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Abstract: In recent years, parking lot management systems have garnered significant research
attention, particularly concerning the application of deep learning techniques. Numerous approaches
have emerged for tackling parking lot occupancy challenges using deep learning models. This study
contributes to the field by addressing a critical aspect of parking lot management systems: accurate
vehicle occupancy determination in specific parking spaces. We propose an advanced solution by
harnessing an optimized MobileNetV3 model with custom architectural enhancements, trained on
the CNRPark-EXT and PKLOT datasets. The model processes individual parking space patches from
real-time video feeds, providing occupancy classification for each patch, identifying occupied or
available spaces. Our architectural modifications include the integration of a convolutional block
attention mechanism in place of the native attention module and the adoption of blueprint separable
convolutions instead of the traditional depth-wise separable convolutions. In terms of performance,
our proposed model exhibits superior results when benchmarked against state-of-the-art methods.
Achieving an exceptional area under the ROC curve (AUC) value of 0.99 for most experiments with
the PKLot dataset, our enhanced MobileNetV3 showcases its exceptional discriminatory power in
binary classification. Benchmarked against the CarNet and mAlexNet models, representative of
previous state-of-the-art solutions, our proposed model showcases exceptional performance. During
evaluations using the combined CNRPark-EXT and PKLot datasets, the proposed model attains
an impressive average accuracy of 98.01%, while CarNet achieves 97.03%. Beyond achieving high
accuracy and precision comparable to previous models, the proposed model exhibits promise for
real-time applications. This work contributes to the advancement of parking lot occupancy detection
by offering a robust and efficient solution with implications for urban mobility enhancement and
resource optimization.

Keywords: deep learning; classification; convolutional neural networks; MobileNetV3; parking space
management; parking lot

1. Introduction

The problem of parking has become increasingly problematic as the number of cars
on the roads has increased, particularly in urban areas. Therefore, there is a strong demand
for effective parking lot management systems that can address these problems in real time.
With limited parking availability and the ever-growing number of vehicles, traditional
parking management approaches are proving inadequate in ensuring optimal space uti-
lization and reducing congestion. Deep learning techniques, particularly convolutional
neural networks (CNNs), have gained attention for their potential to transform parking
management. These methods offer the promise of accurate occupancy detection, which
is fundamental for making informed decisions regarding space allocation, traffic flow
optimization, and overall urban planning.
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Several studies have proposed deep learning techniques for parking lot management,
with a specific focus on three types of problems: automatic parking space position detec-
tion, individual parking space classification, and vehicle detection and counting [1]. The
motivation behind developing a model for parking lot occupancy detection is to address the
need for efficient management of parking spaces. By accurately determining the occupancy
status of parking lots, it becomes possible to optimize parking resource utilization, enhance
traffic management, and improve the overall parking experience for users.

However, the successful integration of deep learning in parking management necessi-
tates a profound understanding of the unique challenges posed by this domain. Parking
scenarios introduce complexities such as varying lighting conditions, diverse vehicle types,
occlusions, and the requirement for real-time response. These challenges demand tailored
solutions that can reliably function across a spectrum of conditions, providing accurate
occupancy detection while accommodating the dynamic nature of parking environments.
Existing methods for parking lot occupancy detection often rely on conventional computer
vision techniques or shallow machine learning models, which struggle to achieve high
accuracy in complex parking scenarios. These methods lack the ability to handle some of
the aforementioned problems.

In this paper, we address these challenges by proposing an enhanced MobileNetV3
architecture customized for the nuanced demands of parking lot occupancy detection. By
leveraging the architectural efficiency of MobileNetV3 [2] and introducing domain-specific
modifications, we aim to mitigate the complexities inherent to parking management sce-
narios. Although the MobileNetV3 architecture has demonstrated significant efficiency
gains and high accuracy in various computer vision tasks, its application to parking lot
occupancy detection poses unique challenges. In the context of parking lot occupancy
detection, the original MobileNetV3 encounters limitations related to handling varying
lighting conditions, dealing with occlusions, and distinguishing between different vehicle
types. These challenges stem from the specific characteristics of parking lot images, includ-
ing complex backgrounds, varying perspectives, and the need to accurately identify small,
partially occluded objects. Our research addresses these limitations by introducing key
modifications to the MobileNetV3 architecture tailored for parking lot occupancy detection.
This modified version incorporates several architectural improvements, including the use
of a Leaky-ReLU6 [3] activation function for the shallow part of the MobileNetV3 model,
the replacement of the squeeze-and-excitation module [4] with the convolution block at-
tention module [5], and the replacement of the depth-wise separable convolutions with
blueprint separable convolutions [6]. We treat the automatic detection of vacant spaces
as a binary classification problem and train and test the improved model on widely used
parking management datasets such as CNRPark-EXT [7] and PKLOT [8]. The proposed
model processes individual parking spaces and classifies them as vacant or occupied. The
incoming real-time video feed frame is processed to obtain individual parking spaces.
The proposed model exhibits superior performance compared to previous state-of-the-art
models in terms of accuracy and precision and demonstrates its capability to function in
real time.

The industrial significance of our approach lies in its practical applications within the
rapidly growing field of smart cities and intelligent transportation systems. Our modified
MobileNetV3 model addresses key challenges in parking management, contributing to
reduced congestion, improved user experiences, and optimized parking resource utilization.
With real-time and accurate parking occupancy detection, cities can implement responsive
parking guidance systems, enabling drivers to quickly locate available parking spots.

The main contributions of this study are as follows:

• Novel model outperforming state-of-the-art models: We propose and develop a novel
model that achieves a substantial advancement over existing state-of-the-art models
in terms of both accuracy and AUC score. Importantly, this superior performance is
achieved while ensuring real-time functionality, making our model highly suitable for
practical applications.
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• Enhancements to MobileNetV3 architecture: We enhance the performance of the
MobileNetV3 architecture through a series of strategic modifications. Firstly, we
introduce a novel activation function that contributes to improved accuracy and
precision. Additionally, we replace the traditional squeeze-and-excitation (SE) module
with a Convolution Block Attention Module (CBAM), a change that refines the model’s
ability to focus on salient features. Moreover, we optimize the depth-wise convolution
block by adopting blueprint separable convolutions, resulting in a model architecture
that is more efficient and effective for parking management tasks.

• Improved generalization and small object detection: Our enhanced MobileNetV3
model exhibits notable improvements in its architecture. These modifications em-
power the model to better identify essential aspects of images, pay attention to small
objects within the image, and achieve increased generalization capability. These en-
hancements collectively contribute to superior performance in parking lot occupancy
detection tasks.

• Practical significance: The contributions outlined above hold significant implications
for real-world parking management scenarios. Our model’s elevated accuracy, cou-
pled with its capacity for real-time operation, has the potential to revolutionize parking
lot occupancy detection. By honing in on crucial image components and effectively
detecting small objects, our model proves to be a valuable asset for optimizing park-
ing resource utilization, alleviating traffic congestion, and ultimately enhancing the
efficiency of parking management systems.

The remainder of this paper is organized as follows. Section 2 reviews the literature
concerning the MobileNet models’ family and parking space classifications. Section 3 de-
scribes the datasets used in the experiments. Sections 4 and 5 discuss the proposed parking
management approach and present the experimental results and analyses, respectively.
Section 6 provides an overview of the research findings and suggests potential areas for
future investigation.

