
Citation: Hortelano, J.L.; Villagrá, J.;

Godoy, J.; Jiménez, V. Recent

Developments on Drivable Area

Estimation: A Survey and a

Functional Analysis. Sensors 2023, 23,

7633. https://doi.org/10.3390/

s23177633

Academic Editors: István Barabás,

Calin Iclodean and Máté Zöldy

Received: 26 July 2023

Revised: 28 August 2023

Accepted: 1 September 2023

Published: 3 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Recent Developments on Drivable Area Estimation: A Survey
and a Functional Analysis
Juan Luis Hortelano * , Jorge Villagrá * , Jorge Godoy and Víctor Jiménez

Centro de Automática y Robótica, CSIC—Universidad Politécnica de Madrid, Ctra. Campo Real, Km 0.200,
Arganda del Rey, 28500 Madrid, Spain; jorge.godoy@csic.es (J.G.); victor.jimenez@csic.es (V.J.)
* Correspondence: juanluis.hortelano@csic.es (J.L.H.); jorge.villagra@csic.es (J.V.)

Abstract: Most advanced autonomous driving systems (ADS) today rely on the prior creation of
high-definition maps (HD maps). This process is expensive and needs to be performed frequently to
keep up with the changing conditions of the road environment. Creating accurate navigation maps
online is an alternative to reduce the cost and broaden the current operational design domains (ODD)
of modern ADS. This paper offers a snapshot of the state of the art in drivable area estimation, which
is an essential technology to deploy ADS in ODDs where HD maps are limited or unavailable. The
proposed review introduces a novel architecture breakdown that fits learning-based and non-learning-
based techniques and allows the analysis of a set of impactful and recent drivable area algorithms.
In addition to that, complimentary information for practitioners is provided: (i) an assessment of
the influence of modern sensing technologies on the task under study and (ii) a selection of relevant
datasets for evaluation and benchmarking purposes.

Keywords: autonomous vehicles; drivable area estimation; road estimation; perception;
computer vision

1. Introduction

The last decade has seen autonomous vehicles take their first steps out of academia
into the commercial world with some companies starting to offer completely unmanned
taxi services in selected American cities. These services are usually bound to the prior
generation of HD maps. These digital maps are highly precise representations of the driving
scene containing centimeter accurate descriptions of the road shape, driving lanes, traffic
markings and traffic signs. The creation and maintenance of HD maps stands as a barrier
for the commercial viability and general deployment of autonomous vehicles because it
is a time-consuming and expensive operation [1]. HD maps are usually captured with an
extensive array of sensors, such as GPS, 3D LiDAR, HD RGB cameras, radar and aerial
imaging, that then need to be processed offline and stitched to existing sections of the map.
The output of this process is a static map that is sensitive to the everyday variability of
the drivable area [2]. An alternative to this process is to build accurate online maps in the
autonomous vehicles themselves while they are out operating.

Building navigation maps online requires several highly complex tasks performed at
once: high precision localization, online identification of traffic markings and signs and
an accurate and fast drivable area estimation [3]. This publication focuses on the latter by
drawing a picture of the state of the art in drivable area estimation in regards to algorithms,
sensors and datasets. The main contributions of this survey are:

• An analysis of the state of the art of the last eight years in regards to drivable
area estimation

• An architecture breakdown and a taxonomy that fit learning-based and non-learning-
based algorithms
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• A study of the existing relevant datasets to assess the performance of these algorithms
and the influence of modern sensing technologies in their performance.

• A proposal for future research directions for the field

The rest of the paper is structured as follows: Section 1.1 focuses the scope of the paper
in relation to its adjacent research fields and Section 1.2 presents other relevant surveys.
Section 2 presents the challenges of drivable area perception with a brief description on
especially adverse situations for sensors. Section 3 describes the datasets that are useful for
the research and development of algorithms in the field. Section 4 presents the description
and analysis of the chosen algorithms plus the proposed architecture breakdown and
taxonomy. Section 5 tries to synthesize the findings into a proposal for future research
directions, and finally, Section 6 draws some concluding remarks.

1.1. Scope

In this work, drivable area is defined as the area that is physically accessible and
designed to be traversed by vehicles. The publication main objective is to study the
techniques and the literature works that allow an autonomous vehicle to differentiate road
from sidewalks, curbs and other non-navigable ground areas. Publications that, on top
of estimating the drivable area, offer additional information such as lane-lines are also
considered. The estimation of traffic rules from traffic signs and markings is considered out
of scope for this publication.

Drivable area estimation can also be considered a subset of larger segmentation tasks
such as semantic, instance or panoptic segmentation. Semantic segmentation tries to label
every pixel of an image or point in a pointcloud into the clusters that belong to the same
class. Instance segmentation produces a specific label for each occurrence of the same
object in the scene but leaves out the background if it cannot be assigned to an object.
Panoptic segmentation combines semantic and instance segmentation in order to produce
a differentiated label for everything that can be seen in one view of the scene.

Detecting the drivable area has specific problems and characteristics that makes it
different from segmenting other classical segmentation labels such as cars, pedestrians or
traffic signs. The drivable area is usually locally static, and it is located underneath the
vehicle and surrounding it. It needs to be detected constantly since the absence of it should
cause an immediate emergency stop. Its appearance varies in color, texture and shape with
no standard form. Furthermore, opposed to some other labels, the drivable area can be
merged with offline registries such as in low fidelity maps.

Studying this problem in isolation allows for the creation of an architecture breakdown
of the problem that sheds light on how each stage of the strategies affects the detection
of the drivable area. This analysis is significantly different than using holistic segmen-
tation techniques, which may hinder the understanding of how each stage affects each
label. Even though some of the datasets will be shared by the study of the different disci-
plines, the proposed algorithms and functional analysis are distinct enough to warrant a
stand-alone survey.

1.2. Related Surveys

Drivable area estimation has been studied in other high impact surveys that treat the
problem with varying degrees of specificity. In [4], the authors offer a thorough review
of the state of the art of the 2000s, an exhaustive and fitting architecture breakdown for
non-learning-based techniques and the identification of gaps in the research. The future
research directions they suggest have proven very inspired, as all of them were explored
in the following decade: the creation of public benchmarks, the application of machine
learning techniques and the implementation of sensor fusion. In [5], the author presents a
survey of terrain traversability for unmanned ground vehicles that offers an interesting
perspective on the ground variability that a vehicle could encounter, which helps broaden
the focus from standard roads. The authors in [6] published a modern survey that presents
learning-based lane estimation methods with a focus on ego-lane detection. Finally, the
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authors in [7] present a very comprehensive survey of learning-based 3D LiDAR semantic
segmentation that is useful for the subtask of drivable area estimation because it specifically
provides a thorough review of the current datasets and discusses how those data are
currently generated and consumed.

The present survey collects publications without discriminating between learning-
based and non-learning-based methods with a focus on drivable area estimation plus an
analysis on the sensors and datasets needed to develop the state-of-the-art research in
the field.

2. Drivable Area Perception

Drivable area estimation demands a specific performance that the sensors achieve
or miss depending on the situation. It is the norm to mount an arrangement of different
sensors in the car since it is understood that one single sensor type would not adequately
adapt to the myriad different scenarios in real-world driving. A brief performance analysis
of each sensor relative to drivable area estimation is presented below.

2.1. Rgb

RGB cameras are a constant bet by autonomous driving researchers and industrial
developers due to its low cost, size and technology maturity. They are also the closest sensing
technology to human sight, which explains why most of the traffic language is visual and,
therefore, adapted to cameras. Figure 1 shows an example RGB view of a roundabout entrance
using the camera of a Google Pixel 4a with a resolution of 4032 × 3024.

(a) (b)

Figure 1. RGB view of a roundabout entrance. (a) Day view in dry conditions. (b) Night view in
wet conditions.

The challenge of using RGB cameras is that the exact same visual traffic information
can have very different sensor values depending on external factors. Figure 1a,b show
how going from day to night and from dry to wet conditions changes the values for color,
intensity and reflectance of the image. These differences can even appear on the same
image due to shadow and illumination changes.

2.2. 3D LiDAR

3D LiDAR is the technology that has seen the biggest improvement in the past decade.
The progress has come as an increase in the number of layers, point density, reflective
sensitivity and output frequency. Figure 2 shows an example road view of three state
of the art 128-Layer 3D LiDARs. These sensors display a dense representation of the
surroundings that allows for a clear road perception. It is interesting to see how those three
top-of-their-line sensors differ in their reflective sensitivity; in Figure 2b, the sensor is able
to give very high reflectivity values for the lane lines and the vegetation, making the road
more apparent. The sensor in Figure 2c is able to pick up on the lane markings but struggles
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with vegetation. In Figure 2d, the sensor is able to discern between road, vegetation and
lane markings in reflectivity alone but misses less reflective road points that are further
away from it.

