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Abstract: A single-fiber photoacoustic (PA) sensor with a silicon cantilever beam for trace acetylene
(C2H2) gas analysis was proposed. The miniature gas sensor mainly consisted of a microcantilever
and a non-resonant PA cell for the real-time detection of acetylene gas. The gas diffused into
the photoacoustic cell through the silicon cantilever beam gap. The volume of the PA cell in the
sensor was about 14 µL. By using a 1 × 2 fiber optical coupler, a 1532.8 nm distributed feedback
(DFB) laser and a white light interference demodulation module were connected to the single-fiber
photoacoustic sensor. A silicon cantilever was utilized to improve the performance when detecting
the PA signal. To eliminate the interference of the laser-reflected light, a part of the Fabry–Perot (F-P)
interference spectrum was used for phase demodulation to achieve the highly sensitive detection
of acetylene gas. The minimum detection limit (MDL) achieved was 0.2 ppm with 100 s averaging
time. In addition, the calculated normalized noise equivalent absorption (NNEA) coefficient was
4.4 × 10−9 W·cm−1·Hz−1/2. The single-fiber photoacoustic sensor designed has great application
prospects in the early warning of transformer faults.

Keywords: photoacoustic spectroscopy; single-fiber photoacoustic sensor; trace acetylene gas
analysis; white-light interference demodulation

1. Introduction

With the increasing demand for electricity in various industries, the power system is
developing in the directions of large capacity, ultra-high voltage and intelligence. The con-
tinuous online monitoring of electrical equipment can grasp the internal insulation status
of transformer equipment in a timely manner and find hidden accidents in equipment oper-
ation, so as to prevent the development of transformer latent faults as early as possible [1,2].
The online monitoring of dissolved acetylene (C2H2) gas analysis in transformer oil is
meaningful for transformer fault diagnosis [3]. Currently, dissolved gas analysis (DGA) is
considered to be the most universal method. The concentration of acetylene gas dissolved
in transformer oil can reflect the severity of the discharge fault in oil-immersed electrical
equipment [4,5]. Consequently, high-sensitivity acetylene detection is often required for
the early warning of transformer faults. Photoacoustic (PA) spectroscopy (PAS) enables
the realization of online monitoring of dissolved gas in transformer oil, with advantages of
high sensitivity, no background detection and anti-electromagnetic interference. Overheat-
ing and discharge faults in oil-immersed transformers can be distinguished by detecting
acetylene gas [6–12].

The common methods for measuring dissolved gas in transformer oil mainly include
gas chromatography, Raman spectroscopy and tunable diode laser spectroscopy technology
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(TDLAS). Gas chromatography is a method of separating different gases using chromato-
graphic columns for the quantitative detection of multicomponent gas [13]. However, the
gas chromatograph requires frequent calibration and maintenance, and the operation is
cumbersome. Tunable diode laser spectroscopy technology can calculate the concentration
of gas by detecting the change in transmission light intensity. However, TDLAS is easily
affected by the power influence of the light source, and the actual detection accuracy is
low [14]. Compared with these dissolved gas analysis methods, PAS has the advantages
of no carrier gas, no frequent calibration, a small gas sample amount and high sensitivity,
which is gradually replacing traditional dissolved gas analysis methods and has received
widespread attention in recent years [15–21]. A different resonance principle and pho-
toacoustic cells with different shapes were proposed. These included H-type resonant
photoacoustic cells, T-type resonant photoacoustic cells, Helmholtz resonant photoacoustic
cells and multi-pass absorption cells [22–27]. The sound pressure generated by gas absorp-
tion was greatly amplified by the resonant photoacoustic cell and multi-pass absorption
cell. With the development of laser and acoustic sensors, distinct photoacoustic systems for
trace gas analysis have appeared, including traditional photoacoustic spectroscopy based
on a microphone [28,29], quartz-enhanced photoacoustic spectroscopy (QEPAS) [30,31],
and cantilever-enhanced photoacoustic spectroscopy (CEPAS) [32].