2. Background and Related Work

In this section, we briefly discuss the models in the MobileNet family in Section 2.1 and
discuss feature extraction and deep learning-based solutions for the problem of parking
space classification in Section 2.2.

2.1. MobileNet Model Family

Recently, deep learning has significantly contributed to the field of computer vision.
This has led to the development of diverse technologies, including object detection, classifi-
cation, and segmentation models, which can be accessed through cloud-based services on
internet-connected devices. However, the implementation of these models and technologies
on mobile and embedded devices poses several challenges: the models must operate with
high accuracy and speed while being mindful of the limited computational power and
resources available. Therefore, models that satisfy this criterion are critical. An efficient
model family called MobileNet was introduced in 2017 [9] and was specifically designed
for use on mobile and embedded devices. These models exhibited better performance
in terms of latency, size, and speed than other cutting-edge models. Although there is a
slight latency in the output performance, this tradeoff is acceptable when the model can be
deployed on a mobile or edge device for real-time offline detection. MobileNet is a family
of low-latency, low-power, and small computer vision model architectures designed to
maximize accuracy while satisfying the resource constraints of on-device or embedded
applications. Classification, detection, and segmentation tasks can be performed using
these models, as with other large-scale models.

MobileNetV1 [9], the first model in the MobileNet family, incorporated a new feature
called depth-wise separable convolution, which can drastically reduce the number of
required parameters compared with other architectures that use regular convolutions.
The architecture of the MobileNetV1 model is presented in Figure 1, containing several
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depth-wise separable convolutions that decrease the number of operations required by the
model for forward and backward propagation.
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Figure 1. Architecture of MobileNetV1. C1—convolution layer 1, DW2—depth-wise convolution 2,
PW2—point-wise convolution 2, F15—fully connected layer 15.

The shape of the input image is 224 × 224 × 3 and 3 × 3 × 3 convolution is applied
onto it firstly. The resulting feature map is 32 × 112 × 112 and in the first convolution
layer, C1, 3 × 3 × 1 convolution filter is applied. Two operations, depth-wise and point-
wise convolution, constitute the depth-wise separable convolution. Depth-wise separable
convolution is based on the concept of separating a filter’s depth and spatial dimensions;
this is the reason why it is called “separable.” This concept involves isolating the depth
dimension from the horizontal dimension, resulting in depth-wise separable convolu-
tion. This approach entails first performing depth-wise convolution and then applying a
1 × 1 filter across the depth dimension. The reduction in the number of parameters achieved
with this convolution is impressive. For instance, creating a single channel necessitates
3 × 3 × 3 parameters for depth-wise convolution and only 1 × 3 parameters for additional
convolution in the depth dimension. However, for the same number of output channels
in the regular convolution, three 3 × 3 × 3 filters are required, resulting in a total require-
ment of 81 parameters. In contrast, for the depth-wise separable convolution, only three
1 × 3 depth filters are required, resulting in a total of 36 parameters. Figure 2 illustrates
depth-wise separable convolution, involving point-wise convolution following depth-wise
convolution.
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The process of depth-wise convolution involves applying one convolution per input
channel individually, resulting in the same number of output channels as input channels;
its computational cost is calculated as Df2 × M × Dk2. Point-wise convolution, on the other
hand, is a type of convolution with a kernel size of 1 × 1 that merges the features created
by depth-wise convolution, whose computational cost is computed as M × N × Df2.

MobileNetV2 [10] uses depth-wise separable convolutions in its design, with its main
block comprising three convolutional layers, as shown in Figure 3.
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The last two convolutions are the same as those in MobileNetV1, consisting of one
depth-wise and one 1 × 1 point-wise convolution. In contrast to MobileNetV1, the point-
wise convolution in MobileNetV2 reduces the number of channels, thereby earning it
the name “projection layer,” as high-dimensional data are projected onto a tensor with
fewer dimensions. This convolutional layer is also referred to as the bottleneck layer
because it minimizes the amount of data flowing through the network. MobileNetV2 also
introduces a new 1 × 1 convolution in its design, which increases the number of channels
in the data before they are subjected to depth-wise convolution. The expansion factor, a
hyperparameter that determines the extent to which the number of channels is expanded, is
set to six by default and requires experimental verification. The use of a residual connection,
as in ResNet, is another new feature of MobileNetV2 that facilitates the flow of gradients
within the network.

MobileNetV3 is the latest iteration in the MobileNet family of convolutional neural
networks (CNNs), which incorporates squeeze-and-excitation (SE) blocks in the initial
building blocks taken from MobileNetV2. Traditional convolutional layers in CNNs treat
each channel equally; however, SE blocks compute the output by considering the relevance
of each channel, as shown in Figure 4.
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Each channel is first compressed into one numeric value by the SE block; this numeric
value is then fed into a two-layer feed-forward network that calculates the weights for each
channel. In MobileNetV3, SE blocks are applied in parallel to the residual layers to assign
different weights to various channels in the input when creating the output feature maps,
leading to improved accuracy.

MobileNetV3 also introduces two improvements over MobileNetV2: layer removal
and the use of swish non-linearity.

(a) Layer removal: The 1 × 1 expansion layer, obtained from the inverted residual
unit and transported along the pooling layer in the last block of MobileNetV2, uses
1 × 1 feature maps rather than 7 × 7 feature maps, making it efficient in terms of
computation and latency. Consequently, the projection and filtering layers of the prior
bottleneck layer may be eliminated, as shown in Figure 5.
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(b) Use of swish non-linearity: Swish non-linearity is defined as

swish x = x*σ(x) (1)

Swish nonlinearity has been proven to enhance accuracy. Nevertheless, the creators of
MobileNetV3 replaced the sigmoid function with the hard swish or h-swish because the
sigmoid is computationally expensive, and computational expenditure must be minimized.

h-swish[x] = x*(ReLU6(x + 3))/6 (2)

The research introducing MobileNetV3 defined two models: MobileNetV3-Large and
MobileNetV3-Small, the structures of which are listed in Table 1.
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Table 1. Specification for MobileNetV3-Large and MobileNetV3-Small. SE means whether there is a
squeeze-and-excitation in this block; NL is the type of non-linearity used; HS means h-swish; RE is
ReLU; NBN means no batch normalization; S is stride; in SE columns + means SE is used in this layer,
- means it is not used.

