n · · · · · · θ(n−2)/(n−1) θ(n−2)/n θ(n−1)/n

]T
(5)

where qL(t) ∈ R is a locked coordinate and qs(t) ∈ R(p−1)×1 is the shaped coordinate vector.
And, the notation θm/n in (5) is the difference between angular rotational positions of

motors, θm − θn, the m-th and n-th ones in every combination.
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Based on (4) and (5), proposing the transformation matrix from the physical coordinate
X(t) to the locked-shape coordinates,

H =



01×n
An−1×1 −In−1×n−1

On−2×1 An−2×1 −In−2×n−2
On−3×2 An−3×1 −In−3×n−3

...
O2×n−3 A2×1 −I2×2

O1×n−2 1 −1


∈ Rp×n (6)

where the sub-notation p in (6) is defined as p =
[

n!
(n−2)!·2! + 1

]
.

And, 01×n = 1/n
[
1 1 · · · 1

]
and Ai×1 =

[
1 1 · · · 1

]T for i = 2,· · · n− 1.
Both O and I are zero matrices and identity matrices with the proper dimensions specified
in (6).

Using (6), the relation between q(t) and the physical coordinates, X(t), is given by

q(t) =
[
qL(t) qS(t)

]T
= HX(t) ∈ Rp×1 (7)

Furthermore, (7) becomes

X(t) = Γq(t) ∈ Rn×1 (8)
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where Γ =
(
HTH

)−1H
T
∈ Rn×p. And it should be noted that the pseudo inverse matrix(

HTH
)−1 ∈ Rn×n (i.e, rank(HTH) = n) is used due to the fact that H may not be a square

matrix (i.e, p 6= n). If H is a square matrix, the inverse matrix will be used.
Using (8), the original dynamics can be transformed into the locked and shape systems.
On the other hand, another form of (2) is given by

..
X(t) = −M−1C

.
X(t) + M−1T(t) + M−1D(t) (9)

Substituting (8) into (9) and then multiplying ΓT to the both sides of the result yield

ΓTΓ
..
q(t) = −

=
C

.
q(t) +

=
T(t) +

=
D(t) (10)

where
=
C = ΓTM−1CΓ ∈ Rp×p,

=
T(t) = ΓTM−1T(t) ∈ Rp×1, and

=
D(t) = ΓTM−1D(t) ∈ Rp×1.

And, the partitions of matrices and vectors according to qL(t) and qS(t) in (10)
is shown,

ΓTΓ =

[
n O1×(p−1)

O(p−1)×1 Y(p−1)×(p−1)

]
∈ Rp×pand

=
C =

=
CL

=
CLS

=
CSL

=
CS

 ∈ Rp×p (11)

=
D =

[
=
DL(t)

=
DS(t)

]T
and

=
T(t) =

[
=
TL(t)

=
TS(t)

]T
(12)

For clear understanding, the dimension of each component in (11) and (12) is spec-

ified:
=
CL ∈ R,

=
CLS ∈ R1×(p−1),

=
CSL ∈ R(p−1)×1,

=
CS ∈ R(p−1)×(p−1),

=
DL(t) ∈ R,

=
DS(t) ∈

R(p−1)×1,
=
TL(t) ∈ R, and

=
TS(t) ∈ R(p−1)×1.

Specifically, based on (11) and (12), (10) becomes

n
..
qL(t) = −

=
CL

.
qL(t)−

=
CLS

.
qs(t) +

=
TL(t) +

=
DL(t) (13)

Y
..
qS(t) = −

=
CS

.
qS(t)−

=
CSL

.
qL(t) +

=
TS(t) +

=
DS(t) (14)

(13) and (14) represent the decomposed system, a locked system, and a shape system,
respectively. In the next Section, each control system for the decomposed system in (13)
and (14) will be designed using sliding mode control and robust compensation term for
rejecting both parametric uncertainty and external disturbance.

4. Synchronous Control System

This section proposes the synchronous control system based on the locked-shape
system in (13) and (14). In the locked system, a gross motion should track the desired
trajectory while the difference of motion between two agents in every combination should
be minimized in the shape system. In addition, the system should be robust for the
parametric uncertainty and the unstructured but bounded external disturbance. Mean-
while, the stability of system with the proposed controller should also be guaranteed
(i.e, energetically passive).

4.1. Controller Design of Locked System

This sub-section presents the controller design of the locked system and shows the
stability analysis of the proposed controller via Lyapunov approach. Here, the high-order
sliding mode control and robust compensation terms are used to reject the parametric
uncertainty and external disturbances.
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From (13), we have

..
qL(t) = −

1
n

[
=
CL

.
qL(t) +

=
CLS

.
qs(t)

]
+

1
n

[
=
TL(t) +

=
DL(t)

]
(15)

Based on (15), proposing the control law such that

=
TL(t) = n

..
qL.d(t) +

∼
=
CL

.
qL(t) +

∼
=
CLS

.
qs(t)− n[3λL

.
εL (t) + 3λL

2εL(t)+

λL
3∫ εL(t)dt]+

=
UL.R(t) +

=
UL(t)

(16)

=
UL.R(t) =

{
− kL| .qL(t)|SL(t)

|SL(t)|
− kLS‖ .

qs(t)‖SL(t)
|SL(t)|

0

i f |SL(t)| ≥ ΦL
i f |SL(t)| < ΦL

(17)

=
UL(t) =

{
−γLSL(t)/|SL(t)|
−γLSL(t)/ΦL

i f |SL(t)| ≥ ΦL
i f |SL(t)| < ΦL

(18)