(a) (b) (c) (d)

Figure 2. 3D LiDAR view of a roundabout entrance color-coded by reflectivity (red is lower, green is
higher). (a) Reference picture. (b) Robosense Ruby Plus. (c) Velodyne Alpha Prime. (d) Ouster 0S2.

Even though the technology has taken a considerable step forward, it still has its
drawbacks when tackling the drivable area estimation task. Some of these shortcomings
can be seen in Figure 3. Figure 3a,b show how a high-end 3D LiDAR can suffer data loss
from poorly reflective surfaces such as black vehicles. Figure 3c,d illustrate how it can be
hard to discern between pathways and drivable area in 3D LiDAR pointclouds.

(a) (b)

(c) (d)

Figure 3. 3D LiDAR drawbacks. (a) Black car picture. (b) Black car in pointcloud. (c) Road to
pathway picture. (d) Road to pathway in pointcloud.

2.3. Open Source Maps

Another common way of acquiring information about autonomous vehicle surround-
ings is through the use of open source maps. The most widely adopted provider is Open
Street Maps (OSM) [8], which is a crowd-sourced repository of map features that contains
geolocalized road topology, signals, traffic rules and buildings. This source of information
can be useful to tackle the drivable area estimation task since it contains geospacial limits to
the road, several works already make use of it [9,10]. However it cannot be a complete and
standalone solution due to the potential errors introduced in the map caused by manual
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data acquisition and entry and due to the fact that the rate at which the environment
changes is higher than the rate at which users update the open database. Figure 4a shows a
section of a roundabout stored in the OSM database. Figure 4b shows the OSM data from
Figure 4a transformed into the Lanelet2 [11] format in order to process each individual lane
by using the Commonroads open-source OSM-Lanelet2 converter [12].

(a) (b)

Figure 4. Open source maps. (a) Raw OSM. (b) Lanelets from OSM.

Figure 5 shows some of the errors and drawbacks of open-sourced maps. In Figure 5a
the difficulty in aligning the lanes derived from OSM with satellite imagery in some specific
scenarios can be seen. These issues are similar to the ones that may arise when aligning
the images with the GPS position from an autonomous vehicle. Figure 5b shows that the
number of lanes stored in the OSM database does not always match the current state of
the road.

(a) (b)

Figure 5. Lanelets from OSM drawbacks. (a) Misalignment. (b) Wrong number of lanes.

3. Datasets

As can be seen in previous surveys [4], one of the biggest gaps in the state of the
art was the lack of dedicated datasets that would help to initiate, validate and compare
research in the drivable area estimation task. This section presents a set of datasets that
have emerged in the last ten years and have proven to be especially useful to tackle the
problem at hand. Table 1 presents a summarized view of those datasets. The exclusive
criteria used to choose them was modernity, public availability and applicability to the
problem, which is characterized by presenting urban scenes with a wide choice of sensor
configurations. The non-exclusive criteria was the presence of benchmark mechanisms
(BM), which can be leaderboards or competitions that allow for public comparison, the
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inclusion of geolocalization to potentially merge them with other sources of information,
sequentiality, separate testing and training datasets and the relevance of the publications
that make use of them. Below, there is a description of the selected datasets based on their
applicability to the problem.

Table 1. Dataset comparison.

Dataset Year Sensor Type Sensors Frames Map BM

Waymo Perception [13] 2023 3D LiDAR
RGB

5 × Proprietary LiDAR
5 × 1920 × 1280 RGB 390,000 3 3

Argoverse 2 [14] 2023 3D LiDAR
RGB

2× VLP-32C
7 × 2048 × 1550 RGB 6,000,000 3 3

KITTI ROAD [15] 2015 3D LiDAR
RGB

Velodyne HDL-64E
1242 × 375 RGB 579 7 3

nuScenes [16] 2020
3D LiDAR

RGB
RADAR

Velodyne HDL32E
1600 × 900 RGB

ARS 408-21
40,000 3 3

BDD100K [17] 2020 RGB 1280 × 720 RGB 100,000 7 3

CityScapes [18] 2016 Stereo RGB 2048 × 1024 RGB 24,998 7 3

KITTI-360 [19] 2021
3D LiDAR
Stereo RGB
360º RGB

Velodyne HDL-64E
SICK LMS 200

4 × 1408 × 376 RGB
83,000 7 3

Semantic KITTI [20] 2019 3D LiDAR Velodyne HDL-64E 43,552 7 3

DIODE [21] 2019 RGB-D FARO Focus S350 27,858 7 7

3DHD CityScenes [22] 2022 3D LiDAR Trimble Mx8 - 3 7

OpenLane V2 [23] 2023 Built on: nuScenes and Argoverse 3 3

OMC Benchmark [24] 2021 Built on: nuScenes 3 7

Waymo Perception as a part of the Waymo Open Dataset is one of the most significant
sensor datasets in terms of the sheer quantity and variety of annotation types. On top of its
sensor suite, it offers labels for bounding box, key point, 2D panoptic segmentation and 3D
semantic segmentation. It shows urban and residential scenes with diverse weather in both
daytime and nighttime environments. It was updated in 2023 with an HD Map, and it also
includes a python devkit to streamline development.

Argoverse 2 builds its value proposal on top of the long range (200 m) of its LiDAR and
annotations, the six different US cities it collected its data in and the amount of different
labels it offers (30). It also offers a vector map with lane-level geometry and a ground height
raster map to ease the filtering of ground LiDAR returns.

nuScenes is a dataset that implements a full sensor array with RGB cameras spanning
a 360º view, a 32-layer 3D LiDAR and a RADAR array. It includes a high number of
annotations in inner-city traffic scenes with changing weather and heavy traffic. It has a
leaderboard that differentiates between LiDAR only and any sensor modality for semantic
segmentation and panoptic segmentation.

CityScapes is a Stereo RGB dataset of complex urban scenes that offers fine and coarse
semantic annotations. It depicts busy inner-city driving with high levels of traffic and
pedestrian interaction and has separate annotations for road and sidewalk.

KITTI is one of the oldest and most popular autonomous driving perception datasets
available. The specific subset for drivable area estimation is named KITTI ROAD, and it
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consists of a non-sequential set of images and pointclouds taken in non-busy suburban
environments with and without lane markings in single- and multi-lane roads. It has
become the standard benchmark for the task. and one of its main strengths is the dedicated
leaderboard, which acts as a powerful surveying tool of the current state of the art. Its main
drawbacks are that it has no weather or illumination diversity and the relative sparsity of
its traffic scenes.

Semantic KITTI spawned as a complementary dataset from KITTI’s popularity and it ex-
pands on its features by adding semantic annotations for all sequences of the
odometry subset.

BDD100K is an extensive RGB-only dataset that offers 100.000 sequential images of driving
in four different American cities. This dataset offers lane marking and drivable area
annotations, making a distinction between directly drivable and alternatively drivable
areas. They use (i) the directly drivable tag for road areas in which the ego-vehicle is
currently driving on and has the priority, and (ii) the alternative drivable tag for road areas
that the ego-vehicle is not currently driving on but could through a lane change. This
dataset also offers a dedicated leaderboard based on yearly competitions.

KITTI-360 calls itself the successor of KITTI and expands on the latter by offering richer
sensor modalities, semantic instance annotations and a more accurate localization in sub-
urban scenes with moderate traffic. It expands on the sensor suite of the original KITTI
by adding an additional LiDAR, a pair of front-facing RGB cameras to produce disparity
maps and two lateral fisheye cameras to complete their 360º scene perception. The main
value proposition of this dataset is that it is the only segmentation-oriented dataset with all
sensor modalities simultaneously available.

DIODE is a combined indoor/outdoor dataset that offers RGB, depth and normal informa-
tion using the same sensing and imaging setup. It achieves this by using the FARO Focus
S350 sensor, which is an actuated phase-shift laser scanner that creates RGB and depth
scenes with very high accuracy, resolution and FOV. The downside of using this dataset for
drivable area estimation is that it has no sequential scenes as all of them are static due to
the nature of the sensor.

3DHD CityScenes is a dataset that combines high-definition maps with high-density syn-
chronized and georeferenced pointclouds taken by a high-end spatial imaging sensor.

OpenLane V2 is a dataset built on top of nuScenes and Argoverse 2 that focuses on scene
structure perception and reasoning by offering a dynamic map that takes into account
traffic elements such as ground markings and traffic lights and signals. One of its highlights
is the fact that they offer 3D-annotated lanes in their map, as opposed to the 2D lanes
present in most datasets.

Online HD Map Construction Benchmark offers a set of vectorized and rasterized maps
from camera images that is built on top of the nuScenes dataset.