MobileNetV3-Large MobileNetV3-Small

Input Operator Exp
Size

Out
chan-
nels

SE NL s Input Operator Exp
Size

Out
chan-
nels

SE NL s

2242 × 3 conv2d, 3 × 3 - 16 - HS 2 2242 × 3 conv2d, 3 × 3 - 16 - HS 2
1122 × 16 bneck, 3 × 3 16 16 - RE 1 1122 × 16 bneck, 3 × 3 16 16 + RE 2
1122 × 16 bneck, 3 × 3 64 24 - RE 2 562 × 16 bneck, 3 × 3 72 24 - RE 2
562 × 24 bneck, 3 × 3 72 24 - RE 1 282 × 24 bneck, 3 × 3 88 24 - RE 1
562 × 24 bneck, 5 × 5 72 40 + RE 2 282 × 24 bneck, 5 × 5 96 40 + HS 2
282 × 40 bneck, 5 × 5 120 40 + RE 1 142 × 40 bneck, 5 × 5 240 40 + HS 1
282 × 40 bneck, 5 × 5 120 40 + RE 1 142 × 40 bneck, 5 × 5 240 40 + HS 1
282 × 40 bneck, 3 × 3 240 80 - HS 2 142 × 40 bneck, 5 × 5 120 48 + HS 1
142 × 80 bneck, 3 × 3 200 80 - HS 1 142 × 48 bneck, 5 × 5 144 48 + HS 1
142 × 80 bneck, 3 × 3 184 80 - HS 1 142 × 48 bneck, 5 × 5 288 96 + HS 2
142 × 80 bneck, 3 × 3 184 80 - HS 1 72 × 96 bneck, 5 × 5 576 96 + HS 1
142 × 80 bneck, 3 × 3 480 112 + HS 1 72 × 96 bneck, 5 × 5 576 96 + HS 1

142 × 112 bneck, 3 × 3 672 112 + HS 1 72 × 96 conv2d, 1 × 1 - 576 + HS 1
142 × 112 bneck, 5 × 5 672 160 + HS 2 72 × 576 pool, 7 × 7 - - - - 1
72 × 160 bneck, 5 × 5 960 160 + HS 1 12 × 576 conv2d 1 × 1, NBN - 1024 - HS 1
72 × 160 bneck, 5 × 5 960 160 + HS 1 12 × 1024 conv2d 1 × 1, NBN - k - - 1
72 × 160 conv2d, 1 × 1 - 960 - HS 1
72 × 160 pool, 7 × 7 - - - - 1
12 × 960 conv2d 1 × 1, NBN - 1280 - HS 1

72 × 1280 conv2d 1 × 1, NBN - k - - 1

2.2. Related Work on Parking Space Classification

Figure 6 illustrates two different states in which a parking spot can be: occupied or
vacant. So, the parking space classification task can be designed as a binary classification
task. The parking space classification task can be done via either traditional machine
learning approaches or deep learning approaches. The initial image used as the input for
the parking lot occupancy detection system is captured using a camera and consists of the
entire parking lot. Before starting the classification process, individual parking spots are
extracted from the whole parking lot image with provided parking spot locations.
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Figure 6. Empty and busy parking spaces.

With traditional machine learning approaches, we extract useful image features with
different image preprocessing techniques, like histogram equalization or thresholding.
After feature vector extraction, we train one of many classification algorithms, like a
support vector machine or multilayer perceptron, with the feature vector and their ground
truth labels. Various studies have proposed approaches that use feature extraction to
classify individual parking spots.

Al-Kharusi et al. [11] introduced an intelligent parking management system exclu-
sively reliant on conventional image processing methodologies. This system encompasses
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a series of operations including color space conversion, morphological operations (specif-
ically dilation and erosion), thresholding techniques, edge detection algorithms, and a
Hough transform. Ahrnbom et al. [12] devised a parking slot occupancy classifier by
integrating Integral Channel Features with either Logistic Regression or Support Vector
Machine. Initially, ten feature channels were extracted per input image, encompassing
elements such as color channels in the LUV color space, gradient magnitude, and quantized
gradient channels. Subsequently, feature vectors were efficiently computed from specific
feature channels using the integral image approach. Finally, both logistic regression and
support vector machine classifiers were trained and tested using the PKLot dataset. Fur-
thermore, in de Almeida et al. [8], the authors not only provided a dataset but also tackled
the issue by employing machine learning methodologies. They utilized their dataset, com-
prising around 700,000 images of parking spaces from multiple cameras in parking lots, to
train Support Vector Machine (SVM) classifiers on diverse textural characteristics, includ-
ing Local Binary Patterns (LBP), Local Phase Quantization (LPQ), and their derivatives.
Additionally, they improved detection accuracy by employing combinations of SVMs and
employing basic aggregation techniques, such as maximum or average, on the confidence
scores generated by the classifiers.

Numerous scholars have acknowledged the constrained adaptability of handcrafted
visual features, such as SIFT, SURF, and ORB, to effectively accommodate the intricacies of
object appearance variations, which often exhibit high non-linearity, temporal fluctuations,
and complexity. Intriguingly, pre-trained Convolutional Neural Networks (CNNs) have
demonstrated remarkable efficacy as "off-the-shelf" feature extractors across a diverse array
of visual recognition tasks, as evidenced by findings from Razavian et al. [13]. It should
be noted that feature engineering is not applied in DL models because these models aim
to discover how parking spots are represented, and the classifier is typically integrated
into the DL model. Amato et al. [7] developed mAlexNet, a deep neural network tailored
for parking occupancy classification. Through comprehensive evaluations on the PKLot
and CNRPark-EXT datasets, mAlexNet demonstrates superior performance over AlexNet
and LPQ by de Almeida et al. [8] in terms of both classification accuracy and area under
the curve (AUC). Notably, despite being significantly smaller in size—approximately
three orders of magnitude compared to the original AlexNet [14]—mAlexNet remains
feasible for implementation on embedded platforms such as the Raspberry Pi 2 Model B.
Nguyen et al. [15] proposed a modified version of mAlexNet along with their own dataset,
HUSTPark, taken from two parking fields at the HUST campus. Their model was very
compatible and small in size, but that came in the cost of reducing the accuracy of the
model compared to original mAlexNet model.

In Nurullayev and Lee’s study [16], they introduced CarNet, a deep neural network
(DNN) utilizing dilated convolutional neural networks to assess parking space occupancy
status. CarNet takes as input a 54 × 32 RGB image representing a parking slot. Their
experiments demonstrate CarNet’s superior performance compared to AlexNet [14] and
other established deep learning architectures on the PKLot dataset. Furthermore, CarNet
outperforms mAlexNet [7] on the CNRPark-EXT dataset. Despite achieving high precision
and robustness, CarNet necessitates manual cropping of parking slot images from the
overall parking lot input image. A detailed comparison between CarNet and our proposed
approach is presented in the results section.

In their paper, Xiao et al. [17] address the problem of whether a free parking spot
is compatible with the mission of the ego vehicle by tackling parking spot classification
based on the surround view camera system. The authors adapt the YOLOv4 object de-
tection neural network, enhancing it with a novel polygon bounding box model suitable
for various shaped parking spaces, including slanted parking slots. Notably, this study
represents the first detailed investigation of parking spot detection and classification using
fisheye cameras for auto valet parking scenarios. The proposed classification approach
effectively distinguishes between regular, electric vehicle, and handicap parking spots. By
considering both occupancy and suitability, this research contributes to more intelligent
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and context-aware parking guidance systems. Grbich et al. [18] introduced an algorithm
for automatic parking slot detection as well as an occupancy classification model. Their
approach contains several steps: detect cars in subsequent parking lot images with YOLO
for approximately five minutes and extract bounding box centers; cluster and eliminate
false detection bounding box centers with a clustering algorithm, and from cluster cen-
ters, detect bounding boxes of parking spaces; and perform the classification for detected
parking spaces. Duong et al. [19] introduced an object detector for parking occupancy
detection, OcpDet, based on RetinaNet, with its backbone, ResNet, replaced by MobileNet.
They mainly emphasize scalability and reliability. Martynova et al. [20] created a new
seasonal dataset for parking lot occupancy detection and developed a custom model based
on EfficientNet-B0 for parking occupancy detection.

