Real-Time Nitrate Ion Monitoring with Poly(3,4-ethylenedioxythiophene) (PEDOT) Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Vapor Phase Polymerization
2.3. Characterization of the PEDOT:Tos Film
2.4. Experiments for Water Absorption and Nitrate Sensing
3. Results and Discussion
3.1. Significance of Water in the Synthesis of PEDOT:Tos
3.2. Properties of Pristine PEDOT:Tos Film
3.3. Water Exposure Assessment
3.4. Nitrate Sensing
3.4.1. General Nitrate Sensing and Repeatability
3.4.2. XPS Data Analysis
3.4.3. Fabrication Variations on Nitrate Sensitivity
- A fabrication temperature of 42 °C.
- A fabrication pressure of −97.517 kPa.
- A polymerization time of 50 min.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karunanidhi, D.; Aravinthasamy, P.; Subramani, T.; Kumar, M. Human health risks associated with multipath exposure of groundwater nitrate and environmental friendly actions for quality improvement and sustainable management: A case study from Texvalley (Tiruppur region) of India. Chemosphere 2021, 265, 129083. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.; Jones, R.; Brender, J.; de Kok, T.; Weyer, P.; Nolan, B.; Villanueva, C.; van Breda, S. Drinking water nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC Regulation. J. Sci. Food Agric. 2005, 86, 10–17. [Google Scholar] [CrossRef]
- Freeman, L.; Wolford, R.W. Methemoglobinemia secondary to cleaning solution ingestion. J. Emerg. Med. 1996, 14, 599–601. [Google Scholar] [CrossRef]
- Shahnia, S.; Ebendorff-Heidepriem, H.; Evans, D.; Afshar, S. A fibre-optic platform for sensing nitrate using conducting polymers. Sensors 2020, 21, 138. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Rajh, T.; Guha, S. Photonic microresonator based sensor for selective nitrate ion detection. Sens. Actuators B Chem. 2021, 328, 129027. [Google Scholar] [CrossRef]
- Monteiro-Silva, F.; Jorge, P.A.; Martins, R.C. Optical sensing of nitrogen, phosphorus and potassium: A spectrophotometrical approach toward smart nutrient deployment. Chemosensors 2019, 7, 51. [Google Scholar] [CrossRef]
- Ghaffari, S.; Caron, W.O.; Loubier, M.; Normandeau, C.O.; Viens, J.; Lamhamedi, M.; Gosselin, B.; Messaddeq, Y. Electrochemical impedance sensors for monitoring trace amounts of NO3 in selected Growing Media. Sensors 2015, 15, 17715–17727. [Google Scholar] [CrossRef]
- Baumbauer, C.L.; Goodrich, P.J.; Payne, M.E.; Anthony, T.; Beckstoffer, C.; Toor, A.; Silver, W.; Arias, A.C. Printed potentiometric nitrate sensors for use in soil. Sensors 2022, 22, 4095. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.; Weber, R.J.; Kumar, R.; Dong, L. Nutrient sensing using chip scale electrophoresis and in situ soil solution extraction. IEEE Sens. J. 2017, 17, 4330–4339. [Google Scholar] [CrossRef]
- Kock, F.V.; Machado, M.P.; Athayde, G.P.; Colnago, L.A.; Barbosa, L.L. Quantification of paramagnetic ions in solution using time domain NMR. pros and cons to optical emission spectrometry method. Microchem. J. 2018, 137, 204–207. [Google Scholar] [CrossRef]
- Picó, Y. Chromatography–mass spectrometry: Recent evolution and current trends in environmental science. Curr. Opin. Environ. Sci. Health 2020, 18, 47–53. [Google Scholar] [CrossRef]
- Swinney, K.; Bornhop, D.J. Detection in capillary electrophoresis. Electrophoresis 2000, 21, 1239–1250. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A.; Zaborski, M. Polymer-based sensors: A Review. Polym. Test. 2018, 67, 342–348. [Google Scholar] [CrossRef]