4. Drivable Area Estimation

This section presents a review of the state of the art in drivable area estimation methods
and the architecture breakdown, plus the taxonomy that can be inferred from them. The
architecture breakdown and taxonomy are presented first in an attempt to provide a
framework to analyze the algorithms that can be seen in the latter part of the section.

4.1. Architecture

A thorough study of the literature unveils a set of common stages for most of the
drivable area estimation algorithms. Figure 6 presents an architecture breakdown based
on the similarities found in the shared modules of the algorithms. It is important to note
that this diagram depicts a generic architecture and not all works employ every stage or
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necessarily follow the same order. Nonetheless, it is possible to map most of the research
to a subset of this architecture breakdown. In the following, there is a description of
each stage.
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Figure 6. Drivable area estimation architecture breakdown.

Noise Removal is the process of identifying and correcting sensor data with the purpose
of improving algorithmic or computational performance. Two types of noise are identified:
static and motion noise. Static noise encompasses data that are irrelevant or harmful
to the algorithm, such as outliers or out-of-range information, and are inherent to the
sensor. The removal process of this type of noise can range from simple and fast through
thresholding processes, such as min–maxing points that exceed a set height value, to
more complex and costly, such as plane fitting through least-squares or RANSAC. Motion
noise causes deformations in relevant information to the algorithm and is created by the
vehicle’s movement. Example correction processes for this issue are pointcloud deskewing
or attitude alignment.

Modal Transformation: As a previous step to fusion or in order to apply cross-field tech-
niques, a modal transformation to sensor data can be performed. Modal transformations
usually affect data dimensionality by means of projecting (e.g., 3D LiDAR pointclouds
onto image coordinates) or deriving (e.g., creating a map of normals from an image or
a pointcloud).

Fusion is the process of combining data coming from different sensors or stages to increase
the accuracy that would be achieved in isolation. It is a stage that can be performed at
different times during an algorithm execution as it can be applied to sensor information
or to already generated features. Common fusion techniques are grid maps and Kalman
filtering. Fusion inputs can be diverse: raw sensor data, processed sensor data, low-level
features and high-level features.

Feature Extraction: The translation from high-dimensional rich sensor data into basic fea-
tures takes place in feature extraction. Features useful for drivable area estimation can be
low level, such as image color or texture, or high level, such as detected lane lines in RGB
images or height differentials extracted from pointclouds.

Feature Expansion formulates hypotheses of the drivable area and fits them to the avail-
able extracted features. It generates drivable area proposals and uncertainty estimations.
Applicable techniques in this stage are image upscaling, graph search or model fitting.

Tracking: Using an estimation of vehicle displacement and geospacial information, this
stage matches the produced estimations through time in order to improve the output.
Tracking can be achieved by applying Bayesian fusion or Kalman filtering.

Neural Network deep learning technologies have proven useful to act as a backend in any
of the drivable area estimation stages. Neural networks can be trained to perform any stage
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in isolation and also to perform several tasks at once or even the complete algorithm from
start to finish. Network training can be performed at different points in the algorithm’s
timeline while taking a variety of different inputs (e.g., raw sensor data, data after modal
transformation, data after fusion, features, etc).

4.2. Taxonomy

Drivable area estimation is now a mature field that has spawned a varied set of
techniques that can be applied to tackle the problem. The analysis of this field enabled
the synthesis of a taxonomy that can be seen in Figure 7. It is important to note that
a complex problem such as drivable area estimation usually requires the application of
several techniques at once, and therefore, those sets are not exclusive, and it is common
that one set of techniques feeds off another. A description of each family of techniques is
provided below.

Modelling Representation PropagationFeatures Learning
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Elevation Map

Polar Grid

Markov Random
Field

Conditional
Random Field

Color
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Theory

Figure 7. Drivable area estimation taxonomy.

Constraints. Drivable area estimation deals with the detection of man-made, industrially
designed artifacts such as roads, curbs, sidewalks, etc. As such, it is useful to limit the search
space using carefully chosen constraints. Symmetry constraints are commonly both finding
features and fitting models, as most roads are defined by left and right boundaries that are
also parallel. Finding the twin equivalent of a feature or constraining a model to remove
outliers is a sound geometric foundation for road detection. Smoothness constraints. Roads
are made for non-flexible, bound-to-the-ground and several hundred kilos heavy vehicles
that cannot make abrupt direction changes and, therefore, require gradual evolution to
be traversable. Smoothness constraints help find drivable area estimation candidates and
predict its evolution. Continuity constraints are useful to find matches between consecutive
sensor reads since drivable areas do not usually abruptly end or change. Fixed size
constraints. Most roads maintain a fixed width that can be bound between a maximum
and a minimum value that is useful to weed out outliers and find equivalents when also
applying the symmetry constraint. Flatness constraints are useful because surfaces need to
be locally flat when underneath a vehicle, or otherwise, at least one of the wheels would
not be in contact with the ground.

Features are acquired by processing raw data coming from the sensors and creating data
points that host new information. Color features use pixel properties in RGB images to
differentiate the drivable area from other vehicles, pedestrians or non-drivable surfaces.
They are sensible to lighting changes, adverse weather or similarly colored bodies that do
not belong to the same category. Edge features try to identify the drivable area by detecting
hard gradients in color, intensity or geometry, as those are commonly found in the road
limits with sidewalks or ditches. Texture features extract information from how color is
arranged spatially in an RGB image and help produce drivable area candidates on the
assumption that texture patterns remain consistent within the same road objects. Normal
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features are produced by calculating the normal vector of a group of geometric points and
clustering them based on their angle. Usually, road normals point in the same direction
or change gradually. Reflectivity features can be acquired using modern LiDAR sensors
and give information about how any surface is able to reflect or absorb light. It is useful to
detect road markings and signs as they are usually highly reflective. It could even be used
to detect the road itself as a poorly reflective area if the sensor is sensitive enough.

Modeling fits the sensor data to mathematical models that define lines or planes. Straight
lines are a common model that is cheap computationally and can be directly applied to
simple roads or as a collection of segments to model complex roads. Splines are smooth
piecewise functions defined by polynomials. They have variable complexity depending
on their order and, therefore, are useful to model curves. Bezier curves are smooth global
functions defined by polynomials. They are attractive as a model because they offer
curvature continuity at every point and are not computationally expensive to compute
in their closed-form expressions. Polynomials of the second or third degree are useful to
model curves under some constraints (p.e flatness) as they are simple to understand and
compute. Their drawbacks are that modifying any points affects the complete curve or
undesirable effects at the boundaries. Planes are especially useful in LiDAR data processing
as planes are a very common feature in LiDAR pointclouds that appear in roads, sidewalks
or buildings.

All of these model proposals need to be fitted to the data using a mathematical approach.
A common method to estimate the parameters of a model is random sample consensus
(RANSAC), which consists of iteratively checking the fitness of a random sample of the
data against a previously set model. It is useful to separate inliers from outliers but is a non-
deterministic model, which means that its accuracy depends on the amount of iterations it
has run. Another technique is principal components analysis (PCA), which is a method
for dimensionality reduction that tries to keep most information in the dataset. It linearly
transforms the data into a new coordinate system where the majority of their variance
can be described using less dimensions than the original data. The challenge in applying
PCA in this field is usually selecting the data subset in which the model needs to be fitted.
Finally, least median squares (LMS) tries to minimize the sum of the squared difference
between an observed data point and the fitted value provided by a model. It is a simple
method to apply and understand but is sensitive to outliers and can overfit the model.

Representation methods offer alternative representations for sensor and feature informa-
tion that reduce dimensionality and ease the computational load. They are also widely used
for data and feature fusion. Occupancy Grids represent the world with evenly spaced cells
that host a binary variable (occupied or free) that is estimated and assigned a probability.
These grids are used to make drivable area assumptions over the free area. Elevation Map
models the world by keeping height information that can be used to derive the drivable area
by detecting abrupt height gradients. Polar Grids host the information in polar coordinates
instead of in Cartesian coordinates. They usually result in smaller and, therefore, faster to
compute grids, have higher resolution near the vehicle and are adequate representations of
roads because they both grow radially from the vehicle. Triangle Grids are common world
representations in fields such as videogames because they can accurately model height and
complex shapes. Their main characteristics are planarity, which means that every point of a
triangle can be at different heights and still belong to the same plane, and simplicity, since
they have the lowest amount of vertices of any polygon.

Propagation techniques create relational systems between data points to mitigate the issue
of data gaps caused by occlusions or at great distances from the sensor. Markov random
field is an undirected and cyclic graph technique that sets each data point as a node and
tries to assign labels and their probability to them by performing inference techniques
on the graph, such as belief propagation. Conditional random field is a special case
of Markov random field in which the graph takes into account the influence between
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neighboring nodes by modeling the dependencies between nodes. Bayesian Generalized
Kernel propagates information by assuming continuity between adjacent data points
and inferring the missing information by applying a kernel to the neighboring observed
points. Dempster–Shafer theory is a general mathematical framework to reason with
uncertainty and deal with information gaps. It is designed to work with sets of different
labels combining evidence from different sources and producing a degree of belief.

