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Abstract: This study aims to enhance conventional vibration energy harvesting systems (VEHs) by
repositioning the piezoelectric patch (PZT) in the middle of a fixed–fixed elastic steel sheet instead
of the root, as is commonly the case. The system is subjected to an axial simple harmonic force at
one end to induce transversal vibration and deformation. To further improve power conversion,
a baffle is strategically installed at the point of maximum deflection, introducing a slapping force
to augment electrical energy harvesting. Employing the theory of nonlinear beams, the equation
of motion for this nonlinear elastic beam is derived, and the method of multiple scales (MOMS)
is used to analyze the phenomenon of parametric excitation. This study demonstrates through
experiments and theoretical analysis that the second mode yields better power generation benefits
than the first mode. Additionally, the voltage generation benefits of the enhanced system with the
added baffle (slapping force) surpass those of traditional VEH systems. Overall, the proposed model
proves feasible and holds promising potential for efficient vibration energy harvesting applications
in various industrial sectors.

Keywords: energy harvester; parametric excitation; nonlinear vibration; method of multiple scales

1. Introduction

Advancements in technology and global population growth have catalyzed the growth
of green energy, a pivotal aspect of the emerging industrial revolution. Within the realm of
eco-friendly energy sources, vibration energy, despite its significance, often remains un-
derexplored. Vibrations, prevalent in diverse settings from compact devices to substantial
structures like buildings and vehicles, offer a potential yet untapped resource. A focal
point of current research lies in vibrational energy harvesters (VEH) designed to efficiently
harness this energy. The conventional approach involves utilizing a piezoelectric patch
(PZT) on an elastic steel sheet to convert mechanical energy into electrical energy during
sheet vibrations, known as single elastic-steel VEH systems (SES-VEHs). However, this
configuration demands extended and pliable PZT patches, increasing costs while seeking
enhanced efficiency. A novel alternative, double elastic-steel VEH systems (DES-VEHs),
has been proposed by some researchers. This approach positions the PZT patch at the
free end of a single elastic steel sheet, which is subsequently subjected to impact force
from another sheet. The DES-VEH eliminates the need for elongated and delicate PZTs.
Nonetheless, challenges persist in achieving optimal deformation and power generation
simultaneously. The ongoing exploration of this domain exhibits the potential to revolu-
tionize energy-harvesting methods, contributing to reduced environmental impact. This
study aims to enhance the conventional vibration energy harvester (VEH) design by posi-
tioning a PZT on a fixed–fixed elastic steel sheet. Transverse vibration and deformation
are induced by applying a simple harmonic force axially to one end of the fixed–fixed steel
sheet. At the juncture of maximum deformation (possibly near the midpoint), a baffle is
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introduced to generate an impact force (slapping) on the PZT, thereby increasing energy
conversion. Through the integration of the advantages of SES-VEH and DES-VEH, this
approach achieves optimal power generation efficiency.

VEHs do not require external power and possess superior power–electricity coupling,
making them compatible with microelectro-mechanical system (MEMS) fabrication. More-
over, their broad applicability is attributable to the lack of additional devices such as coils
and magnets. The traditional method for applying piezoelectric energy involves accu-
mulating energy before supplying power to other electronic devices. However, Sodano
and Inman [1] broke through the traditional concept of piezoelectric materials by using a
rechargeable battery to store the electric energy generated by piezoelectric materials. Com-
pared to traditional methods, this approach can more directly provide power to electronic
systems, laying the foundation for future wireless and microelectromechanical systems
(MEMSs). Rajora et al. [2] proposed an analytical method for estimating the output of the
amplitude, voltage, and power generated by the vibration of a fixed–free Euler–Bernoulli
beam. The validity of their approach was tested using engineering simulation software
ANSYS12 and multiphysics simulation software COMSOL 4.3. Masana and Daqaq [3]
analyzed the vibration of a fixed–fixed beam subjected to axial forces. They used a nonlin-
ear Bernoulli–Euler beam as a theoretical model, which was expanded using the Galerkin
method. They employed the Method of Multiple Scales (MOMS) to obtain analytical ex-
pressions for the steady-state response amplitude, voltage under resistive load, and output
power. They also analyzed the maximum transverse amplitude of the beam using a fixed-
point plot and found that axial perturbations were able to provide the maximum transverse
amplitude of this nonlinear beam. Li [4] investigated the vibration stability of a nonlinear
sandwich beam with axial parameter perturbations, while Yan [5] studied a nonlinear
Timoshenko beam with similar perturbations. Both studies utilized axial perturbations to
excite the system, which is a typical parametric excitation problem. Lagrange’s equations
and Galilean transformations were used in both studies to derive the equations of motion.
Galerkin’s method was used to solve the equations of motion and obtain the system’s
frequency response. The results showed that under specific parameter and external driv-
ing source perturbation conditions, the system may exhibit internal resonance or chaotic
phenomena, leading to the multiplication of the amplitude and structural instability.

Shibata et al. [6] installed a linear spring attachment at the axial end of a nonlinear
beam and used a longitudinal linear spring to control its transverse vibration. The spring
only affected the nonlinear characteristics of the transverse vibration and did not impact
the beam’s linear natural frequency. As a result, the unstable region in the parametric
excitation remained unchanged. They conducted experiments to analyze the effectiveness
of vibration reduction. Plat and Bucher [7] investigated the nonlinear string system of
a parametric excitation vibration. The passive dynamical system significantly amplified
the limited transverse vibration amplitude of the nonlinear string, thereby increasing the
system’s selectivity. Bagheri et al. [8] used the Bernoulli–Euler theory model structure to
examine the nonlinear response of a clamped–clamped bending beam. They applied axial
loading at one end and used two numerical methods, He’s Variational Approach and the
Laplace Iteration Method, to predict the lateral transverse beam vibration. They found
that these two numerical methods could be applied to other nonlinear vibrations, and the
vibration frequency of the nonlinear lateral transverse beam was affected by the axial load.

In recent years, there has been a surge in research on energy harvesting systems that
rely mainly on impact force. Notably, several new studies were published almost simulta-
neously, demonstrating the growing importance of this field. One example is the work of
Fu et al. [9], who used the electrostatic effect of collisions between three parallel cantilever
beams to generate vibrations and electrical energy. Their research provides theoretical
evidence that the impact effect can increase the power generation efficiency of specific ma-
terials. Around the same time, Wang and their team (Wang et al. [10,11]) also investigated
the use of impact-induced vibrations to generate electricity. They not only established a the-
oretical model, but also demonstrated the feasibility of the concept whereby a piezoelectric
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patch could generate electricity by being impacted. Wang et al. [10] designed a double-layer
elastic-steel-sheet energy harvesting system comprising two parallel cantilever beams (Dou-
ble Elastic Steel VEH (DES-VEH)). Wang et al. [11], on the other hand, examined the energy
conversion efficiency of transverse vibrations and mutual impacts of a group (two pieces) of
Fixed–fixed beams. To optimize the impact force, the placement position of the piezoelectric
patch (PZT) is crucial. The aforementioned studies [10,11] analyzed DES to identify its
system peaks and nodes, determine the maximum deformation and optimal position of the
PZT, and ultimately achieve the maximum power generation efficiency. Wang and Chu [12]
utilized the airflow generated beneath the rotor of a rotary-wing aircraft to drive a wind
turbine, creating a rotating magnetic field. This field then generated a repulsive force with
a magnet placed on an elastic steel sheet, causing two elastic steel sheets to strike each
other and the PZT, thereby producing vibrational energy and converting it into electrical
energy. Meanwhile, Wang and Cheng [13] placed the elastic steel sheets in the middle
of a rotor and utilized the rotating magnetic field to cause the two sheets (with PZTs) to
clap each other. Through theoretical analysis and experiments, they demonstrated that
the energy conversion efficiency of the system utilizing two elastic steel sheets exceeded
that of traditional single-sheet systems. In addition, some scholars have proposed bistable
vibration energy harvesting systems (BVEHs), which mainly consist of two types of system:
cantilever beams and buckling beams. The cantilever beam is designed with one end fixed
and the other end attached to a magnet. One or two magnets with the same polarity are
placed next to the end to cause the cantilever beam to vibrate up and down under the
influence of magnetic force, simulating a bistable system. The buckling beam, on the other
hand, can achieve a bistable system without the use of magnets. The biggest advantage
of BVEHs is that they can be driven in low-frequency and low-amplitude environments.
Harne and Wang [14] and others have conducted research on the theoretical simulation
and integrated analysis of the bistable systems of both beams.