SL(t) =
.
εL(t) + 2λLεL(t) + λL

2∫ εL(t)dt
(19)

where εL(t) = qL(t) − qL.d(t) ∈ R is the error between the locked coordinate and the
desired trajectory, and SL(t) ∈ R in (19) is the sliding surface, which is a function of the

locked error coordinate εL(t). Also,
∼
=
CL and

∼
=
CLS are the nominal values of

=
CL and

=
CLS

(which are a function of Bm.i (parametric uncertainty)), and, due to
∣∣Bm.i − B̂m.i

∣∣ ≤ k, it is

assumed that |
∼
=
CL −

=
CL| ≤ kL and ‖

∼
=
CLS −

=
CLS‖ ≤ kLS, where the constant gains kL ∈ R

and kLS ∈ R are the known positive upper values for each.
And, λL > 0 ∈ R and γL > 0 ∈ R are positive constant gains, and ΦL > 0 ∈ R is the

thickness of boundary layer.
Here, (17) is the compensation term for the model uncertainty and (18) counteracts for

the external disturbance.

Theorem 1. As long as the parametric uncertainty and external disturbance are bounded such

as |
=
DL(t)| ≤ ∆L ∈ R, |∆

=
CL| ≤ kL, and ‖∆

=
CLS‖ ≤ kLS, the locked system (15) is ultimately

bounded by the control law in (16) through (18). where ∆
=
CL =

∼
=
CL −

=
CL and ∆

=
CLS =

∼
=
CLS −

=
CLS.

Proof. Substituting (16) into (15), the closed-loop locked system is given by

..
εL(t) = 1

n

[
∆
=
CL

.
qL(t) + ∆

=
CLS

.
qs(t) +

=
UL.R(t)

]
−
[
3λL

.
εL (t) + 3λL

2εL(t) + λL
3∫ εL(t)dt

]
+ 1

n

[
=
DL(t) +

=
UL(t)

]
(20)

Furthermore, using the definition of SL(t) in (17), (18) can be rewritten as

.
SL =

1
n

[
∆
=
CL

.
qL(t) + ∆

=
CLS

.
qs(t) +

=
UL.R(t)

]
− λLSL+

1
n

[
=
DL(t) +

=
UL(t)

]
(21)

Next, consider the following Lyapunov candidate function,

VL(t) =
1
2

SL
2 > 0 ∈ R (22)
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The derivative of VL(t) with respect to a time is given by

.
VL(t) = SL

.
SL (23)

Substituting (19) into (21) yields

.
VL(t) =

[
SL
n
[∆

=
CL

.
qL(t) + ∆

=
CLS

.
qs(t) +

=
UL.R(t)]− λLSL

2 +
SL
n
[
=
DL(t) +

=
UL(t)]

]
(24)

Furthermore, if |SL| ≥ ΦL, applying (17) and (18) into (24) yields

.
VL(t) ≤ SL

n

[[
∆
=
CL

.
qL(t) + ∆

=
CLS

.
qs(t)

]
−
[

kL| .qL(t)|SL(t)
|SL(t)|

+
kLS‖ .

qs(t)‖SL(t)
|SL(t)|

]
+

[
=
DL(t)− γL

SL
|SL |

]]
≤ 1

n

[
|SL|

∣∣∣∣∆=
CL

∣∣∣∣∣∣ .
qL(t)

∣∣− kL| .qL(t)||SL(t)|2

|SL(t)|
+ |SL|

∥∥∥∥∆
=
CLS

∥∥∥∥∥∥ .
qs(t)

∥∥− kLS‖ .
qs(t)‖|SL(t)|2

|SL(t)|

]
+

[
|SL|

∣∣∣∣ =
DL(t)

∣∣∣∣− γL
|SL |2
|SL |

]
≤ 1

n

[
|SL|

[∣∣∣∣ =
DL(t)

∣∣∣∣− γL

]]
≤ |SL |

n [∆L − γL] ≤ 0

(25)

Finally, we can see that the locked error system is ultimately bounded by (16). The proof
is completed. �

Proposition 1. The time from the initial state until the system arrives SL(tL
∗) = ΦL is also

bounded by the control system (16) such that

tL
∗ − t0 ≤

n(SL(t0)
2 − SL(tL

∗)2
)

2ΦL[γL − ∆L]

where t0 and tL
∗ are an initial time and a particular time when SL(tL

∗) = ΦL.

Proof. Based on (25), if |SL| ≥ ΦL, it is true that

.
VL(t) ≤

|SL|
n

[∆L − γL] (26)

Integrating (26) over a time from t0 to tL
∗ yields

VL(tL
∗)−VL(t0) ≤

∫ tL
∗

t0

ΦL

n
[∆L − γL]dt (27)

Furthermore,

VL(tL
∗)−VL(t0) ≤

ΦL

n
[∆L − γL](tL

∗ − t0) (28)

Due to ∆L − γL < 0, consequently,

tL
∗ − t0 ≤

n[V L(t0)−VL(tL
∗)]

ΦL[γL − ∆L]
=

n(SL(t0)
2 − SL(tL

∗)2
)

2ΦL[γL − ∆L]
(29)

The duration tL
∗ − t0 is bounded as shown in (29). The proof is completed. �

4.2. Controller Design of Shape System

Similarly, this sub-section presents the controller design of the shape system and
shows the stability of the proposed controller via the Lyapunov approach.
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Revisiting (14),

Y
..
qS(t) = −

[
=
CS

.
qS(t) +

=
CSL

.
qL(t)

]
+

=
TS(t) +

=
DS(t) (30)