- Harito, C.; Utari, L.; Putra, B.R.; Yuliarto, B.; Purwanto, S.; Zaidi, S.Z.; Bavykin, D.V.; Marken, F.; Walsh, F.C. Review—The development of wearable polymer-based sensors: Perspectives. J. Electrochem. Soc. 2020, 167, 037566. [Google Scholar] [CrossRef]
- Palaparthy, V.S.; Baghini, M.S.; Singh, D.N. Review of polymer-based sensors for agriculture-related applications. Emerg. Mater. Res. 2013, 2, 166–180. [Google Scholar] [CrossRef]
- Alberti, G.; Zanoni, C.; Losi, V.; Magnaghi, L.R.; Biesuz, R. Current trends in polymer based sensors. Chemosensors 2021, 9, 108. [Google Scholar] [CrossRef]
- Das, T.K.; Prusty, S. Review on conducting polymers and their applications. Polym. Plast. Technol. Eng. 2012, 51, 1487–1500. [Google Scholar] [CrossRef]
- Quijada, C. Special issue: Conductive polymers: Materials and applications. Materials 2020, 13, 2344. [Google Scholar] [CrossRef]
- Guimard, N.K.; Gomez, N.; Schmidt, C.E. Conducting polymers in Biomedical Engineering. Prog. Polym. Sci. 2007, 32, 876–921. [Google Scholar] [CrossRef]
- Poddar, A.K.; Patel, S.S.; Patel, H.D. Synthesis, characterization and applications of conductive polymers: A brief review. Polym. Adv. Technol. 2021, 32, 4616–4641. [Google Scholar] [CrossRef]
- Elschner, A. Pedot: Principles and Applications of an Intrinsically Conductive Polymer; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Vázquez, M.; Bobacka, J.; Ivaska, A. Potentiometric sensors for Ag+ based on poly(3-octylthiophene) (POT). J. Solid State Electrochem. 2005, 9, 865–873. [Google Scholar] [CrossRef]
- Bomar, E.; Owens, G.; Murray, G. Nitrate ion selective electrode based on ion imprinted poly(n-methylpyrrole). Chemosensors 2017, 5, 2. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X.; Perman, J.A.; Ma, S. A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J. Mater. Chem. A 2017, 5, 8385–8393. [Google Scholar] [CrossRef]
- Reynolds, J.R.; Thompson, B.C.; Skotheim, T.A. Conjugated Polymers: A Practical Guide to Synthesis; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Sakane, S.; Miwa, S.; Miura, T.; Munakata, K.; Ishibe, T.; Nakamura, Y.; Tanaka, H. Thermoelectric properties of Pedot:PSS containing connected copper selenide nanowires synthesized by the photoreduction method. ACS Omega 2022, 7, 32101–32107. [Google Scholar] [CrossRef] [PubMed]
- Yemata, T.A.; Zheng, Y.; Kyaw, A.K.; Wang, X.; Song, J.; Chin, W.S.; Xu, J. Improved thermoelectric properties and environmental stability of conducting PEDOT:PSS Films post-treated with imidazolium ionic liquids. Front. Chem. 2020, 7, 870. [Google Scholar] [CrossRef]
- Popov, A.; Brasiunas, B.; Mikoliunaite, L.; Bagdziunas, G.; Ramanavicius, A.; Ramanaviciene, A. Comparative study of polyaniline (pani), poly(3,4-ethylenedioxythiophene) (PEDOT) and pani-pedot films electrochemically deposited on transparent indium thin oxide based electrodes. Polymer 2019, 172, 133–141. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.P. Progress in understanding structure and transport properties of pedot-based materials: A critical review. Prog. Mater. Sci. 2020, 108, 100616. [Google Scholar] [CrossRef]
- Sun, F.; Huang, X.; Wang, X.; Liu, H.; Wu, Y.; Du, F.; Zhang, Y. Highly transparent, adhesive, stretchable and conductive pedot:PSS/polyacrylamide hydrogels for flexible strain sensors. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 625, 126897. [Google Scholar] [CrossRef]