Mokhtari et al. [15,16] provided a review of the current state of wearable energy
harvesting technologies. The review highlighted challenges and potential solutions, intro-
ducing the concept of flexible-fiber energy harvesters as a promising avenue. The article’s
focus on dimension conversion and the advantages of piezoelectric energy harvesting
devices contributes to the understanding of the technology landscape. Costa et al. [17]
explored the diverse field of flexible sensors and sensing systems. It delved into the me-
chanics, materials, and devices involved in creating flexible sensors. They provided a
comprehensive understanding of how flexible sensors could be integrated into various
systems, including wearable technologies, and their potential impact on enhancing sensing
capabilities. Mokhtari et al. [18] introduced a novel wearable energy generator using hybrid
piezoelectric nano fibers, achieving high power density and faster charging capabilities for
real-time healthcare monitoring. The mentioned literature focused on flexible and nano
sensors, while from a PZT power generation perspective, the PZT materials were chosen
primarily for their ability to convert mechanical vibrations directly into electrical energy
through the piezoelectric effect. They were optimized for energy harvesting applications
and were strategically placed at points of maximum deformation to efficiently harness
vibrations to achieve power generation. In addition, compared with flexible sensors or
nano sensors, PZTs have the advantage of lower price, potentially making them suitable
for industrial applications.

Zhu and Zu [19] attached piezoelectric materials to both ends of a fixed beam and
placed a magnet at one end. They induced a small axial disturbance using electromagnetic
induction to simulate low-frequency (<60 Hz) and small-oscillation (<0.5 g) scenarios. The
experimental results showed that the voltage peaks generated by the conversion between
the two energy wells were maintained at around 10 volts, demonstrating the potential
of this system for future development. Xu et al. [20] used a bistable system for energy
harvesting in microelectromechanical systems (MEMSs). Traditional vibration energy
harvesting relies on achieving the resonance frequency in order to obtain a larger amplitude
and power generation.
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Derakhshani et al. [21] developed theoretical and experimental models for a fixed–
fixed bistable buckling beam with driving frequencies below 30 Hz. Using Hamilton’s
principle, they derived a coupling between the nonlinear Bernoulli–Euler beam and the
piezoelectric equation to analyze the theoretical and experimental output voltages for differ-
ent vibration scenarios. In addition, Derakhshani et al. [22] coupled a fixed–fixed beam with
two fixed–fixed beams to establish a bistable bukling system. They disturbed the system
using a torsional rod and two co-directional cantilever beams to facilitate fast switching
between two stable regions and achieve better power generation. They also compared the
power generation efficiency of PZTs placed in different locations, confirming the feasibility
of this system for future engineering applications. Cottone et al. [23] employed bistable
oscillators placed at one end of a fixed–fixed beam to simulate random vibrations. Using
the Euler–Maruyama method, they compared the performance of the bistable energy wells
at different levels of buckling and resistance and found that the system’s output power load
increased with the amplitude of the system vibration when subjected to wide-bandwidth
Gaussian noise. Marinca et al. [24] investigated the low-frequency buckling vibration and
impact force of the bistable system using a double-layer-structure system composed of a
primary buckled piezoelectric beam and a rubber sheet. They applied Hertzian Contact
Force to one end and found that the theoretical power generation efficiency of the two
forces combined was the same as that reported by Wang et al.’s research team [10–13], who
demonstrated that the energy conversion efficiency of two elastic steel sheets slapping a
PZT was better than that of traditional single elastic steel sheet energy harvesting systems.
Osinaga et al. [25] analyzed the power generation efficiency of buckling beams before
(monostable) and after (bistable) buckling. They coupled the nonlinear Bernoulli–Euler
beam and piezoelectric equations to calculate the states of buckling beams before and
after buckling, discretized the space using the Galerkin method, and found analytical
expressions for the displacement amplitudes of each mode. Then, they used MOMS to
find linear approximations of the pre- and post-buckling states. Du et al. [26] introduced a
piezoelectric buckling-beam-type bistable energy harvester (PBBEH) for efficient energy
extraction from rotational motions. The PBBEH integrates a piezoelectric buckling beam
and a rotational disk to capture low-speed rotational movements. A lumped parameter
model is used for numerical analysis and energy harvesting characteristics are examined.
Experimental results highlight excellent performance within the 1–9 Hz frequency range,
yielding output power of 28 µW. These conventional buckled VEH systems position the
PZT at the elastic steel root, neglecting the middle placement crucial for effective slapping.
Moreover, axial excitation’s parametric phenomenon, which is key to achieving broader
bandwidth, is overlooked, prompting this study’s analysis of parametric excitation effects.

Mei et al. [27] introduced a clamped–clamped flexible piezoelectric energy harvester
(FPEH) for enhanced power output and adaptability to low-frequency vibrations in wear-
able electronics. The harvester incorporated axial excitation and pre-deformation, and its
dynamic equation was derived. Numerical analysis and experiments confirmed simulation
alignment, showcasing promising LED power results: max output power 1.38 µW at 27 Hz;
output voltage 1.84 V. However, their modes were constrained to a fixed resonant frequency,
limiting wide-bandwidth application. Qin Y et al. [28] developed a distributed-parameter
dynamic model for a fixed–fixed piezoelectric energy harvester using the Euler–Bernoulli
beam hypothesis and Hamilton’s principle. Their model adjusted the system’s natural
frequency via proof mass movement to broaden the frequency band and align with external
excitation. Shim et al. [29] designed a nonlinear piezoelectric energy harvester with a
coupled beam array, thus amplifying the bandwidth and energy harvesting via elastic
supports that enhance nonlinear behavior. Experimental validation demonstrated 144.2%
higher average output power and 93.3% wider bandwidth compared to non-coupled multi-
resonance harvesters. However, employing multiple elastic beams is necessary to achieve a
broader bandwidth in their model.

In addition, when buckling beams are applied to objects undergoing severe vibrations,
the system is typically placed on the ground, and energy is generated by utilizing the
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weight of passing vehicles or crowds. Ansari et al. [30] proposed placing the buckling
beam underground to directly bear the weight of vehicles or crowds and generate power
through buckling. However, considering the possibility of beam fracture due to long-term
use and excessive buckling amplitude, strain analysis of the primary buckling beam is
necessary to determine the optimal buckling amplitude of the elastic beam, thus obtaining
the best power generation efficiency. In summary, the conversion of vibration energy from
buckling beams is one of the most effective designs in terms of power generation efficiency.
However, Wang et al.’s [10–13] research suggests that applying impact force to the VEH
system can have an additional effect. Therefore, this study combines various methods
proposed in the domestic and foreign literature to design a vibration energy extraction
system with buckling impact, which can further advance VEH research. Wang et al.’s most
recent research [13] found that precise frequency disturbances in VEH systems can increase
power generation efficiency by more than 2%, especially in nonlinear systems. Therefore,
conducting a comprehensive frequency parametric excitation analysis of the buckling beam
system would be beneficial for assessing the system’s development efficiency.

Drawing from the discussed theoretical models, numerical analyses, and experimental
applications, this study investigates the axial actuation amplitude and frequency of a
nonlinear fixed–fixed Euler–Bernoulli beam. It analyzes the beam’s vibration stability
and power generation efficiency across different modes and amplitudes, introducing an
additional baffle to induce slapping force. A comparative assessment of power generation
efficiency with and without the supplementary baffle aims to identify the optimal input
frequency and baffle placement for efficient slapping energy. This design offers dual
operational modes: vertical placement into the ground (depicted in Figure 1a) or a parallel
arrangement (illustrated in Figure 1b). Both configurations find a variety of applications,
spanning fitness equipment like treadmills (Figure 1c) and infrastructure such as sidewalks,
roadways (Figure 1d), and railways.
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Figure 1. Application of the buckling beam VEH system: (a) vertical mode; (b) horizontal mode;
(c) treadmill; (d) road.

This study consists of two main parts: theoretical simulation and experimental verifi-
cation, aiming to explore the efficiency of converting vibration energy into electrical energy
using a PZT attached to a fixed–fixed elastic steel sheet. In the theoretical portion, a non-
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linear equation is derived using Newton’s Second Law, Euler’s angle transformation, and
Taylor series expansion. The application of axial disturbances at the endpoints exemplifies
a typical form of parametric excitation, and the Method of Multiple Scales (MOMS) is
employed to analyze this phenomenon.

Analyzing parametric excitation led to the determination of the system’s unstable
range, revealing the benefits of energy harvesting. The unstable range was validated
through numerical analysis and fixed-point plots. Furthermore, the accuracy of the fixed-
point plots was confirmed through the application of the fourth-order Runge–Kutta (RK-4)
numerical method to generate time–response and phase plots. The maximization of the
benefits of electrical energy conversion was achieved by combining the nonlinear equation
with the piezoelectric equation while varying external forces and frequencies.

In the second segment of this study, a simple experiment was conducted using an
elastic steel sheet to replicate the behavior of an elastic beam. Fixed boundary conditions
for the beam’s ends were established using a C-shaped device. One end of the beam was
held stationary, while the other end featured a horizontal sliding track and an actuator
to induce vibration disturbances imitating buckling behavior. The experiment comprised
two groups. Initially, the point of maximum deformation was identified using the elastic
beam’s mode shape. Subsequently, a comparison was made between the power generation
efficiency of piezoelectric patches placed at the root and at the location of maximum
deformation. Subsequent to this, a piezoelectric patch was positioned at the point of
maximum deformation, and a baffle was introduced to enhance the impact force. This
facilitated the determination of the highest power generation efficiency and the validation
of the accuracy of the theoretical model.