Multiplying n to both sides of (30),

nY
..
qS(t) =

[
−n[

=
CS

.
qS(t) +

=
CSL

.
qL(t)] + n[

=
TS(t) +

=
DS(t)]

]
(31)

Due to the fact that nY
..
qS(t) =

..
qS(t), (31) becomes

..
qS(t) = n

[
−

=
CS

.
qS(t)−

=
CSL

.
qL(t) +

=
TS(t) +

=
DS(t)

]
(32)

Proposing the control law for (32),

=
TS(t) =

∼
=
CS

.
qS(t) +

∼
=
CSL

.
qL(t)− 1

n

[
3λS

.
qS (t) + 3λS

2qS(t) + λS
3∫ qS(t)dt

]
+

=
US.R(t) +

=
US(t)

(33)

=
US.R(t) =

{
− kS‖ .

qS(t)‖SS(t)
‖SS(t)‖

− kSL| .qL(t)|SS(t)
‖SS(t)‖

0

i f ‖SS(t)‖ ≥ ΦS
i f ‖SS(t)‖ < ΦS

(34)

=
US(t) =

{
−γSSs(t)/‖Ss(t)‖
−γSSs(t)/ΦS

i f ‖SS(t)‖ ≥ ΦS
i f ‖SS(t)‖ < ΦS

(35)

SS(t) =
.

qS (t) + 2λSqS(t) + λS
2
∫

qS(t)dt ∈ R(p−1)×1 (36)

where λS = daig
[
λS.1 λS.2 · · · λS.(p−1)

]
∈ R(p−1)×(p−1) is the control gain matrix

and SS(t) ∈ R(p−1)×1 is the sliding surface, which is a function of the shape coordinate

qS(t). Similar to the previous case,
∼
=
CS and

∼
=
CSL are the nominal values of

=
CS and

=
CSL and it

is assumed that |
∼
=
CS −

=
CS| ≤ kS and ‖

∼
=
CSL −

=
CSL‖ ≤ kSL with kS ∈ R > 0 and kSL ∈ R > 0.

Also, ΦS ∈ R > 0 is the thickness of the boundary layer. Similar to (16), for the shape system,
the compensating term in (34) rejects the model uncertainty and (35) is used to dismantle
the external disturbance.

Theorem 2. As long as the parametric uncertainty and external disturbance is bounded such as

‖∆
=
CS‖ ≤ kS, ‖∆

=
CSL‖ ≤ kSL and ‖

=
DS(t)‖ ≤ ∆S ∈ R with γS > ∆S, the shape system (32) is

ultimately bounded by the controller in (33), where ∆
=
CS =

∼
=
CS −

=
CS and ∆

=
CSL =

∼
=
CSL −

=
CSL.

Proof. Substituting (33) into (32), the shape closed-loop system is given by

..
qS(t) = n

[
∆
=
CS

.
qS(t) + ∆

=
CSL

.
qL(t) +

=
US.R(t)

]
−
[
3λS

.
qS (t) + 3λS

2qS(t) + λS
3∫ qS(t)dt

]
+n
[
=
DS(t) +

=
US(t)

] (37)

Furthermore, (37) becomes

.
SS = n

[
∆
=
CS

.
qS(t) + ∆

=
CSL

.
qL(t) +

=
US.R(t)

]
− λSSS + n

[
=
DS(t) +

=
US(t)

]
(38)
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Similarly, consider the following Lyapunov candidate function,

Vs(t) =
1
2

SS
TSS > 0 ∈ R (39)

The derivative of VS(t) with respect to a time is given by

.
VS(t) = SS

T
.
SS (40)

Substituting (38) into (40) yields

.
VS(t) = SS

T
[

n[∆
=
CS

.
qS(t) + ∆

=
CSL

.
qL(t) +

=
US.R(t)]− λLSS + n[

=
DS(t) +

=
US(t)]

]
=

[
nSS

T [∆
=
CS

.
qS(t) + ∆

=
CSL∆

.
qL(t) +

=
US.R(t)]− λLSS

TSS + nSS
T [

=
DS(t) +

=
US(t)]

] (41)

Furthermore, if ‖SS‖ ≥ ΦS, applying (34) and (35) into (41) yields

.
VS(t) ≤ nSS

T
[

∆
=
CS

.
qS(t) + ∆

=
CSL

.
qL(t) +

=
US.R(t)

]
+ nSS

T
[
=
DS(t) +

=
US(t)

]
≤ n‖SS‖

∥∥∥∥∆
=
CS

∥∥∥∥∥∥ .
qS(t)

∥∥− n
kS‖ .

qS(t)‖SS
TSS

‖SS(t)‖
+ n‖SS‖

∥∥∥∥∆
=
CSL

∥∥∥∥∣∣ .
qL(t)

∣∣− n
kSL| .qL(t)|SS

TSS
‖SS(t)‖

+n
[
‖SS‖

∥∥∥∥=DS(t)
∥∥∥∥− γSSS

TSs
‖Ss‖

]
≤ n‖SS‖

∥∥∥∥∆
=
CS

∥∥∥∥∥∥ .
qS(t)

∥∥− nkS
∥∥ .

qS(t)
∥∥‖SS(t)‖+ n‖SS‖

∥∥∥∥∆
=
CSL

∥∥∥∥∣∣ .
qL(t)

∣∣
−nkSL

∣∣ .
qL(t)

∣∣‖SS(t)‖+ n
[
‖SS‖

∥∥∥∥=DS(t)
∥∥∥∥− γSSS

TSs
‖Ss‖

]
≤ n

[
‖SS‖

∥∥∥∥=DS(t)
∥∥∥∥− γS‖Ss‖2

‖Ss‖

]
≤ n‖SS‖[∆S − γs] < 0

(42)

Finally, we can see that the shape system is ultimately bounded by (33). The proof
is completed. �

Proposition 2. The time from the initial state until the system reaches SS(tS
∗) = ΦS is also

bounded by the control system (33) as

tS
∗ − t0 ≤

(SS(t0)
TSS(t0)− SS(tS

∗)TSS(tS
∗))

2nΦS[γs − ∆s]

where t0 and tS
∗ are the initial time and a particular time for SS(tS

∗) = ΦS.