Learning-Based methods are ubiquitous due to their flexibility that allows them to morph
into several different techniques. They can have sensor data, features or grid representations
as inputs and can be used to perform model fitting, feature extraction or generate drivable
area candidates directly. Their main drawback is the need for large annotated datasets for
training. Convolutional Neural Networks are very popular learning-based approaches
in the field. They are usually applied directly to RGB images from the road or to images
derived from LiDAR pointclouds. They work by training image kernels that learn to
identify specific features in an image and then passing those features to a fully-connected
layer that recognizes larger elements in the scene. Residual Neural Networks are a special
case of convolutional neural networks that, at the same time, try to reduce the number
of layers of the network and tackle the vanishing gradient problem that occurs in deep
networks. They work by providing residual connections between skipping layers that
avoid the activation functions of previous layers that would reduce their derivatives. This
results in shallower networks that are more efficient to train.

4.3. Algorithms

This section presents the set of algorithms that describe the current state of the art,
their functional analyses and their contributions and limitations. The algorithms and their
analyses are collected in Table 2. The criteria for choosing this specific set of algorithms was:
(i) scientific relevance, the impact that this set of algorithms has in the state of the art and the
novelty of their contributions; (ii) ensuring a broad representation of techniques, making sure
that this survey presented a set of algorithms that covered every type of sensor combination
and showed a plural application of the available theory; and (iii) benchmark appearance,
including the highest performing algorithms today in terms of drivable area estimation
quality measures and computation time.

The diagrams appearing in the architecture column depict the functional analysis of
each algorithm in a simplified schematic manner by fitting them into the stages appearing

in Figure 6. For reference, 0 is neural network, 1 is noise removal, 2 is modal transfor-

mation, 3 is fusion, 4 is feature extraction, 5 is feature expansion and 6 is tracking.
Algorithms that show several branches describe works that perform stages in parallel.

The neural network stage depicts the moment of training the network in the algorithm
and the inputs it receives to do so. Once this stage appears in an algorithm, all subsequent

stages are then performed by neural network inference. For example 0 3 4 52
implements modal transformation and then uses this information to train a neural network
that performs fusion with raw data, feature extraction and feature expansion.
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Table 2. Drivable area segmentation algorithms.

Name Year Input Architecture Methodology Output Contributions Limitations

BGK [25] 2021 3D LiDAR 1 4 5 6
Min–maxing, Bilateral Filtering,

BGK, Normal Estimation
Multi-frame tracking

Segmented Grid Generates information from
unobserved areas without LiDAR hits

Computational and algorithmic
performance tied to grid resolution

SNE-RoadSeg [26] 2020 RGB-D 0 3 4 52 SNE, CNN Surface Normals
Segmented Image

SNE module that can be plugged into
other CNNs with proven improvement

Surface normal information might
missclassify sidewalks as road

PLARD [27] 2019 3D LiDAR
RGB 0 3 4 52 ADT, CNN, FSA Altitude Difference Image

Segmented Image
Leverages LiDAR to make

RGB data robust to shadows Requires high-end GPU to perform

USNet [28] 2022 RGB-D
0 4 5

3
2

0 4 52 SNE, MEC, Uncertainty Map
Uncertainty Image

Probabilistic Segmented
Image

Good tradeoff between computational
and algorithmic performance

Uncertainty map could be
used by other modules

Requires high-end GPU to perform

Unsupervised
RD [29]

2017 3D LiDAR
RGB

3 4
3 5

2
3 42

Superpixel, Delaunay
triangulation, MRF,
Belief propagation

Superpixel Probabilistic
Segmented Image

Probabilistic Segmented
Pointcloud

Robust to illumination changes Detection of 3D features dictates
whole algorithm performance

Map-Supervised
RD [9]

2016 Map
RGB 0 4 53 OSM, CNN Segmented Image Able to work with or

without map on inference
Reliant on extrinsic camera
calibration and GPS quality

RBANet [30] 2019 RGB 0 4 5 SegNet, BA, RA, CNN Probabilistic Segmented
Image

Residual stages makes algorithm
inspectable at different stages Requires high-end GPU to perform

HID-LS [31] 2019 3D LiDAR
RGB 3 4 52 Superpixel, Depth Map,

Height Map, Histograms
Superpixel

Segmented Image

Transforms spatially discrete LiDAR
pointclouds into a continuous

and organized structure
Reliant on LiDAR resolution

and parametrization

Curb
Detection [32]

2018 3D LiDAR 1 4 5 RANSAC
Sliding beam segmentation Curb Points Good performance on CPU Relies on curbs to detect drivable area

LiDAR-
Histogram [33]

2017 3D
LiDAR

4 52 RANSAC, Histogram LiDAR Imagery
Segmented Pointcloud

Detects positive/negative obstacles and
estimates road drivability degree

Makes assumptions on voids in
LiDAR data which could

missclassify poorly reflective obstacles

CyberMELD [10] 2020
Map

3D LiDAR
RGB

3 4 521 Delaunay triangulation, IPM Segmented Image
Leverages OSM to deal with
missing features caused by

shadows or occlusions
Only validated on single lane two-way

roads Sensitive to OSM errors

RoadNet3 [34] 2019 RGB
0 4 5

3
0 4 5 CNN, LSTM Segmented Image Reduces feature map resolution with a

CNN to achieve high performance Assumes continuity of drivable area

Double
Projection [35]

2021 3D LiDAR
4 5

3 6
2

4 52
Range Map, Elevation Map

Forward flood fill
Ground Model

Segmented Pointcloud
Able to deal with rough terrain

and offroad situations Only considers positive obstacles

Pseudo-
LiDAR [36]

2022 RGB 2
4

3 50
4 RNN Pseudo-LiDAR

Segmented Image
Takes advantage of 3D features but

only requires an RGB camera
Requires additional depth estimating
network to produce pseudo-LiDAR
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Table 2. Cont.

Name Year Input Architecture Methodology Output Contributions Limitations

CLCFNet [37] 2021 3D LiDAR
RGB

0 42
0 42

3 0 4

5
5
5

3 CNN
LiDAR Imagery

Segmented Pointcloud
Segmented Image

Runs on LiDAR only in case RGB
is negated

LiDAR imagery over raw
pointclouds makes algorithm

sensitive to occlusions

Multi-Cue [38] 2016 RGB-D 4 5 SVR
Curb Points

Road Boundary Model
Segmented Image

Highest ranking stereo vision algorithm
in the KITTI dataset

Uses surface normals to find road boundaries
which can missclassify sidewalks as road

TRAVEL [39] 2022 3D
LiDAR

1 4 5 Breadth-first graph search,
Tri-grid field Segmented Pointcloud

Manages to perform on sloped surfaces
and rough terrain

One of few non-NN with open-source code
Only focus on traversable

does not differentiate pathways from road

Road
Markings [40]

2022 3D LiDAR 1 4 5 Otsu thresholding,
Reflectivity, Line fitting Lane Boundary Model Takes advantage of a rarely used data type Only tested in traffic-free environments

sensitive to parameter tuning

Line Fitting [41] 2019 3D LiDAR 1 4 5 Channel-based segmentation
B-spline curve fitting

Road Boundary Model
Segmented Pointcloud

Can deal with occlusions
Extracted lines can be fused with OSM data Relies on curb to detect drivable area

YOLOP [42] 2021 RGB 0 4 5 CSPDarknet, SPP, FPN, CNN Multi-label Segmented
Image

Detects opposite lane as non-drivable area
Produces drivable area plus lane estimations

Can missclassify gaps in the drivable area
as lane-lines

HybridNets [43] 2022 RGB 0 4 5 EfficientNet-B3, FPN, CNN Multi-label Segmented
Image

Same as YOLOP while improving
computational and algorithmic performance

Limited by camera FOV need to be very
close to area to detect it as drivable

Rangenet++ [44] 2019 3D LiDAR 0 4 5 kNN, CNN Multi-label Segmented
Pointcloud

Offers open-source trained pointclouds
tackles over-segmentation in postprocessing

Requires high-end GPU to perform
Hard-linked to LiDAR specifics in training

SpatioTemporal
CRF [45]

2017 3D LiDAR 4 5 6 CRF Segmented Pointcloud Robust to changes in slope and
temporarily obstructed areas

No quantitative results
Implementation details bare in the publication

Urban Road
Filter [46]

2021 3D LiDAR 4 5 Channel-based segmentation Curb Points
Road Boundary Model Works in real-time on CPU To detect road it requires the curb

to be visible and the sidewalk to be smooth

Evidential
Grids [47]

2015 Map
3D LiDAR

4 53 DST Evidential Grid Deals very well with noisy input data Requires previously segmented data
Assumes that the map used is high-fidelity

RoadSLAM [48] 2019 Map
3D LiDAR

4 5 3
OSM, B-Spline, UKF,

Channel-based segmentation,
GraphSLAM

Road Boundary Model Is able to produce road estimations
in areas out of sensor reach

Does not work on complex road geometries
such as junctions

SemanticDepth [49] 2019 RGB 3 4 52 CNN Pseudo-LiDAR
Segmented Image

Robust to occlusions
Specifically designed to work without lane-lines Computationally expensive
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Following, there is a description of each selected publication’s stages and methodology:

BGK [25] first performs coarse ground segmentation through a min–max height difference
approach and projects it into a grid. Then, they estimate the missing height information in
the grid through Bayesian generalized kernel inference. From the generated dense height
grid, they estimate the normal vectors and compute their angle difference to produce
navigable candidates through angle thresholding. Afterwards they apply bilateral filtering
to preserve edges, and finally, they apply multi-frame tracking on consecutive grids.