The rapid growth of wearable technologies calls for innovative advancements in en-
ergy generation systems. This work responds to this demand by introducing a unique
approach to vibration energy harvesting. This study addresses the limitations of existing
methods by strategically positioning a piezoelectric patch at the peak deformation point of
an elastic steel sheet. This deliberate placement optimizes energy conversion efficiency by
harnessing the maximum mechanical stress during vibrations. Additionally, the integration
of an augmenting baffle introduces a novel element that amplifies the voltage generation
capabilities of the system. By exploring the distinct advantages of the second mode and
investigating the impact of the baffle, this research unveils new dimensions in vibration
energy harvesting effectiveness. This study additionally investigates the frequency re-
sponse of parametric excitation, extending the resonant frequency range around the linear
natural frequency. This expansion contributes to a broader usable bandwidth compared to
conventional designs.

2. Establishment and Analysis of the Theoretical Models

This study employs a nonlinear Euler–Bernoulli beam as the theoretical model. The
elastic beam is fixed at one end, while the other end contains a roller allowing horizontal
sliding. To simulate the buckling phenomenon, an actuator is positioned at the slidable
end of the beam. This study investigates the buckling behavior of the elastic beam by
applying external forces and varying the frequency. To evaluate power generation effi-
ciency, piezoelectric patches (PZTs) are strategically placed at two specific locations along
the beam: the point of maximum deformation and the root. A comparative analysis is
conducted to determine the effectiveness of these locations in generating power. For a
more comprehensive understanding of the coordinate definition and the composition of
the two-dimensional theoretical model, please refer to Figure 2a,b. These figures provide
detailed visual representations of the setup and configurations used in the study.
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2.1. The Equation of Motion

Based on the nonlinear beam theory of Neyfeh and Pai [31], the two-dimensional
nonlinear beam equation was formulated through the application of Newton’s Second
Law, a three-dimensional Euler angle coordinate transformation, and Taylor expansion,
as follows:

ρ
..
u− EAu′′ = EA(

1
2

W ′
2
− u′W ′

2
)′+EIA(W

′
(W ′′′ − u′′′W ′ − 2u′′W ′′ − 3u′W ′′′

))′ (1)

ρ
..

W − EIAWiv
= EA(u′W ′ − u′2W ′ + 1

2 W ′
3
)+EIA[u′W

′′′
+ (u′W ′)′′ − (u′2 −W ′

2
)W ′′′ − u′(u′W ′)′′

−(u′W ′ − 1
3 W ′

3
)′′ ]′

(2)

where ρ is the density of the beam, E is the Young’s modulus of the beam, A is the cross-

sectional area of the beam, I is the moment of inertia of the beam,
•
( ) represents the

differential with respect to time, and ( )’ represents the differential with respect to x (i.e.,
d/dx). Since a slender elastic beam is considered as the theoretical model, m/EA is extremely
small. After dividing Equation (1) by EA, the longitudinal inertial force m

..
u in Equation (1)

can be ignored. In this study, the boundary conditions of the beam are considered to be
fixed at both ends, and there is no lateral external force, so there will be no movement in
the u direction. Then, the relationship between u and W is determined according to the
boundary conditions, following which the equations can be simplified to a single W-D.O.F.
equation.

The following boundary conditions are assumed:

u(0, t) = 0, u(l, t) = P(t), W(0, t) = 0, W(l, t) = 0, W ′(0, t) = 0, W ′(l, t) = 0 (3)

where P(t) is the axial disturbance from the actuator. Substituting the boundary conditions
(Equation (3)) into Equation (1), the u-direction equation can be obtained as follows:

u′′ = −(1
2

W ′
2
)′ + (u′W ′

2
)′ +

ρ

EA

..
u+

IA
A
[W ′(W ′′′ − u′′′W ′ − 2u′′W ′′ − 3u′W ′′′

)]′ (4)

after integrating twice, u can be found as:

u =
1
2

∫ l

0
W ′

2
dx + c1(t)x + c2(t) (5)

The coefficients c1 and c2 can be obtained from the boundary conditions (Equation (3))

as c2(t) = 0, c1(t) = 1
2l

∫ l
0 W ′

2
dx. Putting them into Equation (2), and adding the structural
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damping item µ
.

W of the elastic beam, using Newton’s Second Law, the nonlinear beam
equation in W D.O.F. can be obtained as follows:

ρA
..

W + EIWiv
+ µ

.
W =

EA
2l

W ′′
∫ 1

0
W ′

2
ds + EAP(t)W ′′ (6)

In order to make the research convenient for future analysis, the dimensionless form
of Equation (4) can be obtained by firstly dividing equation (4) by ρA:

..
W +

EI
ρA

Wiv
+

µ

ρA

.
W =

E
2lρ

W ′′
∫ 1

0
W ′

2
ds +

E
ρ

P(t)W ′′ (7)

and intorducing the following definitions: W = W/l, t = tω, s =
√

x2 + y2 = s/l, x = x/l,

ω = ( EI
ρAl

4 )
1
2 , l = l/l = 1, Ã = Al

2
/I, µ = µl

2

EI (
EI
ρA )

1
2 . Substituting these into Equation (5),

the dimensionless nonlinear equation can be obtained as follows:

..
W + Wiv + µ

.
W =

Ã
2

W ′′
∫ 1

0
W ′2ds + ÃP(t)W ′′ (8)

2.2. Theoretical Analysis of the Piezoelectric Patch (PZT) Equation

From the research of Rajora et al. [2], it is known that the current equation for PZTs
can be expressed as follows:

Cp
.

V +
1

Rp
V +

∫ b

a
ehpth

.
W
′′

dx = 0 (9)

The force acting on the beam by the PZT is expressed as:

∫ b

a
ehpth

.
W
′′

dx = (eth

∫ b

a
W ′′ dx)V = C f (

∫ b

a
W ′′ dx)V (10)

where V is the voltage, Cf is the piezoelectric coupling coefficient, and Cp is the capacitance
of the piezoelectric patch. a and b are the positions of the two ends of the PZT, respectively.
For example, if the PZT is placed at the root of the beam, and the length of the PZT is Pl
(that is, b − a = Pl), then a = 0, b = Pl. Dividing Equation (9) by (mb + m f )lω2

u provides the
dimensionless PZT equation, as follows:

.
ν + Rpν + k̂

∫ b

a

.
W
′′

dx = 0 (11)

where v = V/C f , Rp = 1/RpCpω, k̂ = ehpth/CpC f , ( )∗ = d/dt, ( )′ = d/dx, a = a/l,
b = b/l. The dimensionless voltage can be obtained as follows:

ν = − k̂
eRpt

∫ t

0
(
∫ b

a

.
W
′′

dx)eRptdt (12)

Dividing Equation (10) by ml ω2 and rearranging the terms yields the dimensionless
external force (Coulomb force) function as follows:

C2
f (
∫ b

a W
′′
dx)ν

lmω2 = η2(
∫ b

a
W
′′
dx)(− k̂

eRpt

∫ t

0
(
∫ b

a

.
W
′′

dx)eRptdt) (13)
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where η2 = C2
f /lmω2. Finally, the dimensionless nonlinear beam equation with the PZT

patch can be obtained as follows:

..
W + Wiv + µ

.
W − ÃP(t)W

′′ − η2(

b∫
a

W
′′
dx)v =

1
2

Ã[

1∫
0

W ′2dx]W
′′

(14)

2.3. Method of Multiple Scales (MOMS)

The MOMS divides time into two scales—fast and slow; let T0 = t, T1 = ε1t and
T2 = ε2t, where T0 is the term of the fast time scale, the other two items are for the slow
time scale, and ε is the perturbation term, which is regarded as a very small value. W can
be expressed as:

W(x, t, ε) = εW0(x, T0, T1, T2, . . .) + ε2W1(x, T0, T1, T2, . . .) + ε3W2(x, T0, T1, T2, . . .) (15)

The end-point axial force is assumed to be a time-varying function, which can be
expressed as P0 + P(t), where P(t) = Zε2 cos ΩmT0. The damping term of the elastic beam
is ε2µ, and the influence of higher-order terms such as ε4, ε5, . . ., etc., on the system is
ignored to facilitate subsequent analysis. Then, Equation (14) can be expressed as three
time-scale (ε, ε2 and ε3) equations, as follows:

The ε-order time scale terms:

∂2W0

∂T2
0

+ W0
iv − ÃP0W ′′

0 = 0 (16)

The ε2-order time scale terms:

∂2W1

∂T2
0

+ W1
iv − ÃP0W ′′

1 = −2
∂2W0

∂T0∂T1
+ ÃP(t)W ′′

0 (17)

The ε3-order time scale terms:

∂2W2

∂T2
0

+ W2
iv − ÃP0W ′′

2 = −2
∂2W1

∂T0∂T1
− ∂2W0

∂T2
1
− 2

∂2W0

∂T0∂T2
− µ

∂W0

∂T0
+ ÃP(t)W ′′

1 (18)

The separation of variables method is used to find the mode shape of the system. The
lateral deformation W0 is divided into the spatial and time domains, and defined as:

W0(x) = X(x)Y(t) (19)

Substituting Equation (19) into Equation (16) gives:

X
..
Y + XivY− ÃP0X

′′
Y = 0 (20)

Using the boundary conditions, the characteristic equation of the elastic beam can be
obtained as follows:

2− 2 cos(
√

αm)− α sin(
√

αm) = 0 (21)

where αm = 4m2π2 and m = 1, 2, 3, . . .. The mode shapes of the elastic beam can then be
obtained as follows:

Xm(x) =

√
4(P0 − 4m2π2)

2(m2π2)
[1− cos(2mπx)] (22)
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3. System Parametric Excitation Analysis
3.1. Analysis of Stable and Unstable Regions

By defining W0(x) =
N
∑

m=1
φm(x)ξ0m(t), W1(x) =

N
∑

m=1
φm(x)ξ1m(t), and W2(x) =

N
∑

m=1
φm(x)ξ2m(t), and substituting them into Equations (16)–(18) and applying the or-

thogonal method, the following equations are obtained:
The ε-order time scale terms:

..
ξ0m(t) +

∫ 1
0 φm

ivφm − ÃP0
∫ 1

0 φm ′′φm∫ 1
0 φm2

ξ0m(t) = 0 (23)

The ε2-order time scale terms:

..
ξ1m(t) +

∫ 1
0 φm

ivφm − ÃP0
∫ 1

0 φm
′′φm∫ 1

0 φm2
ξ1m(t) = −2

∂2

∂T0∂T1
ξ0m(t) + ÃP(t)

∫ 1
0 φ

′′
mφm∫ l

0 φ2
mdx

ξ0m (24)

The ε3-order time scale terms:

..
ξ2m(t) +

∫ 1
0 φm

ivφm−ÃP0
∫ 1

0 φm ′′ φm∫ 1
0 φm2

ξ2m(t) =−2 ∂2

∂T0∂T1
ξ1m(t)− ∂2

∂T1
2 ξ0m − 2 ∂2

∂T0∂T2
ξ0m(t)−µ ∂

∂T0
ξ0m + ÃP(t)

∫ 1
0 φ
′′
mφm∫ l

0 φ2
mdx

ξ1m

+
1Ã
∫ 1

0 φ
′′
mφm

2
∫ 1

0 φm2
ξ0m

3
∫ 1

0 φ′2mdx
(25)

where P(t) = Z cos(2T0) = Z ei2T0+e−i2T0
2 , and Z is the dimensionless amplitude of the axial

disturbance.

System frequency is defined as ωm
2 =

∫ 1
0 φm

ivφm−ÃP0
∫ 1

0 φm ′′ φm∫ 1
0 φm2

= δ, and the time domain

general solution of order ε can be obtained from Equation (23):

ξ0m = B0m(T1, T2)eiωmT0 + B0m(T1, T2)e−iωmT0 (26)

Among these, B0m represents the amplitude of the mth mode, the subscript m rep-
resents the mth mode, and the subscript 0 represents the time scale under the severe
change in T0 time. Substituting Equation (26) into the term composed of the order of ε2

(Equation (24)),

..
ξ1m(t) + ωm

2ξ1m(t) =−2iωm(
∂B
∂T1

eiωmT0 − ∂B
∂T1

e−iωmT0) + ÃQ0Z(
ei2T0 + e−i2T0

2
)(BeiωmT0 + Be−iωmT0) (27)

where Q0 =
∫ 1

0 φ
′′
mφm∫ l

0 φ2
mdx

. For the case of the first mode (m = 1), and considering the dimension-

less frequency ωm ≈ 1, the secular terms on the right side of Equation (27) are collected,
and their sum made to be equal to 0; it is assumed that, when 1 = ωm + εσ and εT0 = T1,
where σ is the tuned frequency, a solvability condition can be obtained. In addition, ξ1m
can be obtained as follows:

ξ1m =
−ÃQ0ZB
8(1 + ωm)

ei(2+ωm)T0 (28)
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Similarly, the terms are analyzed in the order of ε3, Equations (26) and (28) are substi-
tuted into Equation (25), and the secular terms are collected and equated to 0, resulting in
the solvability condition being found as follows:

4ωm
2γ2 =ε2(2ωmσ + ÃQ0Z

2 − εσQ0 ÃZ
2ωm

− ε Ã2Q0
2Z2

16ωm2 − ε Ã2Q0
2Z2

16(ωm+1) )

(−2ωmσ + ÃQ0Z
2 − εσQ0 ÃZ

2ωm
+ ε Ã2Q0

2Z2

16ωm2 + ε Ã2Q0
2Z2

16(ωm+1) )
(29)

If γ is a positive number, the system will be unstable; in cases where γ > 0 is set, then
the tuned frequency of the unstable region can be determined from Equation (29), and the
inequality can be expressed as the following equations:

− ÃQ0Z
2

+ ε
Ã2Q0

2Z2

16ωm2 + ε
Ã2Q0

2Z2

16(ωm + 1)
< 2ωmσ− εσQ0 ÃZ

2ωm
(30)

ÃQ0Z
2

+ ε
Ã2Q0

2Z2

16ωm2 + ε
Ã2Q0

2Z2

16(ωm + 1)
> 2ωmσ +

εσQ0 ÃZ
2ωm

(31)

For the case of the second mode (m = 2), and considering the dimensionless frequency
ωm ≈ 2, consistent with the above procedure, the inequality can be obtained as follows:

16ωm
4µ2 − 16ωm

2(µ2ωm
2 + 4ωm

2σ2 + 4ωmσ
Ã2Q0

2Z2

8(ωm2 − 1)
− (

Ã2Q2
2Z2

16(ωm + 1)
)

2

+ (
Ã2Q0

2Z2

8(ωm2 − 1)
)

2

)> 16ωm
4µ4 (32)

After solving Equation (32), the σ can be obtained as follows:

σ =
−4ωm

Ã2Q0
2Z2

8(ωm2−1)

8ωm2 ±

√
16ωm2( Ã2Q0

2Z2

8(ωm2−1) )
2
+ 16ωm2(ωm 2µ2 − ( Ã2Q2

2Z2

16(ωm+1) )
2
+ ( Ã2Q0

2Z2

8(ωm2−1) )
2
)

8ωm2 (33)

From Equations (30), (31) and (33), the unstable frequency regions of the system can be
obtained. In the following Sections, the correctness of the unstable regions of the system
will be further analyzed and verified.

3.2. Frequency Response

In this section, the frequency response of the system under parametric excitation will
be analyzed. The orthogonality of the mode shape is utilized to decouple the dynamic
equations at each scale. Introducing a simple harmonic disturbance external force qm to the
system yields the following equations for each time scale:

Equation of order ε1:
..
ξ0m(t) + ωm

2ξ0m(t) = 0 (34)

Equation of order ε2:

..
ξ1m(t) + ωm

2ξ1m(t) = −2
∂2

∂T0∂T1
ξ0m(t) + ÃP(t)

∫ 1
0 φ

′′
mφm∫ l

0 φ2
mdx

ξ0m (35)

Equation of order ε3:

..
ξ2m(t) + ωm

2ξ2m(t) =−2 ∂2

∂T0∂T1
ξ1m(t)− ∂2

∂T1
2 ξ0m − 2 ∂2

∂T0∂T2
ξ0m(t)−µ ∂

∂T0
ξ0m + ÃP(t)

∫ 1
0 φ
′′
mφm∫ l

0 φ2
mdx

ξ1m

+
1Ã
∫ 1

0 φ
′′
mφm

2
∫ 1

0 φm2
ξ0m

3
∫ 1

0 φ′2mdx + qm

(36)

In order to analyze the frequency response of the system, the frequency of the external
force Ω = ωm + εσ is introduced, where Ω is the frequency of the external force, and σ is



Sensors 2023, 23, 7610 12 of 32

the tuned frequency near the natural frequency of the mth mode ωm, so the external force
can be expressed in the following form:

qm =
_
q meiΩT0 =

_
q mei(ωm+εσ)T0 =

_
q meiωmT0 eiσT0 (37)

The general solution of the time domain is expressed as follows:

ξ j,m = Bj,m(T1, T2)e−iζm eiωmT0 + Bj,m(T1, T2)eiζm e−iωmT0 (38)

where ζm is the phase angle, Bm represents the amplitude of the mth mode, subscript m
represents the mth mode, and subscript j represents different time scales. In the following,
the first mode (m = 1) and ωm ≈ 1 are taken as an example, and Equation (38) is substituted
into Equation (35); the secular terms on the right hand side of Equation (35) are collected
into the following equation:

..
ξ1m(t) + ωm

2ξ1m(t)=
1
2

ÃQ0ZBme−iζm ei(2+ωm)T0 (39)

The expression ξ1m = −ÃQ0ZBm
8(1+ωm)

e−iζm ei(2+ωm)T0 can then be obtained. Similarly, the ξ1m

for the second mode (m = 2, ωm ≈ 2) can be obtained as ξ1m = −ÃQ0ZBm
8(1+ωm)

e−iζm ei(2+ωm)T0 +

ÃQ0ZBm
8(ωm−1) eiζm ei(2−ωm)T0 .