- Alshawi, J.M.; Mohammed, M.Q.; Alesary, H.F.; Ismail, H.K.; Barton, S. Voltammetric determination of Hg2+, Zn2+, and Pb2+ ions using a PEDOT/NTA-Modified Electrode. ACS Omega 2022, 7, 20405–20419. [Google Scholar] [CrossRef]
- Rudd, S.; Dalton, M.; Buss, P.; Treijs, A.; Portmann, M.; Ktoris, N.; Evans, D. Selective uptake and sensing of nitrate in poly(3,4-ethylenedioxythiophene). Sci. Rep. 2017, 7, 16581. [Google Scholar] [CrossRef]
- Evans, D.R. Understanding pedot doped with tosylate. Chem. Commun. 2022, 58, 4553–4560. [Google Scholar] [CrossRef]
- Rudd, S.; Desroches, P.; Switalska, E.; Gardner, E.; Dalton, M.; Buss, P.; Charrault, E.; Evans, D. Relationship between structure/properties of vapour deposited pedot and sensitivity to passive nitrate doping. Sens. Actuators B Chem. 2019, 281, 582–587. [Google Scholar] [CrossRef]
- Mueller, M.; Fabretto, M.; Evans, D.; Hojati-Talemi, P.; Gruber, C.; Murphy, P. Vacuum vapour phase polymerization of high conductivity pedot: Role of PEG-ppg-peg, the origin of water, and choice of oxidant. Polymer 2012, 53, 2146–2151. [Google Scholar] [CrossRef]
- Yvenou, E.; Sandroni, M.; Carella, A.; Gueye, M.N.; Faure-Vincent, J.; Pouget, S.; Demadrille, R.; Simonato, J.P. Spray-coated Pedot:OTF Films: Thermoelectric Properties and integration into a printed thermoelectric generator. Mater. Chem. Front. 2020, 4, 2054–2063. [Google Scholar] [CrossRef]
- Chen, S.; Petsagkourakis, I.; Spampinato, N.; Kuang, C.; Liu, X.; Brooke, R.; Kang, E.S.; Fahlman, M.; Crispin, X.; Pavlopoulou, E.; et al. Unraveling vertical inhomogeneity in vapour phase polymerized Pedot:TOS films. J. Mater. Chem. A 2020, 8, 18726–18734. [Google Scholar] [CrossRef]
- Yang, X.; Shang, S.; Li, L.; Tao, X.M.; Yan, F. Vapor phase polymerization of 3,4-ethylenedioxythiophene on flexible substrate and its application on heat generation. Polym. Adv. Technol. 2009, 22, 1049–1055. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Rohtlaid, K.; Plesse, C.; Nguyen, G.T.; Soyer, C.; Grondel, S.; Cattan, E.; Madden, J.D.; Vidal, F. Ultrathin electrochemically driven conducting polymer actuators: Fabrication and electrochemomechanical characterization. Electrochim. Acta 2018, 265, 670–680. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, J.; Dong, W.; Chen, H.; Huang, X.; Sun, B.; Chen, L. Temperature dependent conductivity of vapor-phase polymerized PEDOT FILMS. Synth. Met. 2013, 176, 86–91. [Google Scholar] [CrossRef]
- Aasmundtveit, K.; Samuelsen, E.; Inganäs, O.; Pettersson, L.; Johansson, T.; Ferrer, S. Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxythiophene). Synth. Met. 2000, 113, 93–97. [Google Scholar] [CrossRef]
- Metsik, J.; Saal, K.; Mäeorg, U.; Lõhmus, R.; Leinberg, S.; Mändar, H.; Kodu, M.; Timusk, M. Growth of poly(3,4-ethylenedioxythiophene) films prepared by base-inhibited vapor phase polymerization. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 561–571. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, K.; Yu, C.J.; Nam, H.S.; Soh, H.; Lee, J. The effects of the surface morphology of poly(3,4-ethylenedioxythiophene) electrodes on the growth of pentacene, and the electrical performance of the bottom contact pentacene transistor. Solid-State Electron. 2012, 67, 70–73. [Google Scholar] [CrossRef]
- Ugur, A.; Katmis, F.; Li, M.; Wu, L.; Zhu, Y.; Varanasi, K.K.; Gleason, K.K. Low-dimensional conduction mechanisms in highly conductive and transparent conjugated polymers. Adv. Mater. 2015, 27, 4604–4610. [Google Scholar] [CrossRef] [PubMed]