3. Datasets Used for Experiments

CNRPark-EXT and PKLot datasets were used in our experiments as the source of data.
Table 2 shows the CNRPark-EXT and PKLot dataset features.

Table 2. Main features of CNRPark-EXT [7] and PKLot [8] datasets.

Dataset Image
Resolution

SAMPLE
Time

Number of
Cameras/Parking Lots

Number of
Images

Number of Annotations (Number of
Occupied/Number of Empty)

CNRPark-EXT 1000 × 750 px 30 min 9 4278 157,549 (87,709/69,840)
PKLot 1280 × 720 px 5 min 3 12,417 695,899 (337,780/358,119)

3.1. CNRPark-EXT Dataset

Amato et al. [7] developed the CNRPark-EXT dataset by extending the CNRPark
dataset [21]. CNRPark-EXT is a comprehensive dataset designed for visual occupancy
detection in parking lots. Figure 7 shows some examples from different camera perspectives
and environmental conditions.
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CNRPark-EXT contains approximately 150,000 labeled images (patches) represent-
ing both vacant and occupied parking spaces. The dataset is built on a parking lot
with 164 parking spaces. It extends the original CNRPark dataset, which consisted of
12,000 images collected from two cameras during different days in July 2015. CNRPark-EXT
is an additional subset, collected from November 2015 to February 2016, that significantly
expands the dataset. It includes images captured by nine cameras with varying perspectives
and angles of view. CNRPark-EXT captures diverse scenarios, including different light
conditions, partial occlusions (due to obstacles like trees, lampposts, and other cars), and
partial or global shadows on cars. The cameras in CNRPark-EXT cover a wide range of
views, capturing parking spaces from different angles. The dataset provides a glimpse into
the fields of view of the nine available cameras.

3.2. PKLot Dataset

The PKLot dataset is a robust collection designed specifically for parking lot classi-
fication developed by Almeida et al. [8]. The PKLot dataset comprises 12,417 images of
parking lots and an impressive 695,899 images of segmented parking spaces. The dataset
incorporates images captured under various weather conditions, including sunny, cloudy,
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and rainy days, ensuring the model’s robustness to weather variations. Images were col-
lected at different times of the day, including diverse lighting conditions that a real-world
parking detection system would encounter. The dataset was acquired from the parking lots
of two Brazilian universities: the Federal University of Parana (UFPR) and the Pontificial
Catholic University of Parana (PUCPR), both located in Curitiba, Brazil. Investigations
have revealed that UFPR04 presents a slightly greater challenge than the other two subsets,
UFPR05 and PUCPR; this is because this subset contains images with different obstacles and
ground patterns. The dataset includes both occupied and empty parking spaces, allowing
for comprehensive classification tasks. The dataset contains images of parking lots with
delimited spaces, both occupied and empty. Figure 8 shows some examples from all three
different camera points in different weather conditions.
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4. Proposed Method

This section examines the development process of the deep learning-based parking
lot occupancy detection system and its constituent components. We use the LeakyReLU6
activation function for the shallow part of the model, replace the SE block with a convolution
block attention module, and replace the depth-wise convolution layers with blueprint
separable convolutions. The logical architecture of the occupancy detection process with
an already trained model is presented in Algorithm 1.

Algorithm 1: Pseudocode for parking lot occupancy detection process.

1. Input: images of streaming camera
2. Input: manually entered parking space locations
3. Set classification threshold → T
4. When the streaming video does not stop, for each frame of the video:

a Divide frame into patches according to manually predefined locations
b Resize the patches
c For each patch:

i. Feed it to the trained model
ii. Obtain its classification result
iii. If the classification result is higher than threshold T, mark it as occupied,

else vacant
iv. Draw bounding box around patch in the frame in red color if it is occupied,

else in green color

d End for cycle.
e Show the frame with bounding boxes drawn over the initial frame

5. End while

4.1. LeakyReLU6 Activation Function for the Shallow Part of the Network

The use of activation functions is an important aspect of deep learning models. Ac-
tivation functions introduce non-linearity into the network, thereby allowing it to learn
more complex and abstract features from the input data. The authors of MobileNetV3
used the ReLU6 activation function as part of the h-swish activation function. ReLU6 is a
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popular activation function that is frequently deployed in neural networks because it is
computationally efficient and can prevent the vanishing gradient problem.

ReLU6(x) = min(max(0, x), 6) (3)

However, ReLU6 has the limitation that it remains inactive for negative input values,
which can result in inaccurate feature extraction. To address this limitation, the Leaky-
ReLU6 activation function is used in this study. The Leaky-ReLU6 function combines the
leaky-ReLU concept with the ReLU6 function to form a new activation function that is
divided into three segments.

When x is less than zero, the function is multiplied by a small parameter, ‘a’, to prevent
the neuron from dying. This allows for more effective feature extraction in the low-level
network. When 0 < x < 6, the function grows linearly; when x reaches 6, it remains at 6 and
does not increase further.

Leaky-ReLU6(x) = min(6, max(ax, x)) (4)

The use of Leaky-ReLU6 in the shallow part of the MobileNetV3 model can help
improve the accuracy of image feature extraction, particularly for negative input values.
The parameter ‘a’ can be manually adjusted during the training process to find the optimal
value for the best performance; this value can be used in subsequent test executions.

During our experiments, we tested values in the range [0.0001:0.1]. When a was equal
to 0.001, the observed performance was better than the other experimental values.

4.2. CBAM Attention Mechanism

In computer vision, the attention mechanism is a technique that focuses on specific
regions of an image that are most relevant to a given task or objective. It is inspired by the
manner in which human attention works, where we tend to focus on the most informative
or interesting parts of an image. In an attention mechanism, a model learns to assign impor-
tance weights to different parts of an image and then selectively combines these features to
make a prediction or decision. This can improve the accuracy and efficiency of a model
because it allows it to pay attention to the most important details while avoiding unim-
portant or distracting details in a picture. Attention mechanisms have been demonstrated
to enhance the performance of these models in several computer-vision tasks, including
image classification, object identification, and image captioning.

The attention module in MobileNetV3 is called the squeeze-and-excitation (SE) module.
It comprises two main operations: squeeze and excitation. In the squeeze operation, the
feature maps from the previous convolutional layer are globally averaged and pooled
to produce a 1D feature vector that represents the channel-wise statistics of the feature
maps. During the excitation operation, this 1D feature vector is passed through two
fully connected layers using a gating mechanism, producing a channel-wise importance
score vector. This vector is then multiplied with the original feature maps to produce the
attended feature maps, which emphasize the informative channels and suppress the less
informative ones.