After isolating the secular terms in Equations (34)–(36) and equating them to 0, the solv-
ability condition for each mode can be derived. To construct the tuned frequency–response
diagram (i.e., the fixed-point plot) of the dimensionless amplitude Bm for this nonlinear sys-
tem, the NEQNF subroutine within IMSL, along with the Levenberg–Marquardt algorithm,
is employed.

3.3. Time Response of Beam Amplitude

In this section, the correctness of the fixed-point plots and the initial voltage generation
benefit of this model will be verified. The fourth-order Runge–Kutta (RK-4) method is used
to obtain the time–response and phase plots. The piezoelectric equation and the elastic
beam equation are solved simultaneously to obtain the theoretical voltage output, which is
then used to verify the unstable region of the system.

The concept of small perturbation Is introduced, letting ξn = ξn + ξ̃n, where ξn is the
equilibrium term, ξ̃n is the perturbation term, and it is assumed that W = (ξn + ξ̃n)φn.
These assumptions are substituted into Equation (17), and the orthogonal method is then
used to expand the electric beam equation as follows:

..
ξ̃n + ξ̃n

∫ 1
0 φmφm

ivdx∫ 1
0 φm2dx

+ µ
.
ξ̃n

∫ 1
0 φm

2dx∫ 1
0 φm2dx

− ÃP(t)ξ̃n

∫ 1
0 φmφm

′′dx∫ 1
0 φm2dx

− 1∫ 1
0 φm2dx

( k̂η2

eRt (ξm + ξ̃m)
∫ 1

0 φm(
∫ b

a φ
′′
mdx)2(

∫ τ
0 (ξm + ξ̃m

.
)eRtdt)dx)= 1

2 Ãξ̃3
∫ 1

0 φm
′2dx

∫ 1
0 φmφm

′′dx∫ 1
0 φm2dx

(40)

The first mode (m = 1, ωm ≈ 1) and the second mode (m = 2, ωm ≈ 2) were substi-
tuted into Equation (40), and the phase plots of the piezoelectric beam system and time
responses of the beam amplitudes were determined using the RK-4 method. The correct-
ness of the fixed-point plots was verified using these results. At this point, the results from
Equation (40) were also employed, and the theoretical output voltage was obtained by
combining it with the voltage function (Equation (10)).

3.4. Parametric Excitation Analysis

The unstable region inequality equations of the parametric excitation system
(Equations (30), (31) and (33)) were obtained in Section 3.1. In this section, the assump-
tions 1 = ωm + εσ, 1 ≈ ωm, 2 = ωm + ε2σ, 2 ≈ ωm, and δ = ωm

2 are utilized. By
substituting these assumptions into Equations (30), (31) and (33), respectively, the unstable
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region of the system can be determined, which is depicted as a gray area in Figure 3a. In
this study, a shaker is connected to one end of the beam to simulate the magnitude and
frequency of axial external forces. It can be seen from Figure 3a that when the values of
the vertical axis (disturbance external forces) increase, the unstable region of the system
also increases, and when the system is in the unstable region, a larger amplitude will be
generated. In order to obtain better power generation efficiency in subsequent experiments,
the frequency and amplitude of the actuator will be adjusted so that the system can obtain
a larger amplitude to facilitate power conversion. The experimental verification of the
phenomenon in Figure 3a will be discussed in the next section.
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After determining the instability region of the system, numerical methods are used to
verify its correctness. Figure 3a presents the unstable region of the system, and Figure 3b–e
present the fixed-point plots of the system. The bend curves in the figures (in the range
marked by the red lines) are jump phenomena. In the range of system frequencies, the
system has a greater amplitude due to energy conversion, and the fixed-point plots are
used to verify the correctness of the system parameter excitation instability region. The cor-
rectness of the instability region of the first mode of the system is first verified. Figure 3b,c
present the fixed-point plots when the external force is equal to 0.6 and the external force is
equal to 0.3 when the system frequency is equal to 1 (δ = ωm

2 = 1). It can be seen from
Figure 3b,c that the offset ratio of the fixed-point plots peaks is about 1.9335. Figure 3d,e
present the fixed-point plots when the external force is equal to 0.6 and the external force is
equal to 0.3 when the system frequency is equal to 2 (δ = ωm

2 = 4). It can also be seen that
the offset ratio of the fixed-point plots peaks in Figure 3d,e is about 4.0192. In Figure 3a, the
ratios of the unstable regions in the external force equal to 0.6 and external force equal to
0.3 are 1.9332 and 4.0183, which is consistent with the ratios presented in the fixed-point
plots in the above four cases.

Additionally, time–response plots and phase plots are created using the fourth-order
Runge–Kutta method to verify the maximum amplitude point (indicated by a black circle)
of fixed-point plots. Taking Figure 3b as an example, in the upper right corner is the
phase plot. It can be seen that the system converges to multiple irregular shapes, which
demonstrates the phenomenon of instability. In the lower right corner of Figure 3b is the
time–response plot. It can be seen that the amplitude is consistent with the amplitude of
the fixed-point plots, so the correctness of the fixed-point plots and the unstable region of
the disturbance in the system parameters is verified.

3.5. Voltage Generation

To achieve the best voltage generation efficiency, precise placement (repositioning) of
the PZT at the maximum deformation (amplitude) location of the elastic beam is essential.
The maximum amplitude can be determined by means of fixed-point plots. By combining
the piezoelectric coupling nonlinear beam equation (Equation (40)) with the voltage func-
tion (Equation (10)) and setting the magnitude of the external force (actuator amplitude) to
0.6, The theoretical voltage output can be calculated using the fourth-order Runge–Kutta
(RK-4) method. The results are presented as response graphs of voltage versus time, as
depicted in Figure 4. Specifically, Figure 4a,b illustrate the theoretical voltage diagrams of
the first mode when the PZT is placed at the maximum amplitude of the beam and at the
root of the beam, respectively. Likewise, Figure 4c,d depict the theoretical voltage diagrams
of the second mode with the PZT placed at the maximum amplitude and the root of the
beam, respectively. Finally, the root mean square values are tabulated in Table 1 for easy
comparison and analysis.

Table 1. Dimensionless root mean square value with no additional slapping force.

PZT at Max. Amp. PZT at Root.

first mode 0.4248 0.4075
second mode 0.4778 0.4129

Based on the observations from Figure 4 and Table 1, it is evident that voltage genera-
tion increases with increasing system frequency, with higher frequency resulting in better
voltage generation efficiency. Whether considering the first mode or the second mode of the
beam, voltage generation at the maximum amplitude of the beam outperforms that at the
root. Repositioning the piezoelectric patch to the middle of the elastic steel sheet enhances
vibration energy harvesting. In this study, the patch is strategically placed at the point of
maximum deformation during vibration, leading to an increase in the mechanical stress on
the piezoelectric material. This heightened stress results in improved energy conversion ef-
ficiency and higher voltage generation. In the following sections, a comprehensive analysis
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will be undertaken to explore the benefits of voltage generation by introducing baffles at
the maximum amplitude position of the beam to enhance the slapping force.
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Figure 4. Theoretical voltage of each mode: (a) the first mode with PZT placed at the maximum
amplitude position; (b) the first mode with PZT placed at the root; (c) the second mode with PZT
placed at the maximum amplitude position; (d) the second mode with PZT placed at the root.

4. Voltage Generation Benefit Analysis of Slapping Force

In this section, the findings of the theoretical model are presented. The installation of
a piezoelectric patch at the point of maximum deformation, coupled with the addition of a
baffle to introduce a slapping force, was investigated. The voltage generation efficiency
of the baffle was compared at two key location: the maximum amplitude position of the
elastic beam and the half-maximum amplitude position. For a clearer understanding, the
detailed coordinate definitions and the components of the theoretical model are illustrated
in Figure 5a,b, respectively.
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The impact force of the elastic beam hitting the baffle is regarded as the slapping force
on the PZT, and the slapping force is expressed as:

F = ρA
..

WFδ
(
t− T

)
, t > 0 (41)

T is the slapping period, δ(t) is the Dirac function.
Divide Equation (41) by EI

ρAl
3 to obtain the dimensionless slapping force, F =

..
WF δ(t− T) .

Then, add Equation (41) to Equation (12) to obtain the dimensionless nonlinear beam equa-
tion with the slapping force as follows:
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Using the small perturbation method, and letting ξn = ξn + ξ̃n, where ξn is the
equilibrium term and ξ̃n is the perturbation term, assuming that W = (ξn + ξ̃n)φn and
substituted into Equation (42), the beam equation with slapping force is expanded using
the orthogonal method as follows:
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(43)

Substitute the first mode (m = 1, ωm ≈ 1) and the second mode (m = 2, ωm ≈ 2)
into Equation (43), and use the fourth-order Runge–Kutta (RK-4) method to calculate the
theoretical voltage value. The magnitude of the external force was fixed at 0.6, and the
theoretical voltage value of the additional slapping force was calculated using the RK-4
numerical method, as depicted in Figure 6a–d. The root mean square values were compiled
and are presented in Table 2.

Table 2. RMS value of dimensionless voltage with additional slapping force.