Proof. Based on (42), if ‖SS‖ > ΦS, it is clear that

.
VS(t) ≤ n‖SS‖[∆S − γs] (43)

Integrating (43) over a time from t0 to t∗ yields

VS(tS
∗)−VS(t0) ≤

∫ tS
∗

t0

nΦS[∆S − γs]dt (44)

Consequently,

tS
∗ − t0 ≤

VS(t0)−VS(tS
∗)

nΦL[γs − ∆s]
=

(SS(t0)
TSS(t0)− SS(tS

∗)TSS(tS
∗))

2nΦS[γs − ∆s]
(45)

The duration tS
∗ − t0 is bounded as shown in (45). The proof is complete. �



Sensors 2023, 23, 7603 12 of 31

Remark 2. Both control systems according to locked and shape coordinates are designed as shown
in (16) and (33). It should be stated that the actual control torque of motors in physical coordinate
can be obtained by the following transformation,

T(t) = M
(
ΓΓT)−1

Γ
=
T(t)

[τi]
T = M

(
ΓΓT)−1

Γ
[
=
TL(t)

=
TS(t)

T]T
for i = 1, 2, · · · n

(46)

5. Other Synchronous Control Approaches

To perform the comparison study, this section presents the other two well-known
synchronous controls. The first approach is a master–slave control system while the second
one is an independent control system. The configurations of both control systems are briefly
described in Figure 2.
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Figure 2. Synchronous control approaches. (a) Master–slave control approach and (b) independent
control approach.

For the master–slave control in Figure 2a, the desired command is delivered to the
master, one of agents, and the slaves (the rest of agents) receive the master’s command. On
the other hand, an independent control forces all agents to individually receive the desired
command as shown in Figure 2b. The control performance of these two will be compared
with the performance of the proposed control in Section 4.

5.1. Master–Slave Control Approach

The control laws for a master and slave scheme to ensure robust synchronous stability
of agents are contained in this sub-section.

Proposing the control law for a master,

τm = Jm,m
..
θd + B̂m,m

.
θm − Jm,m

(
3λm

.
εm + 3λ2

mεm + λ3
m
∫

εmdt
)
+ um..R + um

um.R =

{
−km

∣∣∣ .
θm

∣∣∣sign(Sm) i f |Sm| > Nm

0 i f |Sm| ≤ Nm
um =

{
−Hmsign(Sm) i f |Sm| > Nm

−Hm
Sm
Nm

i f |Sm| ≤ Nm

(47)

where the error εm = θm − θd and a sliding surface Sm =
.
εm + 2λmεm + λ2

m
∫

εmdt. And,
B̂m,m is the nominal value of Bm.1 and satisfies

∣∣B̂m,m − Bm.1
∣∣ < km.

The control laws for the slaves are given by,

τj = Jm,j
..
θm + B̂m,j

.
θ j − Jm,j

(
3λj

.
εj + 3λ2

j ε j + λ3
j
∫

ε j

)
+ uj.R + uj for j = 1, 2, · · · n− 1

uj.R =

{
−k.j

∣∣∣ .
θ j

∣∣∣sign
(
Sj
)

i f
∣∣Sj
∣∣ > Nj

0 i f
∣∣Sj
∣∣ ≤ Nj

uj =

{
−Hjsign

(
Sj
)

i f
∣∣Sj
∣∣ > Nj

−Hj
Sj
Nj

i f
∣∣Sj
∣∣ ≤ Nj

(48)

where ε j = θj − θm for j = 1, 2, · · · n − 1 is the error and Sj =
.
εj + 2λjε j + λ2

j
∫

ε jdt is
the sliding surface. By using both (47) and (48), θj → θm → θd can be achieved and the
corresponding stability proof is omitted due to simplicity.
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5.2. Independent Control Approach

This sub-section details an independent control law for the individual agents.
The control law for each motor under an independent control approach is followed by

τi = Jm,i
..
θd + B̂m,i

.
θi − Jm,i

(
3λi

.
εi + 3λ2

i εi + λ3
i
∫

εi
)
+ ui.R + ui for i = 1, 2, 3, · · · n

ui.R =

{
−ki

∣∣∣ .
θi

∣∣∣sign(Si) i f |Si| > Ni

0 i f |Si| ≤ Ni
ui =

{
−Hisign(Si) i f |Si| > Ni

−Hi
Si
Ni

i f |Si| ≤ Ni

(49)

where εi = θi − θd for i = 1, 2, 3, · · · n is the error and Si =
.
εi + 2λiεi + λ2

i
∫

εidt is the
sliding surface.

The above control can achieve θi → θd and the corresponding stability proof is omitted
for simplicity.

6. Experimental Study and Results

This section validates the effectiveness of the proposed synchronous control strategy
via experimental studies on two BLDC motors, three BLDC motors, and four BLDC motors.
The BLDC motors used here are the cost-effective ones featured with a high dead-zone
property, which is difficult to precisely control. The reason why we selected such motors
is that we desired to demonstrate that the control performance of our proposed control
is effective and robust. In addition, the control performance has been compared with the
other approaches presented in Section 5.