- Volk, A.A.; Kim, J.S.; Jamir, J.; Dickey, E.C.; Parsons, G.N. Oxidative molecular layer deposition of PEDOT using volatile antimony(v) chloride oxidant. J. Vac. Sci. Technol. A 2021, 39, 032413. [Google Scholar] [CrossRef]
- Chacko, A.P.; Jin, Y.; Shi, Y.; Bunha, A.; Chen, J.; Lessner, P. Advances in reliability of conducting polymers and conducting polymer based capacitors in high humidity environment. ECS Trans. 2018, 85, 115–127. [Google Scholar] [CrossRef]
- Kuş, M.; Okur, S. Electrical characterization of PEDOT:PSS beyond humidity saturation. Sens. Actuators B Chem. 2009, 143, 177–181. [Google Scholar] [CrossRef]
- Kang, B.; Tang, H.; Zhao, Z.; Song, S. Hofmeister series: Insights of Ion specificity from amphiphilic assembly and Interface Property. ACS Omega 2020, 5, 6229–6239. [Google Scholar] [CrossRef]
Condition | Oxidant | wt% | Co-Polymer | wt% | Pressure (kPa) | Polymerization Time (min) | Temperature (°C) |
---|---|---|---|---|---|---|---|
Condition 1 | 21.3 | PEG-PPG-PEG | 10 | −97.517 | 30 | 40 | |
Condition 2 | 42 | ||||||
Condition 3 | 44 | ||||||
Condition 4 | 46 | ||||||
Condition 5 | 48 | ||||||
Condition 6 | 50 |
Condition | Oxidant | wt% | Co-Polymer | wt% | Pressure (kPa) | Polymerization Time (min) | Temperature (°C) |
---|---|---|---|---|---|---|---|
Condition 7 | 21.3 | PEG-PPG-PEG | 10 | −97.517 | 30 | 42 | |
Condition 8 | −96.840 | ||||||
Condition 9 | −96.162 | ||||||
Condition 10 | −95.485 | ||||||
Condition 11 | −94.808 | ||||||
Condition 12 | −94.131 |
Condition | Oxidant | wt% | Co-Polymer | wt% | Pressure (kPa) | Polymerization Time (min) | Temperature (°C) |
---|---|---|---|---|---|---|---|
Condition 13 | 21.3 | PEG-PPG-PEG | 10 | −97.517 | 25 | 42 | |
Condition 14 | 30 | ||||||
Condition 15 | 35 | ||||||
Condition 16 | 40 | ||||||
Condition 17 | 45 | ||||||
Condition 18 | 50 |
Condition | Pressure (kPa) | Polymerization Time (min) | Temperature (°C) | Sensitivity (%/log(ppm)) |
---|---|---|---|---|
Condition 1 | −97.517 | 30 | 40 | 8.508 |
Condition 2 | 42 | 9.972 | ||
Condition 3 | 44 | 9.239 | ||
Condition 4 | 46 | 8.69 | ||
Condition 5 | 48 | 8.387 | ||
Condition 6 | 50 | 9.336 | ||
Condition 7 | −97.517 | 30 | 42 | 9.972 |
Condition 8 | −96.840 | 8.785 | ||
Condition 9 | −96.162 | 7.504 | ||
Condition 10 | −95.485 | 9.101 | ||
Condition 11 | −94.808 | 4.921 | ||
Condition 12 | −94.131 | 7.304 | ||
Condition 13 | −97.517 | 25 | 42 | 6.078 |
Condition 14 | 30 | 9.972 | ||
Condition 15 | 35 | 9.171 | ||
Condition 16 | 40 | 9.113 | ||
Condition 17 | 45 | 10.502 | ||
Condition 18 | 50 | 12.331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohler, M.C.; Li, F.; Dong, Z.; Amineh, R.K. Real-Time Nitrate Ion Monitoring with Poly(3,4-ethylenedioxythiophene) (PEDOT) Materials. Sensors 2023, 23, 7627. https://doi.org/10.3390/s23177627
Kohler MC, Li F, Dong Z, Amineh RK. Real-Time Nitrate Ion Monitoring with Poly(3,4-ethylenedioxythiophene) (PEDOT) Materials. Sensors. 2023; 23(17):7627. https://doi.org/10.3390/s23177627
Chicago/Turabian StyleKohler, Michael C., Fang Li, Ziqian Dong, and Reza K. Amineh. 2023. "Real-Time Nitrate Ion Monitoring with Poly(3,4-ethylenedioxythiophene) (PEDOT) Materials" Sensors 23, no. 17: 7627. https://doi.org/10.3390/s23177627
APA StyleKohler, M. C., Li, F., Dong, Z., & Amineh, R. K. (2023). Real-Time Nitrate Ion Monitoring with Poly(3,4-ethylenedioxythiophene) (PEDOT) Materials. Sensors, 23(17), 7627. https://doi.org/10.3390/s23177627