Max Amp. 1/2 Max Amp.

first mode 0.4988 0.4211
second mode 0.5002 0.4857
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It can be seen from Figure 6a–d and Table 2 that voltage generation will increase
with increasing system frequency, resulting in higher voltage generation efficiency. In
addition, due to the higher impacting frequency of the second mode, its electric power
generation efficiency is also higher than that of the first mode. According to the numerical
analysis results (Tables 1 and 2), it can be seen that the additional slapping force has higher
voltage generation efficiency, and the voltage generation efficiency generated by the higher
deformation and slapping force at the maximum amplitude is the best.

The methodology used in this study takes an innovative approach by combining
the principles of piezoelectric energy conversion and mechanical augmentation. Rather
than solely focusing on the traditional placement of piezoelectric materials, the strategic
positioning of the patch for heightened energy conversion is explored. Furthermore,
the incorporation of the baffle introduces an inventive dimension to energy harvesting,
resulting in a remarkable enhancement of voltage generation. This unique methodological
framework contributes to the novelty of this study, as it goes beyond the established
paradigms of vibration energy harvesting.
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5. Experimental Analysis

In order to further verify the results of this study, a simple experiment was set up, as
shown in Figure 7. This energy harvesting system was divided into three parts, namely,
the actuator, the elastic steel sheet installed with the piezoelectric patch, and the baffle
for generating slapping force. The design principle was to use the disturbance generated
by the actuator at the end of the elastic steel to cause buckling vibration in the steel sheet
equipped with a piezoelectric patch, and to collect the vibration energy generated by the
deformation and slapping of the steel.
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The end point of the steel was fixed to the actuator with screws (Figure 9) to ensure that 
the frequency of the actuator excitation was able to directly affect the frequency of the 
elastic steel. In this way, by changing the frequency of the actuator, the unstable region of 
the system could be excited, and the piezoelectric patch could be placed at the maximum 
amplitude position of the steel to harvest energy. Additional baffles were added at the 
location of maximum vibration amplitude to generate slapping force to increase voltage 
generation efficiency. The experimental setup is shown in Figure 10. 
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Figure 7. Schematic diagram of the slapping energy harvesting system for axial excitation.

5.1. Experimental Setup Design

In order to confirm whether this device works, the VEH system’s parts were made
using a 3D printer. One end of the steel was fixed, and the other end was provided with a
horizontally movable slide rail (Figure 8). Then, the actuator was used to excite the system.
The end point of the steel was fixed to the actuator with screws (Figure 9) to ensure that
the frequency of the actuator excitation was able to directly affect the frequency of the
elastic steel. In this way, by changing the frequency of the actuator, the unstable region of
the system could be excited, and the piezoelectric patch could be placed at the maximum
amplitude position of the steel to harvest energy. Additional baffles were added at the
location of maximum vibration amplitude to generate slapping force to increase voltage
generation efficiency. The experimental setup is shown in Figure 10.
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5.2. Natural Frequency and Internal Resistance

Before commencing the experiment, the natural frequency of the elastic steel was
verified using an impact hammer, accelerometer, and fast Fourier transform (from the imc©
system, TÜV Rheinland, Kölle, Germany). These tools allowed us to determine the first two
natural frequencies of the steel, which were found to be 16.2 Hz and 28.8 Hz, as illustrated
in Figure 11. To analyze the voltage generation of the slapping force energy harvesting
system, it is essential to introduce resistance into the system in the form of the system load.
By incorporating an appropriate additional resistance value that is close to the internal
resistance of the system, the optimal electrical power output can be achieved, enabling us
to maximize the system’s overall power efficiency. The following describes the estimation
of internal resistance. First, the electric power equation is as follows:

P = IV = I2R =
V2

R
(44)

where P is power, I denotes current, V represents voltage, and R is resistance. Thevenin’s
theorem was used to find the internal resistance. Thevenin’s theorem gives

VL =
RL

RT + RL
VT (45)

where RT is internal resistance, RL denotes the loading resistance, VT is the open circuit
voltage, and VL is the loading voltage. From Equations (44) and (45):

P =
V2

L
RL

=

R2
L
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2 V2

T

RL
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RLV2
T

(RT − RL)
2 + 4RT RL

=
V2

T
(RT−RL)

2

RL
+ 4RT

(46)

The optimal electric power output is achieved when the loading resistance matches the
internal resistance of the system. To determine the internal resistance of this system, a 20 K
ohm load was arbitrarily selected for the system, and an output voltage of 0.82865 volts was
measured. By substituting this result into Equations (45) and (46), the theoretical internal
resistance value was calculated to be 65.9 K ohms. In a subsequent step, the load resistance
within the range of 36 K to 76 K ohms was experimentally tested, and the corresponding
output voltage and power were measured, as presented in Table 3. The imc© system was
utilized to obtain the open circuit voltage of the system, which was then processed through
the Butterworth filter to acquire the voltage measurements. Specifically, the first mode of
this system was excited without any baffles, resulting in an average open-circuit voltage of
3.625 volts (as indicated in Table 3). Based on the data presented in Table 3, the ohm–volt
diagram and the ohm–power diagram were constructed, and are depicted in Figure 12a,b,
respectively. These diagrams reveal that the highest output power of 0.0514 mW was
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attained when the load resistance was set to 66 K ohms. Therefore, in the subsequent
sections, when evaluating the power generation efficiency of the system, a load resistance
of 66 K ohms was utilized as the experimental configuration.
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Figure 11. Natural frequency of the elastic steel sheet.

Table 3. Voltages and powers for different load resistances.

KΩ

Open Circuit 36 46 56 66 76

Case 1 (V) 3.622 1.228 1.4983 1.629 1.827 1.90
Case 2 (V) 3.628 1.2236 1.459 1.6668 1.857 2.028

Average (V) 3.625 1.2258 1.4787 1.6479 1.842 2.0225
Power (mW) — 0.0417 0.0475 0.0485 0.0514 0.0508

Sensors 2023, 23, x FOR PEER REVIEW 21 of 32 
 

 

Figure 11. Natural frequency of the elastic steel sheet. 

The optimal electric power output is achieved when the loading resistance matches 
the internal resistance of the system. To determine the internal resistance of this system, a 
20 K ohm load was arbitrarily selected for the system, and an output voltage of 0.82865 
volts was measured. By substituting this result into Equations (45) and (46), the theoretical 
internal resistance value was calculated to be 65.9 K ohms. In a subsequent step, the load 
resistance within the range of 36 K to 76 K ohms was experimentally tested, and the cor-
responding output voltage and power were measured, as presented in Table 3. The imc© 
system was utilized to obtain the open circuit voltage of the system, which was then pro-
cessed through the Butterworth filter to acquire the voltage measurements. Specifically, 
the first mode of this system was excited without any baffles, resulting in an average open-
circuit voltage of 3.625 volts (as indicated in Table 3). Based on the data presented in Table 
3, the ohm–volt diagram and the ohm–power diagram were constructed, and are depicted 
in Figure 12a,b, respectively. These diagrams reveal that the highest output power of 
0.0514 mW was attained when the load resistance was set to 66 K ohms. Therefore, in the 
subsequent sections, when evaluating the power generation efficiency of the system, a 
load resistance of 66 K ohms was utilized as the experimental configuration. 

  
(a) (b) 

Figure 12. Voltages and powers for different load resistances: (a) ohm–volt diagram; (b) ohm–power 
diagram. 

Table 3. Voltages and powers for different load resistances. 

  KΩ 
 Open Circuit 36 46 56 66 76 

Case 1 (V) 3.622 1.228 1.4983 1.629 1.827 1.90 
Case 2 (V) 3.628 1.2236 1.459 1.6668 1.857 2.028 

Average (V) 3.625 1.2258 1.4787 1.6479 1.842 2.0225 
Power (mW) — 0.0417 0.0475 0.0485 0.0514 0.0508 

5.3. System Voltage Measurement 
Based on the measured natural frequencies, the first mode was excited at 16.2 Hz in 

this experiment, while the second mode will be excited at 28.8 Hz. Measurements were 
initially conducted on the system without any additional slapping force. The voltage gen-
eration efficiency of the PZT was measured when installed at both the root and at the 
maximum amplitude position of the elastic steel. The voltage output of the system was 
recorded, and subsequently, the root mean square value was calculated from the collected 
data. Next, a baffle was introduced at the maximum amplitude position of the elastic steel, 
and the voltage generation efficiency was measured when the slapping force was applied 
at both the maximum amplitude position and at the half-maximum amplitude position of 
the steel. In this part of the experiment, the first mode was excited at 16.2 Hz and the 
second mode at 28.8 Hz. To calculate the output voltage of the system, a 66 K load 

Figure 12. Voltages and powers for different load resistances: (a) ohm–volt diagram; (b) ohm–power diagram.