Before proceeding, the transformation matrices from the physical coordinate to the
locked-shape one for the two agents, the three agents, and the four agents are introduced
based on (6) for a clear understanding of proposed control system.

For the two motors,

H =

[
1/2 1/2

1 −1

]
∈ R2×2 (50)

For the three motors,

H =


1/3 1/3 1/3

1 −1 0
1
0

0
1

−1
−1

 ∈ R4×3 (51)

For the four motors,

H =



1/4 1/4 1/4 1/4
1 −1 0 0

1
1
0
0
0

0
0
1
1
0

−1 0
0
−1
0
1

−1
0
−1
−1


∈ R7×4 (52)

In addition, the main control gains (λL and λS) of (16) and (33) were selected as 34
and 32, respectively, and are used for every experiment. Here, the selection of these gains
was determined by the trial and error method, but it can be explored theoretically in a
future study.

6.1. Experimental Results of Two Agents

Figure 3 includes the experimental setup for the synchronous control of two motors.
Two 12 V geared BLDC motors (gear ratio 16:1) and two BLDC motor drivers are displayed
and connected to a DAQ (QPID) that communicates with PC/MATLAB, where the control
strategy is implemented with a sampling time of 0.005 s. Also, each motor is equipped
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with a rotational encoder to provide the angular position of the motor. To increase the
external disturbance, two motors are interconnected with the bar jointing of two rotors of
motors (see Figure 3). The synchronous control of this dual-motor driving setting shown in
Figure 3 can be applied to a dual-motor driving steering system in a vehicle.
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Figure 3. Experimental setup for two BLDC motors.

For the scenario of the sine-wave trajectory (denoted as θd) with the maximum ampli-
tude of 90 deg. and a frequency of 1 Hz, Figure 4 described the tracking performance and
synchronous error of each motor, θ1 and θ2, for a given θd. Figure 4a represent θ1 and θ2
along with θd on the time-domain and Figure 4b,c represent the tracking errors |θi − θd| for
i = 1, 2. Figure 4d depicts the synchronous error |θ1 − θ2|. Here, the dotted lines shown in
Figure 4b–d indicate the average tracking errors. We can see that the maximum and average
tracking errors via the proposed controller are approximately 0.8 degree and 0.1 degree,
and the corresponding synchronous error is bounded below 0.6 degree. Also, it is found
from the results that the average tracking errors and the maximum errors generated by the
proposed controller (denoted as “passive”) are the smallest among the three controllers.
Table 1 contains the numerical values for the average tracking and the maximum errors
via three controllers for the sine-wave trajectory. Specifically, it is found that the maximum
and average errors of the proposed controller are 25%~45% smaller than those of other
control schemes.

On the other hand, Figure 5 presents the tracking and synchronous performance of
motors, for the trapezoidal trajectory with the maximum amplitude of 90 deg. and slope of
90 deg/s.

Similar to Figure 4, Figure 5a represents θ1 and θ2 with a given θd on the time-domain.
Figure 5b,c indicate the tracking errors |θi − θd| for i = 1, 2 while Figure 5d describes
the synchronous error |θ1 − θ2|. It can be seen from the results that the tracking and
synchronous errors of the proposed control for this scenario are bounded below 1.3 degree.

Table 1. The average tracking and the maximum errors via three controllers under sine-wave
trajectory (2 motors).

Number of
Motors Error Value Passive

Decomposition
Master–
Slave Independent

Max 0.784 1.02 1.01|θd − θ1| Average 0.108 0.125 0.140
Max 0.579 1.64 1.03|θd − θ2| Average 0.100 0.238 0.140
Max 0.530 0.683 0.728

2

|θ1 − θ2| Average 0.0715 0.164 0.114
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Figure 4. Results for two BLDC motors under sine-wave trajectory. (a) θd, θ1, and θ2 on the time-
domain, (b) |θd − θ1|, (c) |θd − θ2|, and (d) |θ1 − θ2| (the dotted lines indicate the average values).

Unlike the results in Figure 4, the independent control method is superior to other
methods, but slightly better than the proposed method. It is clear that the performance
difference between “passive” and “independent” are almost equivalent for each other
except for the synchronous error |θ1 − θ2| shown in Figure 5d.

And, for this case, the outcome via the proposed controller is definitively much better
than the ones via the master–slave control approach. Table 2 lists the numerical values
for the average tracking and the maximum errors via three controllers for trapezoidal
trajectory tracking.
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Figure 5. Results for two BLDC motors under trapezoidal trajectory (a) θd, θ1, and θ2 on the time-
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Table 2. Average tracking and the maximum errors via three controllers under trapezoidal trajectory
(3 motors).

Number of
Motors Error Value Passive

Decomposition
Master–
Slave Independent

Max 1.23 1.96 1.62|θd − θ1| Average 0.098 0.188 0.0933
Max 1.15 3.83 1.58|θd − θ2| Average 0.1 0.393 0.0996
Max 1.35 2.17 0.478

2

|θ1 − θ2| Average 0.131 0.260 0.0255
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According to Table 2, the maximum synchronous error |θ1 − θ2| of the proposed
control is 45% greater than that of the independent control, but the rest of the results are
very similar for each other within about 10% difference.

6.2. Experimental Results of Three Agents

Figure 6 presents the experimental setup for the synchronous control of three motors.
Similar to the case of two motors, to increase the external disturbance, two motors are
connected with the bar jointing of two rotors of motors, but the last motor is free from
the connection (see Figure 6). The control of the triple-motor driving setting shown in
Figure 4 can be applied to a synchronous pitch angle control of three blades in a wind-
turbine system.
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Figure 6. Experimental setup for three BLDC motors.