The SE module is designed to adaptively adjust the channel-wise importance of feature
maps, which enhances the discriminability of features and boosts the performance of object-
detection tasks. It has been shown to perform well in a range of computer vision tasks
such as semantic segmentation, object detection, and image classification. However, the SE
module concentrates solely on the channel dimension of the feature map while overlooking
the spatial dimension of the target data. In contrast, the convolution block attention module
(CBAM) creates an attention map in both the channel and spatial dimensions and conducts
element-wise multiplication operations between the attention map and input feature map
in the corresponding dimensions. This results in a more comprehensive and accurate
extraction of the target features.
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The CBAM channel attention mechanism is characterized by a greater number of
parallel global max pooling layers than the SE module. In addition, the utilization of diverse
pooling operations enables the extraction of more comprehensive, high-level features.
Within the bottleneck structure of the parking space classification model, the input channels
undergo a dimensional upgrade and deep convolution, obtaining feature F through deep
convolution; this feature is input into the channel attention module of the CBAM to derive
the channel feature. The resulting channel feature F’ is then multiplied with F to obtain the
feature F’, which is fed into the spatial attention module to produce the spatial feature. The
final feature F” is obtained by multiplying the channel feature F’ and the spatial feature,
followed by linear point-by-point convolution. Figure 9 shows a schematic diagram of
MobileNetV3’s bottleneck structure with an integrated CBAM module.
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4.3. Blueprint Separable Convolutions to Replace Depth-Wise Separable Convolutions

As discussed in Section 3.2, depth-wise separable convolutions are used in Mo-
bileNetV3 to reduce the number of parameters and computational complexity while main-
taining accuracy. Traditional convolutional layers have a large number of parameters,
which can lead to slow inference times and high memory usage. In MobileNetV3, the
use of depth-wise separable convolutions, along with other optimizations, such as SE
blocks and hard-swish activation functions, results in a highly efficient and accurate neural
network architecture for mobile and embedded devices. However, Haase and Amthor [6]
quantitatively analyzed the properties of kernel weights obtained from trained models
and found that depth-wise separable convolutions indirectly rely on correlations between
kernels; however, their proposed new approach, blueprint separable convolutions, utilizes
intra-kernel correlations to enable a more effective separation of standard convolutions, as
opposed to traditional convolutional neural networks that rely on inter-kernel correlations.
This results in a more efficient and effective convolution method.

Blueprint separable convolutions are a type of convolutional neural network layer
introduced by Haase and Amthor [6] that aims to improve the efficiency of depth-wise
separable convolutions by exploiting the interrelationships between CNN kernels along
their depth dimension. Depth-wise separable convolutions employ M × K × K filters that
can be represented by a K × K template and M parameters that distribute the template in
the depth dimension; this observation has motivated the creation of blueprint-separable
convolutions. Every filter kernel F(n) can be depicted using a blueprint B(n) and the weights
wn, 1, . . ., wn, M via

F(n)m,:,: = wn, m * B(n) (5)

with m in {1, . . ., M: number of kernels in one filter} and n in {1, . . ., N: number of filters in
one layer}. Figure 10 illustrates the blueprint separable convolutions and their differences
from standard convolutions. Blueprint separable convolutions exploit the CNN kernel
correlations along their depth axes. Consequently, each filter kernel is represented as a
single two-dimensional blueprint kernel in blueprint separable convolutions, which are
then distributed along the depth axis using a weight vector. Although filter kernels are
subject to strict limitations under this formulation, the authors experimentally showed
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that, when compared to their vanilla equivalents, CNNs trained using blueprint separable
convolutions can achieve the same or even higher quality.
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Compared to standard convolution layers that have M×N×K2 free parameters,
blueprint separable convolution only has N×K2 parameters for the blueprints and M
× N parameters for the weights. The authors proposed two versions of blueprint separable
convolutions: unconstrained blueprint separable convolutions (BSConv-U) and subspace
blueprint separable convolutions (BSConv-S).

When compared to DSConv, BSConv-U has depth-wise and point-wise convolution
layers in opposite order, in which intra-kernel correlations are promoted more than cross-
kernel correlations. BSConv-U is less complex in terms of the mathematical equations and
calculations, making it more suitable for practical implementation.

Reversing the order of the layers is not expected to significantly affect the middle flow
of the network because it already includes point-wise and depth-wise convolutions in an
alternating pattern. However, the entry flow is affected because the feature maps from
the initial regular convolution can be more fully utilized by the depth-wise convolution
via the preceding point-wise distribution. The authors experimentally demonstrated that
CNNs trained using the BSConv method can achieve comparable or even superior quality
compared to their conventional counterparts.

Overall, the improvements in the architecture of the proposed model helped prevent
the model from overfitting, decreased the inference time, and improved accuracy.

4.4. Implementation Details

The proposed classification model was trained using a personal computer with an
8-core 3.70 GHz CPU, 32 GB Memory, and Nvidia GeForce RTX 3060 GPU. The training and
testing processes utilized two commonly used parking lot datasets: PKLot and CNRPark-
EXT. During our experiments, we used predefined training, validation, and testing subsets
of the CNRPark-EXT dataset: the training subset contains 104,493 patches from both
the CNRPark and CNRPark-EXT dataset training subsets; the validation subset contains
21,231 patches from both the CNRPark and CNRPark-EXT datasets; and the testing subset
contains 31,825 patches from the CNRPark-EXT dataset testing subset. From the PKLot
dataset, we used the PUCPR (424,269 patches), UFPR04 (105845 patches), and UFPR05
(165,785 patches) subsets alternatively as our training and testing subsets. The crucial
parameters for the training experiments are as follows: 500 epochs, a batch size of 64
images, and a 224 × 224 input image size. Using a starting learning rate of 0.0001, weight
decay of 0.0005, and momentum of 0.99, we employed the Adam optimizer, which combines
the benefits of two other optimizers: the adaptive gradient algorithm (AdaGrad) and root
mean square propagation (RMSProp).

Using five-fold cross-validation, we separated the dataset into five sections and used
80% of it for training and the remaining 20% for validation throughout the training phase.
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Shuffling was performed at every epoch. Our trained model performed well when tested
on an untested sample of photographs.

We used accuracy and AUC scores as our main metrics in this work. Below, we present
the formulas used to calculate the accuracy and precision:

• Accuracy: used to evaluate the performance of the identification task. It is calculated
as the number of all correct predictions divided by the total number of the dataset and
the best accuracy is 1.0, which is calculated as follows:

Accuracy = (TP + TN)/(TP + TN + FN + FP) (6)

where TP, FN, FP, and TN represent the number of true positives, false negatives, false
positives, and true negatives, respectively.

• AUC score: a metric commonly used to evaluate the performance of binary classifica-
tion models, such as those used in machine learning and deep learning. The receiver
operating characteristic (ROC) curve is a graphical representation that illustrates
the trade-off between the true positive rate (sensitivity) and the false positive rate
(1 specificity) at different probability thresholds. The AUC represents the area under
the ROC curve, which is a single value ranging from 0 to 1. The AUC score in our
work measures the model’s ability to distinguish between occupied and unoccupied
parking spaces.

5. Experimental Results and Analysis

In this section, we analyze and compare the results of our proposed model with those
of other classification models developed for parking lot classification, such as mAlexNet,
CarNet, and others, in terms of classification accuracy and AUC score. The experiments
show that our proposed modified MobileNetV3 model has a higher classification accuracy
than other models and that our proposed model correctly classifies and categorizes more
empty and busy parking spaces than other models.