5.3. System Voltage Measurement

Based on the measured natural frequencies, the first mode was excited at 16.2 Hz in
this experiment, while the second mode will be excited at 28.8 Hz. Measurements were
initially conducted on the system without any additional slapping force. The voltage
generation efficiency of the PZT was measured when installed at both the root and at the
maximum amplitude position of the elastic steel. The voltage output of the system was
recorded, and subsequently, the root mean square value was calculated from the collected



Sensors 2023, 23, 7610 21 of 32

data. Next, a baffle was introduced at the maximum amplitude position of the elastic steel,
and the voltage generation efficiency was measured when the slapping force was applied at
both the maximum amplitude position and at the half-maximum amplitude position of the
steel. In this part of the experiment, the first mode was excited at 16.2 Hz and the second
mode at 28.8 Hz. To calculate the output voltage of the system, a 66 K load resistance was
connected in series. The voltage of the non-slapping force system was then measured,
and the voltage generation efficiency of the elastic beam was measured when the PZT
was installed at the maximum amplitude and at the root, respectively (Figure 13a–d). The
results were compiled and are presented as root mean square values in Table 4.
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Figure 13. Experimental voltage diagram without slapping force: (a) the first mode with PZT placed
at the maximum amplitude position of the elastic steel; (b) the first mode with PZT placed at the root
of the elastic steel; (c) the second mode with PZT placed at the maximum amplitude position of the
elastic steel; (d) the second mode with PZT placed at the root of the elastic steel.

From the experimental results, the voltage generation efficiency generated at the
maximum amplitude position can be observed to be better in the condition with no slapping
force. Subsequently, a baffle was installed in this system to analyze the effect of the slapping
force. The voltage generation efficiency was measured of the baffle located at the maximum
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amplitude position of the elastic beam and at the half-maximum amplitude position,
respectively (Figure 14a–d). The root mean square results are presented Table 5. From the
above voltage measurement results of the slapping force, it can be seen that the voltage
generation efficiency at the maximum amplitude is also better. In the next Section, the
numerical analysis results will be compared with the experimental results.

Table 4. Experimental voltage and power output without slapping force.

First Mode Second Mode

Max Amp. Root Max Amp. Root

Voltage (V) 1.9096 1.8296 2.7845 2.6407
Power (mW) 0.057 0.052 0.117 0.106
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Table 5. Experimental voltage output with the slapping force.

First Mode Second Mode

Max Amp. 1/2 Max Amp. Max Amp. 1/2 Max Amp.

Voltage (V) 2.7412 2.4984 3.8263 3.5596
Power (mW) 0.114 0.095 0.222 0.192

6. Verification of Experimental Results with Theory

Figure 15 presents the experimental verification of the maximum amplitude. For
instance, in Figure 15c, a laser displacement gauge was utilized to measure the amplitude
of the buckling in the elastic steel sheet. The measured vibration values ranged between
82 mm and 38 mm, and the maximum vibration amplitude was determined to be 2.2 cm,
after dividing the value by 2. Considering that the length of the elastic steel sheet is 42 cm,
the experimental maximum amplitude after dimensionless conversion was found to be
0.0523. Comparing this experimental result with the theoretical maximum amplitude of
0.0547, calculated using fixed-point plots in Figure 15b, the error was calculated to be 4.7%.
This validates the accuracy of the theory regarding the maximum amplitude point of the
fixed-point plots.

Next, the dimensional theoretical voltage diagrams of the non-slapping force were
computed using the RK-4 method (Figure 16a–d). The theoretical and experimental results
are then summarized in Table 6. Experimental and theoretical verification also confirmed
that the best voltage output effect was achieved by placing PZT in the middle of the elastic
steel. With these considerations taken into account, theoretical values were derived, and
the dimensional voltage values were calculated. Subsequently, a comparison between
these theoretical values and the experimental measurements was conducted to assess their
correlation and agreement.

Table 6. Comparison of dimensioned theoretical and experimental voltage values without
slapping force.

First Mode Second Mode

Max Amp. Root Max Amp. Root

Theo. (V) 2.0235 1.9247 3.0403 2.8710
Exp. (V) 1.9096 1.8296 2.7845 2.6407

Error (%) 5.63 4.92 8.41 8.02

As observed from Table 6, the errors between the theoretical results (with dimension)
and the experimental voltage values do not exceed 10%, providing sufficient evidence to
validate the accuracy of the theory in the slap-free system.

Subsequently, the dimensional theoretical voltage diagram was calculated, considering
the slapping force, using numerical methods (Figure 17a–d). The results, along with the
corresponding experimental data, are presented in Table 7. Furthermore, the experimental
voltage values from the systems both without slapping force and with slapping force were
compiled and are presented for direct comparison in Table 8.

Table 7. Comparison of dimensioned theoretical and experimental voltage values with slapping force.

First Mode Second Mode

Max Amp. 1/2 Max Amp. Max Amp. 1/2 Max Amp.

Theo. (V) 2.8703 2.6777 4.0654 3.8689
Exp. (V) 2.7412 2.4984 3.8263 3.5596

Error (%) 4.71 7.18 6.25 8.68



Sensors 2023, 23, 7610 24 of 32

Sensors 2023, 23, x FOR PEER REVIEW 24 of 32 
 

 

This validates the accuracy of the theory regarding the maximum amplitude point of the 
fixed-point plots. 

 
Figure 15. Experimental verification of the maximum amplitudes of the fixed-point plots. (a) the 
unstable regions of the parametric excitation; (b) the fixed points plot of dimensionless frequency = 
1, excitation force = 0.6; (c) experimental measured displacement, red lines represent the range of 
the amplitude of case (b); (d) the fixed points plot of dimensionless frequency = 0.1, excitation force 
= 0.3;(e) experimental measured displacement, red lines represent the range of the amplitude of case 
(d); (f) the fixed points plot of dimensionless frequency = 4, excitation force = 0.6; (g) experimental 
measured displacement, red lines represent the range of the amplitude of case (f); (h) the fixed 
points plot of dimensionless frequency = 4, excitation force = 0.3; (i) experimental measured dis-
placement, red lines represent the range of the amplitude of case (h). 

Next, the dimensional theoretical voltage diagrams of the non-slapping force were 
computed using the RK-4 method (Figure 16a–d). The theoretical and experimental results 
are then summarized in Table 6. Experimental and theoretical verification also confirmed 
that the best voltage output effect was achieved by placing PZT in the middle of the elastic 
steel. With these considerations taken into account, theoretical values were derived, and 
the dimensional voltage values were calculated. Subsequently, a comparison between 
these theoretical values and the experimental measurements was conducted to assess their 
correlation and agreement. 

Figure 15. Experimental verification of the maximum amplitudes of the fixed-point plots. (a) the
unstable regions of the parametric excitation; (b) the fixed points plot of dimensionless frequency = 1,
excitation force = 0.6; (c) experimental measured displacement, red lines represent the range of the
amplitude of case (b); (d) the fixed points plot of dimensionless frequency = 0.1, excitation force = 0.3;
(e) experimental measured displacement, red lines represent the range of the amplitude of case
(d); (f) the fixed points plot of dimensionless frequency = 4, excitation force = 0.6; (g) experimental
measured displacement, red lines represent the range of the amplitude of case (f); (h) the fixed points
plot of dimensionless frequency = 4, excitation force = 0.3; (i) experimental measured displacement,
red lines represent the range of the amplitude of case (h).

Table 8. Comparison of experimental voltage output of the system with/without slapping force.

Max Amp.

First Mode Second Mode

No slap (V) 1.9096 2.7845
Slap (V) 2.7412 3.8263

Increase (%) 43.55 37.41
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Figure 16. Dimensional theoretical voltage diagram without slapping force: (a) the first mode with
PZT placed at the maximum amplitude position of the elastic steel; (b) the first mode with PZT
placed at the root of the elastic steel; (c) the second mode with PZT placed at the maximum amplitude
position of the elastic steel; (d) the second mode with PZT placed at the root of the elastic steel.

As shown in Table 7, the errors between the theoretical predictions and the experi-
mental voltage values do not exceed 10%, providing substantial evidence to validate the
accuracy of the theory concerning the slapping force system. Moreover, Table 8 clearly
demonstrates that the voltage generation benefits of additional slapping force are signifi-
cantly higher than those without slapping force. According to the experimental results, the
voltage value for the first mode without slapping force is approximately 1.9096 V. However,
after considering the effect of the slap, the voltage increases to around 2.7412 V. Similarly,
for the second mode, the voltage increases from approximately 2.7845 V to about 3.8263 V.
These findings confirm that the combined action of deformation and slapping force does
indeed lead to higher power generation efficiency.
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Figure 17. Theoretical dimensional voltage output with the slapping force: (a) the first mode, baffle
placed at the maximum amplitude position of the elastic steel; (b) the second mode, baffle placed at the
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amplitude position of the elastic steel; (d) the second mode, baffle placed at the half-maximum
amplitude position of the elastic steel.