For the scenario of the sine-wave trajectory, Figures 7 and 8 describe the tracking and
synchronous performance of motors, θ1, θ2, and θ3.

Figure 7a represents θ1, θ2, and θ3 along with θd on the time-domain and Figure 7b–d
display the tracking errors |θi − θd| for i = 1, 2, 3. Here, the dotted lines shown in
Figure 7b–d indicate the average tracking errors. On the other hand, Figure 8 depicts the
synchronous errors |θ1 − θ2|, |θ1 − θ3| and |θ2 − θ3|. From the results in Figures 7 and 8,
we can see that the average tracking errors and the maximum errors generated by the
proposed controller are the smallest among the three controllers except in two cases,
|θ1 − θd| and |θ2 − θ3| (shown in Figure 8c). However, those two cases exhibit small
gaps relative to the results obtained by other control approaches. It is also found that
the tracking and synchronous errors of the proposed control for this case are bounded
below 1 degree. Table 3 includes the numerical values for the average tracking and
the maximum errors via three controllers under the sine-wave trajectory. As seen from
Table 3, the errors generated by the proposed control system are approximately 10~35%
less than the errors via others.

Furthermore, Figure 9 presents the tracking and synchronous errors of motors for the
trapezoidal trajectory.
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Figure 7. Results for three BLDC motors under sine-wave trajectory. (a) θd, θ1, θ2 and θ3 on the
time-domain, (b) Error |θd − θ1|, (c) Error |θd − θ2|, and (d) Error |θd − θ3| (the dotted lines indicate
the average values).



Sensors 2023, 23, 7603 19 of 31
Sensors 2023, 23, x FOR PEER REVIEW 19 of 31 
 

 

 

Figure 8. Results for three BLDC motors under sine-wave trajectory. (a) Error |𝜃1 − 𝜃2|, (b) Error 
|𝜃1 − 𝜃3|, and (c) Error |𝜃2 − 𝜃3| (the dotted lines indicate the average values). 

Time(sec)

(deg)

Time(sec)

(deg)

Time(sec)

(deg)

(a)

(b)

(c)

Passive

Master-slave

Independent

Passive

Master-slave

Independent

Passive

Master-slave

Independent

Figure 8. Results for three BLDC motors under sine-wave trajectory. (a) Error |θ1 − θ2|, (b) Error
|θ1 − θ3|, and (c) Error |θ2 − θ3| (the dotted lines indicate the average values).

Table 3. Average tracking and the maximum errors via three controllers under sine-wave trajectory
(3 motors).

Number of
Motors Error Value Passive

Decomposition
Master–
Slave Independent

Max 0.919 1.14 0.823|θd − θ1| Average 0.133 0.131 0.148
Max 0.968 2.64 1.09|θd − θ2| Average 0.130 0.287 0.163
Max 0.698 2.56 1.14|θd − θ3| Average 0.147 0.265 0.167
Max 0.935 1.73 1.20|θ1 − θ2| Average 0.191 0.201 0.217
Max 0.684 1.60 0.984|θ1 − θ3| Average 0.123 0.211 0.194
Max 0.740 0.846 0.957

3

|θ2 − θ3| Average 0.199 0.151 0.175



Sensors 2023, 23, 7603 20 of 31
Sensors 2023, 23, x FOR PEER REVIEW 20 of 31 
 

 

 

Figure 9. Results for three BLDC motors under trapezoidal trajectory. (a) 𝜃𝑑, 𝜃1,  𝜃2 and 𝜃3 on 

the time-domain , (b) Error |𝜃𝑑 − 𝜃1|, (c) Error |𝜃𝑑 − 𝜃2|, and (d) Error |𝜃𝑑 − 𝜃3| (the dotted lines 

indicate the average values). 

Time(sec)

(deg)

Time(sec)

(deg)

Time(sec)

(deg)

Time(sec)

(deg)

(a)

(b)

(c)

(d)

Passive

Master-slave

Independent

Passive

Master-slave

Independent

Passive

Master-slave

Independent

Figure 9. Results for three BLDC motors under trapezoidal trajectory. (a) θd, θ1, θ2 and θ3 on the
time-domain, (b) Error |θd − θ1|, (c) Error |θd − θ2|, and (d) Error |θd − θ3| (the dotted lines indicate
the average values).

Figure 9a indicates θ1, θ2, and θ3 for a given θd on the time-domain. Figure 9b–d show
the tracking errors |θi − θd| for i = 1, 2 while Figure 10 describes the synchronous errors,
|θ1 − θ2|, |θ2 − θ3|, and |θ1 − θ3|. Here, you can see that the tracking and synchronous
errors via the proposed control are bounded below 1.5 degree.
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Figure 10. Results for three BLDC motors under trapezoidal trajectory. (a) Error |θ1 − θ2|, (b) Error
|θ1 − θ3|, and (c) Error |θ2 − θ3| (the dotted lines indicate the average values).

Similar to the results in the previous cases (two motors), the independent con-
trol method is slightly superior to other methods, but is almost equivalent to our pro-
posed method.

And, again, it is apparent that the proposed controller is definitively dominant to the
master–slave control approach. Table 4 lists the numerical values of the average tracking
and the maximum errors via three controllers under trapezoidal trajectory, and we can find
a good match between “passive” and “independent” controls within 10%.

Table 4. The average tracking and the maximum errors via three controllers under trapezoidal
trajectory (3 motors).