SNE-RoadSeg [26] estimates surface normals from the depth information coming from a
RGB-D sensor using a surface normal estimation (SNE) module. Then, it feeds the estimated
surface normal data and the raw RGB to a convolutional neural network (CNN) with a
parallel encoder–decoder architecture with densely-connected skip connections.

PLARD [27] performs an altitude difference-based transformation (ADT) to produce an alti-
tude difference image from the LiDAR data. Then it inputs the RGB data plus the produced
altitude difference image into a CNN that fuses the generated features through feature space
adaption (FSA) in its intermediate stages to finally produce a road estimation candidate.

USNet [28] performs surface normal estimation from the depth information coming from
the RGB-D sensor. It then feeds the estimated data and the raw RGB data into two sep-
arate CNNs that generate feature maps. Finally, those feature maps are fed to a module
called multi-scale evidence collection (MEC) that generates separate prediction and uncer-
tainty maps.

Unsupervised RD [29] fuses RGB and LiDAR data to create the superpixel data structure.
Then, it performs Delaunay triangulation to assign spatial surface to the superpixels. From
the estimated surfaces, it computes its normals and uses them to estimate obstacle points
through flatness edge thresholding. Then, it creates a ray map by casting rays from the
origin of the sensor to the detected obstacles, which produces a rough road estimation.
Finally it uses Markov random fields(MRF) and belief propagation to perform feature
fusion with the objective of increased robustness.

Map-Supervised RD [9] generates training annotations using OSM and geo-referenced
images from the KITTI dataset. It then refines the generated labels by clustering pixels with
similar color. Finally, it then uses the automatically generated labeled data to train a CNN.

RBANet [30] uses SegNet [50] to create residual feature maps and then apply reversed
attention (RA) and boundary attention (BA) units to them to generate road estimations.

HID-LS [31] fuses RGB and LiDAR data to create superpixels. Then it performs Delaunay
triangulation to interpolate the missing gaps in the 3D information. In the generated data,
it computes inverse depth and height maps. It then uses the inverse depth map to compute
horizontal and vertical histograms and derive first road region estimation. Using row and
column scanning in the height map, it derives the second road region estimation. Finally, it
fuses both estimations to produce a final road candidate.

Curb Detection [32] first applies RANSAC to extract the ground plane with sidewalk, curb
and road points. Then, it performs sliding-beam segmentation to divide the extracted
ground areas in regions of interest. Finally, it extracts features through angle thresholding
to detect curbs.

LiDAR-Histogram [33] creates LiDAR imagery by displaying the points in a 2D plane
organized by pitch and rotation angle. Then, it computes histograms from the LiDAR
imagery. Afterwards, it performs RANSAC line fitting on the histograms to estimate road
lines. Finally, it segments the pointcloud based on the estimated road lines.
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CyberMELD [10] computes vertical and horizontal slope maps and sums them to, after-
wards, grow and detect a general region of interest (ROI) road area. It then performs
Delaunay triangulation to map ROI 3D Points onto the RGB image. In the generated data,
it applies inverse perspective mapping (IPM) and finds lane lines on it using gradients.
Finally, it fuses the lane lines with OSM to generate an ego-lane estimation.

RoadNet3 [34] uses cascaded CNNs to reduce the resolution of the feature map followed
by a long–short-term memory (LSTM) network to find the contour of the drivable area. It
applies the same architecture in parallel in the full image and in a smaller region in the
center of the image and fuses them to produce the road estimation.

Double Projection [35] creates a 2.5D elevation map with sets of points falling under the
same cell through a min–maxing process. It also creates a 2.5D range map by projecting
LiDAR points to a virtual cylinder plane. Then, the elevation map is used to detect obstacles
through thresholding, and a reachable area is estimated through forward flood fill. The
range map produces a road area using a smoothness constraint. Finally, the reachable area
and the road area are fused through Bayesian decision theory to extract the drivable area.

Pseudo-LiDAR [36] uses a big to small [51] neural network to estimate depth from RGB. It
then transforms depth into attitude space to generate a Pseudo-LiDAR [52] pointcloud. It
then applies a residual neural network (RNN) to process features in parallel for RGB and
Pseudo-LiDAR and fuse them at different points of the pipeline to obtain the final result.

CLCFNet [37] transforms a LiDAR pointcloud into LiDAR imagery. Then, it performs a
perspective transformation to put the LIDAR imagery in the camera view. Then, it inputs
the LiDAR imagery, LiDAR pointcloud and RGB into three cascaded CNNs to extract and
fuse the road features. It works with LiDAR only or with both LiDAR–RGB data depending
on light conditions.

Multi-Cue [38] computes normal vectors on the disparity maps from stereo images. It
then finds interest boundary areas from highly diverging normals. Curve fitting on the
boundary pixels by using support vector regression(SVR) [53].

TRAVEL [39] first corrects pointcloud skew and attitude caused by ego-motion. Then,
it models the terrain by grouping subsets of pointcloud points into tri-grid field nodes.
Afterwards, it uses breadth-first traversable graph search to classify traversable nodes by
measuring acceptable concavity and convexity. Finally, it applies model fitting to match the
traversable nodes to pointcloud points, assigning them a label.

Road Markings [40] implement coarse ground segmentation through RANSAC plane fit-
ting, along with regional grow-clustering to weed out points belonging to the curb. Then,
they apply adaptive thresholding based on Otsu’s method [54] on the reflectivity infor-
mation coming from the sensor. Finally, they produce lane boundary proposals by line
model fitting.

Line Fitting [41] first implements coarse ground segmentation through the channel-based
clustering of points in a 2.5D polar grid map, along with height thresholding. Then,
it identifies boundary points by checking the angle, distance and height difference be-
tween adjacent points. Finally, it performs B-spline curve fitting to produce the road
boundary candidate.

YOLOP [42] uses CSPDarknet [55] as a backbone to extract feature maps. Then, it imple-
ments spatial pyramid pooling (SPP) [56] to fuse features of different scales and a feature
pyramid network (FPN) [57] to fuse features of different semantic levels. Then, it uses
an upsampling process to restore the original size of the image from the feature map and
generate two separate segmented images of the drivable area and lane lines.
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HybridNets [43] is a neural network that uses EfficientNet-B3 [58] as a backbone to extract
feature maps and an FPN as neck to fuse features across feature maps with different
resolutions. Then, it upsamples feature maps up to half the original resolution and feeds it
to its proprietary segmentation head to to produce the final multi-label segmented image.

Rangenet++ [44] performs a spherical projection of the LiDAR pointcloud into a range
image and then feeds it into a fully convolutional neural network with an encoder–decoder
hour-glass-shaped architecture. Finally it performs a k-nearest neighbor (kNN) search to
reduce noise and shadow-like artifacts in the produced multi-labeled output.

Urban Road Filter [46] tries to detect the road by applying three different techniques to
LiDAR pointclouds. The three different techniques differ in the way they divide the
pointcloud, by channels, by beams and by sliding windows. It then applies different
heuristics to the clusters to detect anomalies in height or angle differences to produce curb
candidates. Finally, those curb candidates are used to produce a drivable area polygon.

Evidential Grids [47] use the Dempster–Shafer theory to efficiently fuse information sources
that provide partial information of the environment. It offers a framework to fuse occupancy
grids created from LiDAR information with meta-knowledge obtained from a high-fidelity
map. It outputs drivable and non-drivable space and can differentiate from stationary and
moving objects through temporal fusion.

RoadSLAM [48] separates the pointcloud into ground and non-ground through coarse
segmentation and clusters it in sets of free areas. Then, a robust weighted least-squares
curve fit is applied to each side of the selected free area in order to find the instance that
maximizes the likelihood given the current route of the vehicle. An unscented Kalman filter
(UKF) is used to produce a prediction of the control points of the B-Splines representing
the road boundaries with the free area boundaries as input. Finally, all information is
accumulated and fused using GraphSLAM [59] with OSM as prior information.