We tried to visualize what our model learnt during the training process and used
GradCAM [22] and feature visualization [23] methods to check if our model was learning
the right features and paying attention to the right part of the image. In Figure 11, samples
are given for this process. GradCAM helps by visualizing which parts of the image the
model is paying the most attention to.Sensors 2023, 23, x FOR PEER REVIEW 16 of 25 
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Figure 11. Images on the left are busy parking space patches; images in the middle are taken with
GradCAM; images on the right are extracted with the first layer of our trained model.

In Figure 12, we demonstrate the sample parking lot classification result performed
with our proposed model. As is visible in the figure, all the parking spaces are correctly
classified as busy or vacant, which shows the accuracy of our model.

As an ablation study, we trained the original MobileNetV3 model from scratch on
PKLot and CNRPark-EXT datasets and tested the model on both datasets, and the same
process was applied to four different models: MobileNetV3 with the proposed LeakyReLU6
activation function, MobileNetV3 with its SE mechanism replaced by the CBAM attention
mechanism, MobileNetV3 with its depth-wise separable convolutions replaced by blueprint
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separable convolutions, and MobileNetV3 with all the above modifications applied. The
goal of these experiments was to detect which modification made to the original model
brought the greatest increase in accuracy and made the model more generalized and
scalable to different parking areas. The results are summarized in Table 3.
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Table 3. Performance results of all modified versions of MobileNetV3 model on PUCPR, UFPR04,
UFPR05 subsets of PKLot [7] dataset. Bold data shows the highest score for that experiment.

Model Train
Test

PUCPR UFPR04 UFPR05

MobileNetV3
PUCPR 99.95% 96.47% 91.02%
UFPR04 98.30% 99.95% 95.56%
UFPR05 87.80% 88.25% 99.88%

MobileNetV3 + LeakyReLU6
PUCPR 98.20% 94.68% 89.95%
UFPR04 96.65% 97.80% 93.40%
UFPR05 89.95% 90.45% 97.86%

MobileNetV3 + CBAM module
(convolution block attention module)

PUCPR 98.65% 95.34% 91.27%
UFPR04 97.80% 98.33% 94.28%
UFPR05 92.64% 91.78% 98.14%

MobileNetV3 + BSConv (blueprint
separable convolutions)

PUCPR 99.03% 96.13% 92.07%
UFPR04 98.57% 99.18% 95.69%
UFPR05 93.85% 93.63% 99.17%

MobileNetV3 + LeakyReLU6 + CBAM +
BSConv

PUCPR 99.90% 98.20% 95.15%
UFPR04 98.85% 99.68% 98.38%
UFPR05 95.06% 96.34% 99.20%

From Table 3, it is evident that although the original MobileNetV3 model achieved
nearly 100% accuracy on the same training and testing subsets of the PKLot dataset. But,
when trained on one subset and tested on another, the accuracy of this model dropped,
which means that it overfit the dataset. When the model was trained on the UFPR05 dataset
and tested on two different subsets, its performance was not good, achieving accuracy
rates of 87.80% for PUCPR testing and 88.25% for UFPR05 testing. However, changing its
shallow part activation function, changing its attention mechanism, and replacing depth-
wise separable convolutions with blueprint separable convolutions helped the model avoid
overfitting and achieve high accuracy on all training and testing parts.

Substituting the ReLU6 activation function with LeakyReLU6 resulted in a reduction
in overfitting of approximately 2% within identical training and testing dataset scenarios.
Introducing the CBAM module in lieu of the SE module led to a noteworthy accuracy en-
hancement from 87.80% to 92.64% for the UFPR05/PUCPR case and from 88.25% to 91.78%
for the UFPR05/UFPR04 scenario. Conversely, replacing DSConv with BSConv yielded
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the most significant improvement in accuracy among the three architectural modifications.
In the case of training and testing on the same subset, the accuracy nearly approximated
that of the original MobileNetV3, while successfully mitigating overfitting. Moreover, for
the UFPR05/PUCPR and UFPR05/UFPR04 cases, the model’s accuracy exhibited improve-
ments of 6% and 5%, respectively. The best classification results were achieved when all
modifications were applied to the model, which was expected regarding the modifications
to the model structure and their effects on the model’s performance.

Figure 13 presents the learning curves of five different models in Table 3 for training
on the PUCPR subset of the PKLot dataset.
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In Figure 13, it can be seen that after the final epoch, the training accuracies for the
original MobileNetV3 and our proposed approach (MobileNetV3 with all modifications)
were 99.95% and 99.9%. Also, this comparison shows that out of all three architectural
changes, replacing DSConv with BSConv had more effect on the model’s classification
improvement. However, as it was said before, the original MobileNetV3 overfitted the
dataset, so it achieved higher accuracy compared to the one we proposed.

We then compared the results of our best model with those of other models developed
or fine-tuned with transfer learning, such as AlexNet, mAlexNet, CarNet, VGG16 [24],
VGG19 [24], and others, on the PKLot dataset. A comparison of the results is presented in
Table 4.

The results presented in Table 4 indicate that our approach demonstrated superior
performance compared to the alternative classification methods across six out of nine
experimental scenarios. Notably, our method exhibited higher accuracy rates in the fol-
lowing scenarios: PUCPR/PUCPR (99.9%), PUCPR/UFPR04 (98.2%), UFPR04/PUCPR
(98.85%), UFPR04/UFPR04 (99.68%), UFPR04/UFPR05 (98.38%), and UFPR05/UFPR04
(96.34%). Notably, CarNet [16] exhibited better performance than our proposed model in
the UFPR05/PUCPR and PUCPR/UFPR05 scenarios, recording accuracy rates of 98.4%
compared to 95.06% and 97.7% compared to 95.15%, respectively. Additionally, in the
UFPR05/UFPR05 scenario, mAlexNet [7] achieved the highest accuracy of 99.49%, whereas
our model attained an accuracy of 99.2%. These results show that the modifications to the
original MobileNetV3 model are as useful and efficient as expected.

We subsequently repeated the experiments using the CNRPark-EXT dataset. First, we
trained five models on the training subset of the CNRPark-EXT and tested them on the
testing subset of the dataset: original MobileNetV3, MobileNetV3 with the LeakyReLU6
activation function, MobileNetV3 with the CBAM module, MobileNetV3 with BSConv,
and MobileNetV3 with all architecture modifications. The results of these experiments are
presented in Table 5.
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Table 4. Classification results comparison of our best model with mAlexNet, CarNet, VGG16, and
other models on PUCPR, UFPR04, UFPR05 subsets of PKLot [8] dataset. Bold data shows the highest
score for that experiment.