Number of
Motors Error Value Passive

Decomposition
Master–
Slave Independent

Max 1.32 1.76 1.53|θd − θ1| Average 0.098 0.156 0.0945
Max 1.65 3.54 1.52|θd − θ2| Average 0.143 0.328 0.0950
Max 1.48 3.59 1.56|θd − θ3| Average 0.113 0.288 0.115
Max 0.98 1.92 0.93|θ1 − θ2| Average 0.0903 0.198 0.0371
Max 0.596 1.93 0.874|θ1 − θ3| Average 0.0549 0.177 0.0679
Max 1.32 1.63 0.899

3

|θ2 − θ3| Average 0.083 0.120 0.0769
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6.3. Experimental Results of Four Agents

Figure 11 shows the experimental setup to validate the synchronous control perfor-
mance of four motors. In this case, the 1st and 2nd motors are coupled with a rod to
increase asynchronous external perturbations and the 3rd and 4th motors were connected
in the same way (see Figure 11). The control of the quadruplet-motor driving setting shown
in Figure 5 can be the fundamental study for a synchronous control of four independent
steering controls in a vehicle.
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Figure 11. Experimental setup for four BLDC motors.

For a given sine-wave trajectory scenario, Figures 12 and 13 describe the tracking and
synchronous performance of motors.

Figure 12a represents θ1, θ2, θ3, and θ4 along with θd on the time-domain and
Figure 12b–e exhibit the tracking errors |θi − θd| for i = 1, 2, 3, 4. On the other hand,
Figure 13 depicts the synchronous errors |θ1 − θ2|, |θ1 − θ3|, |θ1 − θ4|, |θ2 − θ3|, and |θ2 − θ4|
as well as |θ3 − θ4|. Here, similar to the previous cases, you can see that the tracking and
synchronous errors generated by the proposed control (“passive”) are bounded below
1 degree. Again, it can be seen from the results of Figures 12 and 13 that the average
tracking errors and the maximum errors via the proposed controller are the smallest among
three controllers except in two cases, |θ2 − θ4| and |θ3 − θ4|.

Table 5 lists the numerical values for the average tracking and the maximum errors
of three controllers under the sine-wave trajectory scenario. Specifically, it is found from
Table 5 that the maximum and average errors of the proposed controller (passive) are
15%~40% smaller than the errors via others.

Furthermore, Figure 14 presented the tracking and synchronous performance of motor
for the trapezoidal trajectory.

Figure 14a indicates θ1, θ2, θ3, and θ4 for a given θd on the time-domain, and Figure 14b–e
describe the tracking errors |θi − θd| for i = 1, 2, 3, 4, while Figure 15 describes the corre-
sponding synchronous errors.

As shown in Figures 14 and 15, the tracking and synchronization errors through the
proposed control are limited to 1.5 degrees or less, and it can be seen that the proposed
control method is superior to other methods.

Table 6 shows the numerical values of the average tracking errors and the maximum
errors via three controllers under trapezoidal trajectory scenario. As seen from Table 6,
except for a few cases, the errors generated by the proposed control system are about
10~22% less than those of other control systems.
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Figure 12. Results for four BLDC motors under sine-wave trajectory (a) θd, θ1, θ2, θ3 and θ4 on the
time-domain, (b) Error |θd − θ1|, (c) Error |θd − θ2|, (d) Error |θd − θ3|, and (e) Error |θd − θ4| (the
dotted lines indicate the average values).
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Figure 13. Results for four BLDC motors under sine-wave trajectory. (a) Error |θ1 − θ2|, (b) Error
|θ1 − θ3|, (c) Error |θ1 − θ4|, (d) Error |θ2 − θ3|, (e) Error |θ2 − θ4|, and (f) Error |θ3 − θ4| (the dotted
lines indicate the average values).
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Table 5. The average tracking and the maximum errors via three controllers under sine-wave
trajectory (4 motors).

Number of
Motors Error Value Passive

Decomposition
Master–
Slave Independent

Max 0.956 1.071 1.07|θd − θ1| Average 0.129 0.158 0.160
Max 0.985 2.59 1.10|θd − θ2| Average 0.124 0.340 0.129
Max 0.818 2.53 1.02|θd − θ3| Average 0.137 0.340 0.172
Max 0.983 2.64 1.24|θd − θ4| Average 0.173 0.348 0.200
Max 0.876 1.83 0.895|θ1 − θ2| Average 0.159 0.218 0.181
Max 0.758 1.80 0.843|θ1 − θ3| Average 0.138 0.282 0.151
Max 0.582 1.88 0.766|θ1 − θ4| Average 0.122 0.232 0.134
Max 0.839 1.45 0.863|θ2 − θ3| Average 0.160 0.214 0.193
Max 0.857 1.11 0.953|θ2 − θ4| Average 0.191 0.145 0.214
Max 0.740 1.50 0.830

4

|θ3 − θ4| Average 0.175 0.268 0.166

Table 6. Average tracking and maximum errors via three controllers under trapezoidal trajectory
(4 motors).