SemanticDepth [49] creates two information sources from a single RGB input. First,
through monocular-depth estimation, they generate a disparity map from a single RGB
image and then they transform it to a full pointcloud. Then, they perform semantic segmen-
tation on the original RGB image using a CNN. Then, they overlay the segmented image as
masks on the generated pointcloud to calculate the road width ahead of the ego-vehicle.

Table 3 presents the taxonomical classification of the algorithms. The categories in the
column are based on the study presented in Section 4.2.

The acronyms used in the table are the following: For the constraints group: symmetry
(Sym), smoothness (Smo), continuity (Con), fixed size (FS) and flatness (Flat). For the
Features group: color (C), edge (E), texture (T), normal (N) and reflectivity (R). For the model
group: straight line (SL), splines (Sp), polynomial (P) and planes (Pl). For the representation
group: occupancy grid (OG), elevation map (EM), polar grid (PG) and triangle grid (TG).
For the propagation group: Markov random fields (MRF), conditional random fields (CRF),
Bayesian generalized kernel (BGK) and Dempster—Shafer Theory(DST). Finally, for the
learning group: convolutional neural network (CNN) and residual neural network (RNN).
The Bezier category present in Section 4.2 was left out due to no selected algorithm making
use of it.

Table 4 shows the algorithms performance as is reported in their publications or in the
leaderboard where they appear.
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Table 3. Algorithms taxonomy.

Name Constraints Features Model Representation Propagation Learning
Sym Smo Con FS Flat C E T N R SL Sp P Pl OG EM PG TG MRF CRF BGK DST CNN RNN

BGK [25] – – – – – – 3 – 3 – – – – – – 3 – – – – 3 – – –

SNE-RoadSeg [26] – – 3 – – 3 – – 3 – – – – – – – – – – – – – 3 –

PLARD [27] – – 3 – – 3 – 3 – – – – – – – – – – – – – – 3 –

USNet [28] – – 3 – – 3 – 3 – – – – – – – – – – – – – – 3 –

Unsupervised RD [29] – – – – 3 3 3 3 3 – – – – – – – – – 3 – – – – –

Map-Supervised RD [9] – – 3 – – 3 – 3 – – – – – – – – – – – – – – 3 –

RBANet [30] – – 3 – – 3 3 3 – – – – – – – – – – – – – – – 3

HID-LS [31] – – – – 3 3 3 – 3 – – – – – – 3 – – – – – – – –

Curb Detection [32] 3 3 – 3 – – 3 – – – – – 3 – – – – – – – – – – –

LiDAR-Histogram [33] – – – – 3 – 3 – – – 3 – – – – – – – – – – – – –

CyberMELD [10] – – 3 – 3 – 3 – – – 3 – – – – – – – – – – – – –

RoadNet3 [34] – – 3 – – 3 – – – – – – – – – – – – – – – – 3 –

Double Projection [35] – 3 3 – – – 3 – – – – – – – 3 3 – – – – – – – –

Pseudo-LiDAR [36] – – 3 – – 3 3 3 – – – – – – – – – – – – – – – 3

CLCFNet [37] – – 3 – – 3 – 3 – – – – – – – – – – – – – – 3 –

Multi-Cue [38] – – 3 – – 3 3 – 3 – – – – 3 – – – – – – – – – –

TRAVEL [39] – – 3 – 3 – 3 – 3 – – – – – – – – 3 – – – – – –

Road Markings [40] 3 – – – – – – – – 3 3 – – – – – – – – – – – – –

Line Fitting [41] – – 3 – – – 3 – – – – 3 – – – – 3 – – – – – – –

YOLOP [42] – – 3 – – 3 – 3 – – – – – – – – – – – – – – 3 –

HybridNets [43] – – 3 – – 3 – 3 – – – – – – – – – – – – – – 3 –

Rangenet++ [44] – 3 3 – – – – – – – – – – – – – – – – – – – 3 –

SpatioTemporal CRF [45] – – – – – – – – – – – – – – – 3 – – – 3 – – – –

Urban Road Filter [46] – 3 3 – 3 – 3 – – – – – – – – – – – – – – – – –

Evidential Grids [47] – – – – – – – – – – – – – – 3 – – – – – – 3 – –

RoadSLAM [48] – 3 3 – – – – – 3 – – 3 – – – – – – – – – – – –

SemanticDepth [49] – – – – – – – – – – – – – – – – – – – – – 3 – –
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Table 4. Algorithm reported performance.

Name Time
[ms] Pre. Rec. F1 GPU Dataset Code

BGK [25] 45 98.66 72.72 83.73 7 SemKITTI 7

SNE-RoadSeg [26] 80 96.90 96.61 96.75 3 KITTI 3

PLARD [27] 160 96.79 96.86 96.83 3 KITTI 3

USNet [28] 22 96.51 97.27 96.89 3 KITTI 3

Unsupervised RD [29] - 83.97 91.83 87.72 7 KITTI 7

Map-Supervised RD [9] 280 86.01 89.66 87.80 3 KITTI 7

RBANet [30] 160 95.14 97.50 96.30 3 KITTI 7

HID-LS [31] 250 92.52 93.71 93.11 7 KITTI 7

Curb Detection [32] 12 87.64 89.28 86.98 7 Proprietary 7

LiDAR-Histogram [33] 100 93.06 88.41 90.67 7 KITTI 7

CyberMELD [10] 50 95.94 91.30 93.56 7 KITTI 3

RoadNet3 [34] 16 88.12 90.06 89.08 3 KITTI 7

Double Projection [35] 77 95.91 99.28 95.00 7 SemKITTI 7

Pseudo-LiDAR [36] 460 97.30 97.54 97.42 3 KITTI 7

CLCFNet [37] 23 96.38 96.39 96.38 3 KITTI 7

Multi-Cue [38] 2500 84.95 88.55 86.71 7 KITTI 7

TRAVEL [39] 19 90.00 96.70 93.10 7 SemKITTI 3

Road Markings [40] - 97.04 94.03 95.51 7 Proprietary 7

Line Fitting [41] 36 94.95 94.95 94.95 7 Proprietary 7

RoadSLAM [48] - 87.00 92.00 89.43 7 Proprietary 7

YOLOP [42] 43 mIoU: 91.5 3 BDD100K 3

HybridNets [43] 37 mIoU: 90.5 3 BDD100K 3

Rangenet++ [44] 76 mIoU: 91.8 3 SemKITTI 3

SpatioTemporal CRF [45] 147 only qualitative 3 KITTI 7

Urban Road Filter [46] 15 only qualitative 7 Proprietary 3

Evidential Grids [47] - only qualitative 7 Proprietary 7

SemanticDepth [49] 637 MAE: 0.48 m 7 Proprietary 7

The computational performance in the time column is shown in milliseconds per
frame, representing the time it takes to produce one instance of drivable area estimation.
The algorithmic performance is represented by the reported measurements of precision,
recall, F-score, mean intersection over union (mIoU) and mean absolute error (MAE), with
the exception of the three algorithms that did only include qualitative experiments in the
publication. The GPU column denotes that the algorithm requires a dedicated parallel
processor to reach the reported performance. The dataset column indicates which of their
reported performance numbers were chosen to be included on the table. The code column
indicates whether those publications offer access to their code. The criteria to choose
between datasets whenever more than one set of performance metrics was available was
the frequency of appearance in the other publications in order to facilitate fair comparison.
Most of the publications included performance measured at least on the KITTI dataset,
which explains its prevalence on the table.

Finally, some interesting remarks that can be inferred from studying Tables 2–4 are:

• There is, overall, high reported performance in all the publications. Every algorithm
reports at least an F1 score of 83, with one of the methods even reaching 97.

• Execution time and performance are not clearly correlated as the highest performer
has a runtime of 460 ms but a very close second only needs 22 ms.

• Learning-based methods usually offer the higher performance [26–28,30,36]. However,
there are non-learning-based methods that reach similar performance levels [35,40,41].

• In terms of sensing capabilities, it seems that fusing semantic information plus depth
(p.e. LiDAR or RGB-D + RGB) pays off in terms of performance. Nevertheless it
is not a must as publications with a single sensor input also perform reasonably
well [30,36,40].



Sensors 2023, 23, 7633 19 of 23

• Neural networks offer consistently high performance at a relatively low computational
cost but they all require a GPU to perform. The best tradeoff between computation
time and algorithm performance is offered by USNet.

• With roughly 65% of the works under 100 ms in execution time and 47% under 50 ms,
it is possible to see that a majority of the works today can handle sensor inputs at
10 Hz in real time and almost half can handle 20 Hz, which are two standard 3D
LiDAR frequencies.