To further investigate the voltage generation efficiency in the unstable region depicted
in Figure 3a, the RK-4 numerical method was employed to calculate the dimensional
theoretical voltage of the system in both the unstable and stable regions. The results were
then compared with the experimental data, as illustrated in Figure 18. The output voltage
values are also presented in Table 9 for detailed analysis. In the unstable region of the
system, the amplitude becomes larger, resulting in higher power generation efficiency. In
Figure 18, the results of experiments conducted with fixed system frequency while adjusting
the external force to assess system stability are presented. For instance, in Figure 18c, the
measurements are presented for when the system frequency was set to 13.8 Hz and the
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external force to 0.4, causing the system to enter the unstable region. Measurements were
taken for 15 s in this state. Subsequently, the external force was adjusted to 0.3, bringing
the system into a stable region, and measurements were continued for another 15 s. The
experimental results clearly demonstrated a significant voltage drop in the stable region,
consistent with the theoretical prediction shown in Figure 19b. This observation confirmed
the relationship between system stability and voltage generation efficiency within the scope
of this study.
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From the results presented in Table 9, it is evident that, irrespective of the fixed system
frequency, a higher voltage generation efficiency is observed when the external force is set
at 0.4, corresponding to the unstable region. Conversely, lowering the external force magni-
tude to 0.3, within the stable region, significantly reduces the voltage generation benefit.
The error between theoretical calculations and experimental measurements remains below
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10%, confirming the accuracy of predicting unstable range of the parameter disturbance.
Moreover, to explore the system’s stability, the external force remained constant at 0.4, while
the system frequency was varied in order to observe its behavior. The voltage generation
efficiency within both stable and unstable regions was assessed. Using the RK-4 numerical
method, the dimensional theoretical voltages of the system were computed for both regions.
Subsequently, these theoretical values were compared and validated against experimental
results, as depicted in Figure 19, and the corresponding findings are presented in Table 10
for comprehensive analysis.

Table 9. Comparison of theoretical and experimental root mean square values of the unstable region
of the system under different external forces.

Input FrEq. 13.8 Hz 17.8 Hz 28 Hz 29.5 Hz

Ext. Force 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3

Theo. (V) 1.5006 1.2491 2.5302 1.9616 3.3838 0.2072 3.5125 0.1375
Exp. (V) 1.4454 1.1806 2.3971 1.8999 3.1409 0.1901 3.2235 0.1242
Error (%) 3.68 5.49 5.26 3.15 7.18 8.25 8.23 9.72
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Table 10. Comparison of theoretical and experimental root mean square values of the unstable region
of the system at different frequencies.

External Force ε=0.4

Input FrEq. 16.2 13 16.2 19 28.8 27.5 28.8 30

Theo. (V) 1.6967 0.8997 1.6967 0.7504 3.2076 2.3210 3.2076 1.3783
Exp. (V) 1.6039 0.8587 1.5549 0.7066 3.0251 2.1551 3.0664 1.2554
Error (%) 5.47 4.56 8.35 5.84 5.69 7.15 4.40 8.92

Whether the system falls within the unstable range can be determined by observing
the voltage values. In Figure 19, a fixed magnitude of the external force was maintained
while adjusting the input frequency of the system. Consider the experimental measurement
in Figure 19c as an example. Initially, the magnitude of the external force was set at 0.4,
and the system frequency was adjusted to 16.2 Hz, corresponding to the first mode. Conse-
quently, the system entered the unstable region, and the voltage was measured for 15 s in
this state. Subsequently, the system frequency was adjusted to 13 Hz, placing the system
within the stable region, and the voltage was measured again for 15 s. The results clearly
illustrate that the voltage of the system experiences a significant drop in the stable region,
confirming the theoretical prediction shown in Figure 19b. This correlation between system
stability and voltage generation efficiency is evident from the experimental measurements.
In the study by Mei et al. [27], a comparison of recent clamped–clamped energy harvesters’
key characteristics was conducted. Resonant frequencies range from 27 to 70 Hz, with
voltage and power output varying from 0.028 V to 4.05 V and 0.08 µW~1.9 µW, respectively.
Power densities span from 2.68 × 10−3 µW/mm3~3.73 × 10−2 µW/mm3. The present
investigation achieved a maximum voltage and power output of 3.83 V and 0.222 mW
with slapping force (as shown in Table 5), resulting in a power density of approximately
0.66 µW/mm3. Parametric excitation enabled diverse modal frequencies, effectively en-
hancing power generation across different ranges. Notably, this design offers a broader
bandwidth advantage over traditional devices, as illustrated in Figure 19, thus showcasing
the benefits of this study.

To address the concern regarding piezoelectric patch brittleness, several measures
were taken to ensure its reliability and durability. Firstly, piezoelectric materials known
for their mechanical robustness and flexibility were carefully selected, enhancing their
capacity to withstand potential impacts and stress. In this experiment, PZT-grade PZT-5H,
a widely recognized flexible piezoelectric material, was employed. The experiment was
repeated five times, with each slap lasting five minutes. Importantly, even after a brief
period, no decrease in voltage output was observed, highlighting the durability of PZT-5H
within these specific conditions and its suitability for this application. Secondly, during the
integration process, the PZT was meticulously affixed to ensure proper attachment to the
elastic steel while minimizing stress concentrations. This research introduces the concept
of slapping and includes experiments that validate its feasibility. For the selection of future
PZT materials or the potential addition of protective devices to the PZT, these avenues
offer the opportunity to enhance PZT’s real-time protection. These considerations provide
valuable directions for subsequent research in this field.

Based on the findings presented in Table 10, it is evident that when the external
force is fixed at 0.4 and the system frequency is set to 16.2 Hz for the first mode and
28.8 Hz for the second mode (resulting in the system being within the unstable region),
the voltage generation efficiency is notably high, reaching an output of above 3 volts.
Conversely, when the system frequency is set to 13 Hz, 19 Hz, 27.5 Hz, or 30 Hz (placing the
system in the stable region), the voltage generation efficiency experiences a significant drop.
The error between the theoretically calculated values and the experimentally measured
values is within 10%, further confirming the accuracy of predicting the unstable range of
parametric excitation. This result once again validates the correctness of the theoretical
predictions with respect to the unstable range of parameter excitation. The results of this
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study underscore the novelty of the present approach. By comparing the voltage generation
benefits of the first and second modes, light is shed on the un-slapped potential of the latter
in vibration energy harvesting systems. Moreover, the incorporation of the baffle introduces
an unprecedented boost in voltage generation, clearly demonstrating the innovative edge of
this proposed methodology. These findings reinforce the originality of this research and its
potential to revolutionize energy harvesting efficiency. This study additionally investigates
the frequency response of parametric excitation, extending the resonant frequency range
around the linear natural frequency (Figure 19). This expansion contributes to a broader
usable bandwidth compared to conventional designs.

7. Conclusions

This study delved into the analysis of parametric excitation in a nonlinear elastic beam
with fixed–fixed (roller) boundary conditions. The equation of motion was derived using
Newton’s Second Law, Euler’s angle transformation, and the Taylor series, within the
framework of nonlinear beam theory. Employing the method of multiple scales (MOMS),
the phenomenon of parametric excitation was investigated. Verification of the presence of
unstable regions was achieved through the generation of fixed-point plots, time–response
plots, and phase plots. These plots affirm the accuracy of pinpointing unstable regions.
Furthermore, this study integrated the piezoelectric equation with the nonlinear equation,
enabling exploration of the nonlinear system’s unstable regions under a variety of fre-
quencies and external forces. This exploration aimed to determine the maximum voltage
efficiency achievable. In the final phase, a baffle was introduced into the system to impart
a slapping force onto the Piezoelectric (PZT) element. Through this addition, we aimed
to assess the potential enhancement of power conversion benefits. This comprehensive
investigation yielded the following conclusions:

1. The system’s parametric excitation characteristics allow for vibration control by alter-
ing the frequency of the nonlinear elastic beam system or adjusting the magnitude of
the external force. To analyze the maximum amplitude point of the system, fixed-point
plots were employed, while time–response and phase plots were utilized to validate
the accuracy of the results obtained.

2. By examining the stable and unstable regions in the parameter plane through dia-
grams, the system’s stability can be determined. When the system falls within the
unstable region, a larger amplitude is exhibited, resulting in higher power generation
efficiency. Consequently, the assessment of whether the system resides in the unstable
region is accomplished by experimentally measuring the voltage magnitude, as well.

3. To achieve the optimal electric power output from the system, the internal resistance
value was calculated to be 66 K ohms. Both theory and experiments showed that
better power generation benefits were yielded by the second mode compared to the
first mode. This was attributed to the higher impacting frequency of the second mode,
resulting in increased electric power generation efficiency compared to when using the
first mode. While the theoretical voltage was higher than the experimental voltage, the
discrepancy remained within an acceptable range of 10%. Furthermore, the addition
of a baffle (slapping force) further enhanced the voltage generation benefits, leading
to even higher power conversion efficiency.

4. The conventional vibration energy harvesting system utilized the vibration defor-
mation of an elastic beam to generate electricity. In this research, a slapping force
was introduced to enhance the voltage generation efficiency. The voltage generation
output was evident, showcasing significant potential in the future industrial market
for wireless sensors or microelectro-mechanical system structures.

This study presents a novel perspective on vibration energy harvesting, focusing on
precise positioning and enhancement techniques. By highlighting the advantages of the
second mode, revealing the benefits of the added baffle, and expanding the bandwidth of
the resonant vibration region, this work contributes substantially to current knowledge in
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this area. The unique insights and inventive methodologies showcased here hold promising
potential for advancing energy generation systems in various sectors.
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