Model Train
Test

PUCPR UFPR04 UFPR05

Our solution: modified
MobileNetV3

PUCPR 99.90% 98.20% 95.15%

UFPR04 98.85% 99.68% 98.38%

UFPR05 95.06% 96.34% 99.20%

CarNet [16]
PUCPR 98.80% 94.40% 97.70%
UFPR04 98.30% 95.60% 97.60%
UFPR05 98.40% 95.20% 97.50%

mAlexNet [7]
PUCPR 99.90% 98.03% 96%
UFPR04 98.27% 99.54% 93.29%
UFPR05 92.72% 93.69% 99.49%

AlexNet [14]
PUCPR 98.60% 88.80% 83.40%
UFPR04 89.50% 98.20% 87.60%
UFPR05 88.20% 87.30% 98%

VGG16 [24]
PUCPR 88.20% 94.20% 90.80%
UFPR04 89.70% 95.30% 90%
UFPR05 90.50% 94.90% 91.80%

VGG19 [24]
PUCPR 81.50% 93.80% 94.60%
UFPR04 80.40% 92.30% 91.90%
UFPR05 88.80% 95.10% 95.90%

Xception [25]
PUCPR 96.30% 92.50% 93.30%
UFPR04 94% 94.60% 93.40%
UFPR05 95.70% 90.90% 91.20%

Inception V3 [26]
PUCPR 90.80% 91.10% 94.20%
UFPR04 91.70% 95.20% 92.40%
UFPR05 94.30% 92.90% 93.70%

ResNet50 [27]
PUCPR 88.20% 94.20% 94.10%
UFPR04 89.70% 95.30% 93.30%
UFPR05 90.50% 94.90% 95.50%

Table 5. Performance results of all modified versions of MobileNetV3 on CNRPark-EXT [7] dataset.
Bold data shows the highest score for that experiment.

Model Training Validation Testing

MobileNetV3 94.95% 90.13% 93.53%

MobileNetV3 + LeakyReLU6 95.07% 90.28% 94.09%

MobileNetV3 + CBAM module (convolution block attention module) 96.88% 91.99% 95.03%

MobileNetV3 + BSConv (blueprint separable convolutions) 97.53% 92.89% 95.86%

MobileNetV3 + LeakyReLU6 + CBAM + BSConv 98.07% 97.73% 97.69%

The initial MobileNetV3 architecture yielded accuracies of 94.95%, 90.13%, and 93.53%
on the training, validation, and testing subsets of the dataset, respectively. The introduction
of an alternative activation function resulted in a modest enhancement of approximately
0.5% in accuracy. Meanwhile, the adoption of an alternative attention module led to a
notable improvement of 2% in accuracy. Substitution of depth-wise separable convolutions
(DSConv) with blueprint separable convolutions (BSConv) yielded a substantial increase of
about 2.5% in accuracy.
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Figure 14 shows the training process for the five different models in Table 5 on the
training subset of the CNRPark-EXT dataset.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 25 
 

 

 
Figure 14. Comparison of 5 different model training processes on training subset of CNRPark-EXT 
dataset. x-axis: number of epochs (500), y-axis: accuracy. 

From Figure 14, it is visible that, as expected, the architectural changes helped the 
model increase its accuracy. In this dataset, the changes with the biggest accuracy in-
crease were replacing the SE module with the CBAM module and replacing DSConv 
with BSConv. 

After finishing the experiment with different modifications, we compared our best 
model results with those of the CarNet, AlexNet, and ResNet models on the 
CNRPark-EXT dataset. A comparison of the results is presented in Table 6. From Table 6, 
we can observe that our model performed better in two out of three tasks in the training 
and testing subsets of the CNRPark-EXT dataset. Our model’s validation result was also 
good but slightly lower than that of AlexNet. Our model achieved 97.73% accuracy for 
the validation subset; AlexNet achieved 97.91% accuracy. The previous state-of-the-art 
model, CarNet, achieved 97.91% accuracy in the training subset of the dataset, while 
achieving 90.05% and 97.24% accuracies in the validation and test sets of the dataset. 

Table 6. Classification results comparison of our best model with CarNet, AlexNet, and ResNet50 
on CNRPark-EXT [7] dataset. Bold data shows the highest score for that experiment. 

Model Training Validation Testing 
Our solution: modified MobileNetV3 98.07% 97.73% 97.69% 

CarNet 97.91% 90.05% 97.24% 
AlexNet 96.99% 97.91% 96.54% 

ResNet50 96.51% 97.80% 96.24% 

Finally, we compared our best model with mAlexNet and AlexNet in combination 
with the CNRPark EXT and PKLot datasets. The test results are provided in Table 7. 

Table 7. Comparison of results of our model with CarNet and mAlexNet in combination of PKLot 
[8] and CNRPark EXT [7]. Bold data shows the highest score for that experiment. 

Model Training Dataset Testing Dataset Accuracy (%) Mean (%) 

Our solution: modified 
MobileNetV3 

PKLot CNRPark EXT 96.38%  
CNRPark EXT PKLot 98.49% 98.01% 
CNRPark EXT CNRPark EXT 99.17%  

CarNet PKLot CNRPark EXT 94.77%  
CNRPark EXT PKLot 98.21% 97.03% 
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From Figure 14, it is visible that, as expected, the architectural changes helped the
model increase its accuracy. In this dataset, the changes with the biggest accuracy increase
were replacing the SE module with the CBAM module and replacing DSConv with BSConv.

After finishing the experiment with different modifications, we compared our best
model results with those of the CarNet, AlexNet, and ResNet models on the CNRPark-EXT
dataset. A comparison of the results is presented in Table 6. From Table 6, we can observe
that our model performed better in two out of three tasks in the training and testing subsets
of the CNRPark-EXT dataset. Our model’s validation result was also good but slightly
lower than that of AlexNet. Our model achieved 97.73% accuracy for the validation subset;
AlexNet achieved 97.91% accuracy. The previous state-of-the-art model, CarNet, achieved
97.91% accuracy in the training subset of the dataset, while achieving 90.05% and 97.24%
accuracies in the validation and test sets of the dataset.

Table 6. Classification results comparison of our best model with CarNet, AlexNet, and ResNet50 on
CNRPark-EXT [7] dataset. Bold data shows the highest score for that experiment.

Model Training Validation Testing

Our solution: modified MobileNetV3 98.07% 97.73% 97.69%
CarNet 97.91% 90.05% 97.24%
AlexNet 96.99% 97.91% 96.54%

ResNet50 96.51% 97.80% 96.24%

Finally, we compared our best model with mAlexNet and AlexNet in combination
with the CNRPark EXT and PKLot datasets. The test results are provided in Table 7.

As CarNet was specifically designed for this task, it achieved 97.03% accuracy on
average for all three different experiments. AlexNet obtained 94.07% accuracy as it is a good
general deep learning architecture. However, mAlexNet achieved only 88.69% accuracy
on average for all three different experiments, which shows that mAlexNet achieves very
poor results when trained on one full dataset and tested on another, or in the reverse case.
The testing scores for the three combinations provided reveal that our model is much more
robust, as it can generalize well and learn general features from the datasets.

In Table 8, the AUC scores for our proposed model and other state-of-the-art models
are given and compared. In this table, we include one different model proposed in [8],
which we call PKLot for convenience. Out of nine experiments with different subsets of
the PKLot dataset, our proposed model achieved the highest AUC scores in five cases,
while the PKLot approach had the highest AUC scores in three experiments, and CarNet
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achieved the highest AUC score in one experiment when trained on the PUCPR subset and
tested on the UFPR05 subset of the PKLot dataset.

Table 7. Comparison of results of our model with CarNet and mAlexNet in combination of PKLot [8]
and CNRPark EXT [7]. Bold data shows the highest score for that experiment.