5. Discussion—Future Research

Drivable area estimation has taken a leap forward in the last decade with the ad-
vancements in sensor technology, computational power and algorithmic innovation. The
maturity of learning-based methods has broken into this field and raised the bar in terms of
computational time and performance measures. Three-dimensional LiDAR technology has
seen an increase in data quality, resolution and frequency while lowering its cost, finally
making it a viable option for researchers and industrial players. Dedicated computational
platforms with integrated GPUs have appeared in the market and are used as the processing
core of autonomous vehicles. All of this paints a thriving image of the field today, which,
nonetheless, still has some threads to pull until it becomes a solved problem:

• Fusion variability: Sensor technology advances have brought the importance of
sensor fusion to the foreground. Different sensors fill gaps in the drawbacks of others,
and having a diverse array has become vital to reach a robust solution. Most of the
methods currently tackle this by optimizing an algorithm for a sensor type and then
modal transforming the sensor data from a different type into the optimized one.
A potential research direction that would increase performance is delaying modal
transformation and fusion to later stages of the algorithm and to optimize separate
parallel algorithms for each sensor type. The authors in [37] propose a study with
results from different fusion architectures that follows this direction.

• Three-dimensional LiDAR reflectivity: Modern developments in sensor technology
have brought to the market 3D LiDARs with more sensitive receptors to light reflection
intensity. The technology has come to a point where road shape can be understood
from reflectivity alone. The drivable area estimation algorithms reliant on reflectivity
features could pose a new breakthrough in the state of the art. The authors in [40]
introduce a technique for lane marking estimation based on lidar reflectivity that
could be adapted for drivable area estimation.

• Low-fidelity map fusion: Open-source low-fidelity maps offer valuable context in-
formation for drivable area estimation algorithms that is currently underrepresented
in the state of the art. Some of the map providers see their contributor base increas-
ing each year [60], while new players backed by big tech companies are appearing
now [61]. A research direction for the field could be algorithms that take advantage of
those databases as a core part of their proposal. A publication that is already working
in that direction is [10].

• Streamlined data processing: Technological advancements in the sensor industry
have brought sensors that produce high-density and high-quality outputs. Learning-
based methods have their performance tied to having access to a significant amount of
data. Therefore, the field would greatly benefit from new data storage and processing
systems that could streamline the flow of data.

• RGB strongholds: RGB-based drivable area estimation is being spearheaded by
learning-based methods while LiDAR does not have a clear technique leader yet.
A potential gap in the current research is novel learning-based methods that only use
3D LiDAR.

• Algorithm output: The algorithms express their road estimation differently in terms
of data type and quantity. Depending on the desired application, some outputs could
be more interesting than others. Some relevant criteria to study the algorithms could
be: (i) if the algorithm outputs is single or multi-label, (ii) if the algorithm outputs an
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expression of probability or uncertainty together with the estimation, (iii) if the output
type is an image, a map, a pointcloud or a road model. All of these can significantly
influence the choice in research direction. One example could be the need for an
uncertainty measure helping to deal with potential sensor errors. Another could be
the fact that a segmented image is likely to need an extra processing step to obtain
a general road representation while a road model can be directly used by the next
module.

• Multi-frame estimation: Algorithms that fuse estimations from different timesteps
are not very common. The few ones that combine estimations carry them out in
tracking or recursive neural networks. A potential research direction is to apply
multi-frame estimation to produce reliable and robust intermittent-noise drivable
area candidates.

6. Conclusions

In this publication, a thorough study of the drivable area estimation literature is
conducted in order to take a snapshot of the state of the art as it stands today. This
investigation has produced an analysis of the modern sensors used to address the problem
and their drawbacks, a summary of the most adequate datasets for research validation, a
novel architecture breakdown that helps understand and analyze drivable area estimation
algorithms, an outline of the most relevant algorithms in the field with a performance
comparison and a suggestion for future research directions. Altogether, this publication
aims to offer a snapshot of the state of the field at this point in time and an aid to find a
path forward.

Author Contributions: Conceptualization, J.L.H., J.V. and J.G.; data curation, J.L.H., J.V., J.G. and
V.J.; formal analysis, J.L.H., J.V. and J.G.; funding acquisition, J.V.; investigation, J.L.H., J.V., J.G. and
V.J.; methodology, J.L.H., J.V. and J.G.; project administration, J.V.; resources, J.L.H., J.V. and J.G.;
supervision, J.V.; validation, J.L.H., J.V., J.G. and V.J.; writing—original draft, J.L.H.; writing—review
and editing, J.L.H., J.V., J.G. and V.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partially funded by MCIN/AEI/10.13039/501100011033 and by ERDF A
way of making Europe with the project DISCERN (PID2021- 125850OB-I00), and by the Community
of Madrid through the SEGVAUTO 4.0-CM Programme (S2018-EMT-4362).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pauls, J.H.; Strauss, T.; Hasberg, C.; Lauer, M.; Stiller, C. Can we trust our maps? An evaluation of road changes and a dataset for

map validation. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI,
USA, 4–7 November 2018; pp. 2639–2644.

2. Wong, K.; Gu, Y.; Kamijo, S. Mapping for autonomous driving: Opportunities and challenges. IEEE Intell. Transp. Syst. Mag.
2020, 13, 91–106.

3. Gwon, G.P.; Hur, W.S.; Kim, S.W.; Seo, S.W. Generation of a precise and efficient lane-level road map for intelligent vehicle
systems. IEEE Trans. Veh. Technol. 2016, 66, 4517–4533.

4. Bar Hillel, A.; Lerner, R.; Levi, D.; Raz, G. Recent progress in road and lane detection: A survey. Mach. Vis. Appl. 2014, 25, 727–745.
5. Papadakis, P. Terrain traversability analysis methods for unmanned ground vehicles: A survey. Eng. Appl. Artif. Intell. 2013,

26, 1373–1385.
6. Liang, D.; Guo, Y.C.; Zhang, S.K.; Mu, T.J.; Huang, X. Lane detection: A survey with new results. J. Comput. Sci. Technol. 2020,

35, 493–505.
7. Gao, B.; Pan, Y.; Li, C.; Geng, S.; Zhao, H. Are we hungry for 3D LiDAR data for semantic segmentation? a survey of datasets and

methods. arXiv 2021, arXiv:2006.04307



Sensors 2023, 23, 7633 21 of 23

8. OpenStreetMap Contributors. 2017. Available online: https://www.openstreetmap.org (accessed on 9 April 2023).
9. Laddha, A.; Kocamaz, M.K.; Navarro-Serment, L.E.; Hebert, M. Map-supervised road detection. In Proceedings of the 2016 IEEE

Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; pp. 118–123.
10. Wang, X.; Qian, Y.; Wang, C.; Yang, M. Map-enhanced ego-lane detection in the missing feature scenarios. IEEE Access 2020,

8, 107958–107968.
11. Poggenhans, F.; Pauls, J.H.; Janosovits, J.; Orf, S.; Naumann, M.; Kuhnt, F.; Mayr, M. Lanelet2: A High-Definition Map Framework

for the Future of Automated Driving. In Proceedings of the 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), Maui, HI, USA, 4–7 November 2018.

12. Maierhofer, S.; Klischat, M.; Althoff, M. Commonroad scenario designer: An open-source toolbox for map conversion and
scenario creation for autonomous vehicles. In Proceedings of the 2021 IEEE Intelligent Transportation Systems Conference (ITSC),
Indianapolis, IN, USA, 19–22 September 2021; pp. 3176–3182.

13. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in
perception for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2446–2454.

14. Wilson, B.; Qi, W.; Agarwal, T.; Lambert, J.; Singh, J.; Khandelwal, S.; Pan, B.; Kumar, R.; Hartnett, A.; Pontes, J.K.; et al. Argoverse
2: Next generation datasets for self-driving perception and forecasting. arXiv 2023, arXiv:2301.00493.

15. Fritsch, J.; Kuehnl, T.; Geiger, A. A New Performance Measure and Evaluation Benchmark for Road Detection Algorithms.
In Proceedings of the International Conference on Intelligent Transportation Systems (ITSC), The Hague, The Netherlands,
6–9 October 2013.

16. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A
multimodal dataset for autonomous driving. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Virtual Conference, Seattle, WA, USA, 13–19 June 2020.

17. Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. BDD100K: A Diverse Driving Dataset for
Heterogeneous Multitask Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Nashville, TN, USA, 20–25 June 2020.

18. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

19. Liao, Y.; Xie, J.; Geiger, A. KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D. arXiv
2021, arXiv:2109.13410.

20. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A Dataset for Semantic Scene
Understanding of LiDAR Sequences. In Proceedings of the IEEE/CVF Conference on Computer Vision (ICCV), Seoul, Republic
of Korea, 27 October–2 November 2019.