Number of
Motors Error Value Passive

Decomposition
Master–
Slave Independent

Max 1.64 1.57 1.70|θd − θ1| Average 0.128 0.107 0.113
Max 1.51 3.48 1.79|θd − θ2| Average 0.138 0.281 0.137
Max 1.52 3.61 1.92|θd − θ3| Average 0.142 0.310 0.144
Max 1.96 3.68 2.11|θd − θ4| Average 0.13 0.298 0.128
Max 1.21 2.29 1.62|θ1 − θ2| Average 0.1 1.88 0.0979
Max 0.81 2.38 0.401|θ1 − θ3| Average 0.0873 0.212 0.0820
Max 0.711 2.35 1.77|θ1 − θ4| Average 0.081 0.211 0.0834
Max 0.411 1.99 1.62|θ2 − θ3| Average 0.0634 0.141 0.0797
Max 1.44 1.85 1.98|θ2 − θ4| Average 0.104 0.131 0.115
Max 1.08 1.79 1.97

4

|θ3 − θ4| Average 0.0793 0.122 0.126
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Figure 14. Results for four BLDC motors under trapezoidal trajectory. (a) θd, θ1, θ2, θ3 and θ4 on
the time-domain, (b) Error |θd − θ1|, (c) Error |θd − θ2|, (d) Error |θd − θ3|, and (e) Error |θd − θ4| (the
dotted lines indicate the average values).
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Figure 15. Results for four BLDC motors under trapezoidal trajectory. (a) Error |θ1 − θ2|, (b) Error
|θ1 − θ3|, (c) Error |θ1 − θ4|, (d) Error |θ2 − θ3|, (e) Error |θ2 − θ4|, and (f) Error |θ3 − θ4| (the dotted
lines indicate the average values).
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7. Conclusions

This paper presented a novel passive decomposition-based robust synchronous con-
trol system, guaranteeing that the synchronous error of the entire system is ultimately
and synchronously bounded even in the presence of parametric uncertainty and external
disturbance. First, a passive decomposition is utilized to achieve the locked and shape
system from the original system. Second, a robust sliding mode control along with the com-
pensation terms for disturbance and uncertainty is designed for each decomposed system
to achieve the precise synchronous position control for the n number of agents (motors).
Also, the formulation of the control law generally adopts the arbitrary n number of agents
that must be synchronized. Finally, using two representative evaluation scenarios, a sine-
wave trajectory and a trapezoidal trajectory, we validated the effectiveness of the proposed
synchronous control strategy based on experimental investigation on two BLDC motors,
three BLDC motors, as well as four BLDC motors, and compared the performance with that
of two other well-known control approaches (a master–slave control and an independent
one). It is found that the proposed system guaranteed that the synchronous error between
motors and the tracking error to the desired reference trajectory are less than 1.0 degree for
the sine-wave trajectory scenario and 1.5 degree for trapezoidal trajectory one, respectively.
In addition, it can be seen that the synchronous tracking performance of the proposed
controller is mostly superior to both the master–slave control and independent control for
a sine-wave trajectory. The performance of the independent controller is a good match
for the proposed controller for the trapezoidal trajectory, although the distinction between
these two is almost negligible. Overall, regardless of control scenarios and the number
of motors, the proposed controller guarantees a more accurate and robust synchronous
control than other control methods based on the results presented in this study.

However, further investigations are still needed for how to systematically select the
major control gains (λL and λS) for each decomposed system (i.e, locked and shaped
systems), because the relationship between these two control gains can influence the overall
control performance of the system. We hope that the proposed control scheme along with
the results and the comparisons of this study will be a valuable asset for those wishing to
synchronously control a multi-motor-based system.
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Appendix A

This section briefly explains the advantageous effect of integral error terms in a sliding
surface when it comes to designing the sliding mode control.

The dynamics of a motor are given by

JR
..
θR(t) + BR

.
θR(t) = τm,R(t) + dR (A1)
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Proposing the following control law including the integral error term,

τm,R = BR
.
θR + JR

(
..
θR,d −

(
3λ

.
ε + 3λ2ε + λ3

∫
εdt
))

(A2)

where ε = θR − θR,d ∈ R is the error between the desired trajectory (θR,d) and an actual
angle (θR). Also, SR(t) =

.
ε + 2λε + λ2

∫
ε dt ∈ R is the designed sliding surface.

Furthermore, substituting (A2) into (A1) yields the closed-loop system as follows,

..
ε = −

(
3λ

.
ε + 3λ2ε + λ3

∫
εdt
)
+ dR (A3)

Based on Equation (A3), the transfer function T(s) = ε(s)/dR(s) becomes

T(s) = ε(s)/dR(s) = 1/
(

s3 + 3λs2 + 3λ2s + λ3
)

(A4)

Using the final-value theorem, we can find the DC gain of ε(s) for dR(s) = 1/s
(i.e., coulomb-like friction disturbance) such that

εss = lim
s=0

s
[

1
s3 + 3λs2 + 3λ2s + λ3

]
1
s
= 1/λ3 (A5)

The steady-state error εss for the disturbance dR(s) is attenuated by λ3 as shown
in (A5).

On the other hand, if the sliding surface is designed to be SR(t) =
.
ε+ λε ∈ R (i.e., w/o

an integral term), a control law similar to the previous case can be proposed by

τm,R = BR
.
θR + JR

( ..
θR,d −

(
2λ

.
ε + λ2ε

))
(A6)

The closed-loop system is given by

..
ε = −

(
2λ

.
ε + λ2ε

)
+ dR (A7)

Based on (A7), the transfer function T(s) = ε(s)/dR(s) becomes

T(s) = ε(s)/dR(s) = 1/
(

s2 + 2λs + λ2
)

(A8)

Using the final-value theorem, we can find the DC gain of ε(s) to dR(s) as

εss = lim
s=0

s
[
1/
(

s2 + 2λs + λ2
)]1

s
= 1/λ2 (A9)

The steady-state error εss for the disturbance dR(s) is attenuated by λ2 as shown
in (A9).

The controller designed based on the sliding surface including the integral error term
attenuates the disturbance by λ3 while the case w/o integral term reduces the disturbance
effect by λ2.
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