Model Training Dataset Testing Dataset Accuracy (%) Mean (%)

Our solution: modified MobileNetV3
PKLot CNRPark EXT 96.38%

CNRPark EXT PKLot 98.49% 98.01%
CNRPark EXT CNRPark EXT 99.17%

CarNet
PKLot CNRPark EXT 94.77%

CNRPark EXT PKLot 98.21% 97.03%
CNRPark EXT CNRPark EXT 98.11%

mAlexNet
PKLot CNRPark EXT 83.83%

CNRPark EXT PKLot 84.53% 88.69%
CNRPark EXT CNRPark EXT 97.71%

AlexNet
PKLot CNRPark EXT 90.52%

CNRPark EXT PKLot 93.70% 94.07%
CNRPark EXT CNRPark EXT 98%

Table 8. Comparison of AUC scores of modified MobileNetV3 with CarNet, PKLot [8], and mAlexNet
on 3 subsets of PKLot [8] dataset. Bold data shows the highest score for that experiment.

Name of Architecture Training Dataset Testing Dataset AUC Score Best Result Achieved Method

modified MobileNetV3 UFPR04 UFPR04 0.992

PKLot
CarNet UFPR04 UFPR04 0.979
PKLot UFPR04 UFPR04 0.999

mAlexNet UFPR04 UFPR04 0.99

modified MobileNetV3 UFPR04 UFPR05 0.9956

modified MobileNetV3
CarNet UFPR04 UFPR05 0.9935
PKLot UFPR04 UFPR05 0.9595

mAlexNet UFPR04 UFPR05 0.99

modified MobileNetV3 UFPR04 PUCPR 0.9993

modified MobileNetV3
CarNet UFPR04 PUCPR 0.9982
PKLot UFPR04 PUCPR 0.9713

mAlexNet UFPR04 PUCPR 0.99

modified MobileNetV3 UFPR05 UFPR04 0.9985

modified MobileNetV3
CarNet UFPR05 UFPR04 0.9963
PKLot UFPR05 UFPR04 0.9533

mAlexNet UFPR05 UFPR04 0.98

modified MobileNetV3 UFPR05 UFPR05 0.999

PKLot
CarNet UFPR05 UFPR05 0.9989
PKLot UFPR05 UFPR05 0.9995

mAlexNet UFPR05 UFPR05 0.99

modified MobileNetV3 UFPR05 PUCPR 0.9819

modified MobileNetV3
CarNet UFPR05 PUCPR 0.9791
PKLot UFPR05 PUCPR 0.9761

mAlexNet UFPR05 PUCPR 0.98

modified MobileNetV3 PUCPR UFPR04 0.9923

modified MobileNetV3
CarNet PUCPR UFPR04 0.9845
PKLot PUCPR UFPR04 0.9589

mAlexNet PUCPR UFPR04 0.99
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Table 8. Cont.

Name of Architecture Training Dataset Testing Dataset AUC Score Best Result Achieved Method

modified MobileNetV3 PUCPR UFPR05 0.9906

CarNet
CarNet PUCPR UFPR05 0.9938
PKLot PUCPR UFPR05 0.9152

mAlexNet PUCPR UFPR05 0.99

modified MobileNetV3 PUCPR PUCPR 0.99

PKLot
CarNet PUCPR PUCPR 0.9986
PKLot PUCPR PUCPR 0.9999

mAlexNet PUCPR PUCPR 0.99

Our trained models took around 10 MB memory, which is quite good compared to big
models like VGG16, AlexNet, etc. A modified version of mAlexNet proposed in [15] needs
about 10 KB memory, but its accuracy is lower than mAlexNet. mAlexNet, proposed by
Amato et al. [7], needed about 129 KB. So, while our model is bigger than mAlexNet and
modified mAlexNet in size, it has better accuracy and AUC score, as shown in the above
experiments.

We also compared the average runtimes of our proposed model with those of other
models. We randomly selected 1000 224 × 224 images from each of the CNRPark-EXT and
PKLot datasets and ran each model on the same machine used for training without GPU
acceleration in the PyTorch framework. Table 9 shows our runtime analysis.

Table 9. Average runtime of our model with AlexNet, mAlexNet, and custom mAlexNet [28] on
subsets of PKLot [8] and CNRPark EXT [7].

Model Average Runtime on
CNRPark-EXT Test (s)

Average Runtime on
PKLot Test(s)

Mean Average
Runtime (s)

Our solution: modified MobileNetV3 0.0587 0.0619 0.0603
AlexNet 0.181 0.182 0.1815

mAlexNet 0.009 0.009 0.009
custom mAlexNet [28] 0.009 0.009 0.009

While our model is 6.7 times slower than both mAlexNet and custom mAlexNet
models, it is still 3 times faster than the AlexNet model, which makes it applicable in
real-world applications.

The overall conclusion is that the improved MobileNetV3 is a fairly robust model
when trained on one dataset and tested on another. We are certain that this approach can
be applied to real-life scenarios.

6. Conclusions and Future Work

A parking lot occupancy detection approach was developed in this study using a
deep CNN classification model, MobileNetV3, with several modifications to its architec-
ture that increased its robustness and accuracy. The developed model was trained on
two well-known parking lot datasets: PKLot and CNRPark-EXT. The incoming video
stream is processed frame-by-frame, and each frame is split into patches; the modified
MobileNetV3 model classifies each patch as being occupied by a car or as an empty parking
space. The classification results were integrated into frames with bounding boxes drawn
around each parking space. The qualitative and quantitative performances of the proposed
system were experimentally compared with those of other established classification models.
The evaluation and experimental results revealed that the enhanced MobileNetV3 model
achieved high accuracy and outperformed the other classification models in terms of both
accuracy and speed. The developed parking-space classification model is efficient and can
be applied to real-world scenarios using mobile devices, resource-constrained edge devices,
and cameras.
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The main contributions of this work are provided below:

1. An optimal deep learning model was developed to classify parking lot spaces as empty
or busy. In the proposed model, the activation function in the shallow part of the
model, which requires significant calculations, is replaced by a new activation function
that requires less computation. The squeeze-and-excitation attention mechanism
applied in the original MobileNetV3 is replaced by another, more effective attention
mechanism: the convolutional block attention mechanism. Moreover, because of
the hidden cross-kernel correlations in depth-wise separable convolutions, blueprint
separable convolutions are used, as they require less computation because they have
fewer parameters.

2. Using the improved MobileNetV3 model, the parking lot occupancy detection ap-
proach can precisely detect the number of free and busy parking spaces, despite
different weather conditions, lighting, and shadows.

Despite being robust and sufficiently quick for real-world applications, our model still
has some shortcomings: the inability to correctly classify images under diverse weather con-
ditions, images that contain a portion of cars, images with unusual parking configurations,
images with partial occlusion, and images with unseen objects.

In the future, we plan to continue exploring new methods and changes to improve
the accuracy of the classification model, reduce its runtime to make it faster when applied
to mobile and edge devices, and make it successfully applicable in the above mentioned
cases where the model may fail now. Furthermore, we plan to work on a smart camera
containing the proposed system to detect parking lot occupancy, improve its efficiency, and
reduce its resource consumption.

Our research can be extended by being integrated into a decentralized smart camera
system [7]. Incorporating the Improved MobileNetV3 into a decentralized smart camera
system has the potential to significantly enhance the efficiency, responsiveness, and intelli-
gence of the system. Also, we are working on automatic parking space detection to replace
manually labeling the parking spaces.
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