21. Vasiljevic, I.; Kolkin, N.; Zhang, S.; Luo, R.; Wang, H.; Dai, F.Z.; Daniele, A.F.; Mostajabi, M.; Basart, S.; Walter, M.R.; et al. DIODE:
A Dense Indoor and Outdoor DEpth Dataset. arXiv 2019, arXiv:1908.00463.

22. Plachetka, C.; Sertolli, B.; Fricke, J.; Klingner, M.; Fingscheidt, T. 3DHD CityScenes: High-Definition Maps in High-Density Point
Clouds. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau,
China, 8–12 October 2022; pp. 627–634.

23. Wang, H.; Liu, Z.; Li, Y.; Li, T.; Chen, L.; Sima, C.; Wang, Y.; Jiang, S.; Wen, F.; Xu, H.; et al. Road Genome: A Topology Reasoning
Benchmark for Scene Understanding in Autonomous Driving. arXiv 2023, arXiv:2304.10440.

24. Li, Q.; Wang, Y.; Wang, Y.; Zhao, H. HDMapNet: An Online HD Map Construction and Evaluation Framework. arXiv 2021,
arXiv:2107.06307.

25. Xue, H.; Fu, H.; Ren, R.; Zhang, J.; Liu, B.; Fan, Y.; Dai, B. LiDAR-based Drivable Region Detection for Autonomous Driving. In
Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
27 September–1 October 2021; pp. 1110–1116.

26. Fan, R.; Wang, H.; Cai, P.; Liu, M. Sne-roadseg: Incorporating surface normal information into semantic segmentation for accurate
freespace detection. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 340–356.

27. Chen, Z.; Zhang, J.; Tao, D. Progressive lidar adaptation for road detection. IEEE/CAA J. Autom. Sin. 2019, 6, 693–702. [CrossRef]
28. Chang, Y.; Xue, F.; Sheng, F.; Liang, W.; Ming, A. Fast Road Segmentation via Uncertainty-aware Symmetric Network. arXiv 2022,

arXiv:2203.04537.
29. Liu, Z.; Yu, S.; Wang, X.; Zheng, N. Detecting drivable area for self-driving cars: An unsupervised approach. arXiv 2017,

arXiv:1705.00451.
30. Sun, J.Y.; Kim, S.W.; Lee, S.W.; Kim, Y.W.; Ko, S.J. Reverse and boundary attention network for road segmentation. In Proceedings

of the Proceedings of the IEEE/CVF Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019.
31. Gu, S.; Zhang, Y.; Yuan, X.; Yang, J.; Wu, T.; Kong, H. Histograms of the normalized inverse depth and line scanning for urban

road detection. IEEE Trans. Intell. Transp. Syst. 2018, 20, 3070–3080. [CrossRef]
32. Zhang, Y.; Wang, J.; Wang, X.; Dolan, J.M. Road-segmentation-based curb detection method for self-driving via a 3D-LiDAR

sensor. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3981–3991. [CrossRef]

https://www.openstreetmap.org
http://doi.org/10.1109/JAS.2019.1911459
http://dx.doi.org/10.1109/TITS.2018.2871945
http://dx.doi.org/10.1109/TITS.2018.2789462


Sensors 2023, 23, 7633 22 of 23

33. Chen, L.; Yang, J.; Kong, H. Lidar-histogram for fast road and obstacle detection. In Proceedings of the 2017 IEEE International
Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1343–1348.

34. Lyu, Y.; Bai, L.; Huang, X. Road segmentation using cnn and distributed lstm. In Proceedings of the 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5.

35. Xu, F.; Liang, H.; Wang, Z.; Lin, L. A Framework for Drivable Area Detection Via Point Cloud Double Projection on Rough Roads.
J. Intell. Robot. Syst. 2021, 102, 1–19.

36. Sun, L.; Zhang, H.; Yin, W. Pseudo-LiDAR-Based Road Detection. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 5386–5398.
[CrossRef]

37. Gu, S.; Yang, J.; Kong, H. A cascaded lidar-camera fusion network for road detection. In Proceedings of the 2021 IEEE
International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May 2021–5 June 2021; pp. 13308–13314.

38. Wang, L.; Wu, T.; Xiao, Z.; Xiao, L.; Zhao, D.; Han, J. Multi-cue road boundary detection using stereo vision. In Proceedings of
the 2016 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Beijing, China, 10–12 July 2016; pp. 1–6.

39. Oh, M.; Jung, E.; Lim, H.; Song, W.; Hu, S.; Lee, E.M.; Park, J.; Kim, J.; Lee, J.; Myung, H. TRAVEL: Traversable Ground and
Above-Ground Object Segmentation Using Graph Representation of 3D LiDAR Scans. arXiv 2022, arXiv:2206.03190.

40. Certad, N.; Morales-Alvarez, W.; Olaverri-Monreal, C. Road Markings Segmentation from LIDAR Point Clouds using Reflectivity
Information. In Proceedings of the 2022 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Bogota,
Colombia, 14–16 November 2022; pp. 1–6.

41. Sun, P.; Zhao, X.; Xu, Z.; Wang, R.; Min, H. A 3D LiDAR data-based dedicated road boundary detection algorithm for autonomous
vehicles. IEEE Access 2019, 7, 29623–29638. [CrossRef]

42. Wu, D.; Liao, M.W.; Zhang, W.T.; Wang, X.G.; Bai, X.; Cheng, W.Q.; Liu, W.Y. Yolop: You only look once for panoptic driving
perception. Mach. Intell. Res. 2022, 19, 550–562. [CrossRef]

43. Vu, D.; Ngo, B.; Phan, H. HybridNets: End-to-End Perception Network. arXiv 2022, arXiv:2203.09035.
44. Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. Rangenet++: Fast and accurate lidar semantic segmentation. In Proceedings of

the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019;
pp. 4213–4220.

45. Rummelhard, L.; Paigwar, A.; Nègre, A.; Laugier, C. Ground estimation and point cloud segmentation using spatiotemporal
conditional random field. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14
June 2017; pp. 1105–1110.

46. Horváth, E.; Pozna, C.; Unger, M. Real-time LiDAR-based urban road and sidewalk detection for autonomous vehicles. Sensors
2021, 22, 194. [CrossRef] [PubMed]

47. Kurdej, M.; Moras, J.; Cherfaoui, V.; Bonnifait, P. Map-aided evidential grids for driving scene understanding. IEEE Intell. Transp.
Syst. Mag. 2015, 7, 30–41. [CrossRef]

48. Burger, P.; Naujoks, B.; Wuensche, H.J. Unstructured road slam using map predictive road tracking. In Proceedings of the 2019
IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 1276–1282.

49. Palafox, P.R.; Betz, J.; Nobis, F.; Riedl, K.; Lienkamp, M. Semanticdepth: Fusing semantic segmentation and monocular depth
estimation for enabling autonomous driving in roads without lane lines. Sensors 2019, 19, 3224. [CrossRef]

50. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

51. Lee, J.H.; Han, M.K.; Ko, D.W.; Suh, I.H. From big to small: Multi-scale local planar guidance for monocular depth estimation.
arXiv 2019, arXiv:1907.10326.

52. Wang, Y.; Chao, W.L.; Garg, D.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-lidar from visual depth estimation:
Bridging the gap in 3d object detection for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 8445–8453.

53. Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst.
1996, 9, 1–7.

54. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man, Cybern. 1979, 9, 62–66. [CrossRef]
55. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. Scaled-yolov4: Scaling cross stage partial network. In Proceedings of the IEEE/cvf

Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13029–13038.
56. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]
57. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
58. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.
59. Thrun, S.; Montemerlo, M. The graph SLAM algorithm with applications to large-scale mapping of urban structures. Int. J. Robot.

Res. 2006, 25, 403–429. [CrossRef]

http://dx.doi.org/10.1109/TCSVT.2022.3146305
http://dx.doi.org/10.1109/ACCESS.2019.2902170
http://dx.doi.org/10.1007/s11633-022-1339-y
http://dx.doi.org/10.3390/s22010194
http://www.ncbi.nlm.nih.gov/pubmed/35009736
http://dx.doi.org/10.1109/MITS.2014.2352371
http://dx.doi.org/10.3390/s19143224
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://dx.doi.org/10.1177/0278364906065387


Sensors 2023, 23, 7633 23 of 23

60. OSM Maps User Stats. Available online: https://osmstats.neis-one.org/?item=members (accessed on 21 July 2023)
61. Overture Maps. Available online: https://overturemaps.org/(accessed on 21 July 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://osmstats.neis-one.org/?item=members
https://overturemaps.org/

	Introduction
	Scope
	Related Surveys

	Drivable Area Perception
	Rgb
	3D LiDAR
	Open Source Maps

	Datasets
	Drivable Area Estimation
	Architecture
	Taxonomy
	Algorithms

	Discussion—Future Research
	Conclusions
	References