The traditional photoacoustic spectroscopy detection systems were mainly composed
of a light source, photoacoustic cell and acoustic sensor. The volume was relatively large.
In recent years, a small-volume fiberoptic photoacoustic sensing probe has been studied.
So as to overcome the common problems of traditional photoacoustic spectroscopy de-
tection systems, such as weak anti-electromagnetic interference ability and a large gas
consumption chamber, a miniaturized fiber optic sensor has gradually attracted the interest
of researchers. The photoacoustic sensor integrated a photoacoustic cell and a Fabry–Perot
(F-P) interference cavity. At present, a dual-fiber photoacoustic sensor has been proposed to
detect dissolved gas in oil. Chen et at. proposed a high-sensitivity fiberoptic photoacoustic
sensor for the in situ detection of dissolved gases in oil [33]. The sensor included a micro
photoacoustic cell and an acoustic sensitive element. The two air chambers are connected,
and the volume of the photoacoustic cell is 70 µL. However, the optical fiber sensor needs to
be connected to two optical fibers, one of which excites light for gas absorption to produce
photoacoustic signals, and the other of which transmits probe light for the oscillation
amplitude of acoustic sensitive elements. Moreover, the sensor has the problems such as
the fiber resources is occupied more and it being difficult to further reduce the volume
of the photoacoustic cell. The photoacoustic signal is obtained by using the white light
interference demodulation module [34]. The detection limit of dissolved acetylene gas
reached 0.5 µL/L. A stable and high-speed F-P demodulation module is the soul of the
acoustic sensing element in the fiber optic photoacoustic sensing system. Phase demodu-
lation is a highly stable demodulation method [35]. Zhou et al. integrated the miniature
photoacoustic cell with the Fabry–Perot (F-P) acoustic sensor [36], and realized the in situ
all-optical signal detection of dissolved gas in transformer oil through the external oil–gas
separation film. The two ends of the photoacoustic sensor are connected to a fiber for trans-
mitting the excitation light and the detection light, respectively. These sensors required
two optical fibers to enter the air chamber, making it difficult to further reduce the volume.
Microscopic gas chambers utilizing hollow-core optical fibers have recently been shown
to be useful for trace gas detection. Jin et al. proposed a photothermal gas sensor with a
hollow photonic bandgap optical fiber F-P absorption cell [37]. The detection light and the
excitation light were transmitted in the same hollow photonic bandgap optical fiber, and
the light and gas had better absorption efficiency. In order to reduce the consumption and
response time of the detection method of dissolved acetylene in oil, a small-volume T-type
photoacoustic cell was proposed and the sampling oil amount of 50 mL was detected via
headspace degassing. The detection limit of dissolved acetylene was 0.2 µL/L [38]. In
order to reduce the volume of the fiber optic photoacoustic sensor probe and maximize the
integration, Li et al. proposed a single-fiber photoacoustic sensor for the detection of trace
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methane gas. The minimum detectable limit (MDL) was 8.4 ppm, with a 1 s lock-in integral
time [39]. However, the fiber optic photoacoustic sensor system was limited by the channel
band of the wavelength division multiplexer and it was difficult to detect other gases, such
as acetylene gas. Moreover, how the demodulation module eliminated the interference
spectrum to achieve a stable, high signal-to-noise ratio demodulation was not considered.

In this paper, we propose a single-fiber photoacoustic (PA) sensor for the detection
of trace acetylene gas without gas valves and pumps. The single fiber photoacous-
tic sensor integrated a photoacoustic cell and an F-P interference cavity. By using a
1 × 2 fiber optical coupler, a 1532.8 nm distributed feedback (DFB) laser and a white
light interference demodulation module were coupled in the single-fiber photoacoustic
sensor. The single-fiber photoacoustic sensor used the silicon cantilever as an acoustic
sensitive element to improve detection sensitivity. At the same time, the diameter and
length of the cylindrical PA cell were optimized to weaken the influence of the small volume
cavity on the silicon cantilever beam and facilitate the mechanical polishing of the inner
wall of the photoacoustic cell. The sensor was miniaturized and intrinsically safe, with
a diffusion gap. The influence of PA cell length on the detection performance of single
fiber photoacoustic sensor was analyzed theoretically. The volume of the PA cell in the
single-fiber photoacoustic sensor was about 14 µL. A silicon cantilever was used to detect
the sound pressure. The second-harmonic wavelength modulation spectroscopy (2f -WMS)
method was used to measure PA signals. The single-fiber photoacoustic sensor designed
has great application prospects in the early warning of transformer faults.

2. Design of the Sensing System
2.1. Design of the Single-Fiber Photoacoustic Sensor

Figure 1 shows the schematic structure of the single-fiber photoacoustic (PA) sensor,
in which a single-mode fiber transmits excitation light and detection light at the same time
by using a 1 × 2 fiber optical coupler. The single-fiber photoacoustic sensor integrated
together a PA cell and an F-P cavity. The main component of the single-fiber photoacoustic
sensor was the silicon cantilever beam. The silicon cantilever beam was fixed at the end
of the cylindrical photoacoustic cell. The output light of the optical fiber was vertically
aligned 0.2 mm above the free end of the cantilever beam. The PA cell and the F-P cavity
had the same cylindrical cavity. The diameter of the PA cell was 3 mm. The radius of the
tube was suitable for polishing the inner wall of the tube to reduce the background signal
generated by the wall absorption. The outer diameter of the single-fiber photoacoustic
sensor was 8 mm, slightly larger than the diameter of the silicon cantilever beam. The
length of the silicon cantilever was 1.6 mm, and the air gap size was 6 µm. Gas can diffuse
into the PA cell through the gap in the silicon cantilever beam.
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For a non-resonant photoacoustic cell, the sound pressure generated internally is
uniform and the value can be expressed as [40]:

P =
CP0α(v)(γ− 1)

πR2
c w

1√
1 + ( 1

wτc
)

2
(1)
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where P0 is the effective optical power, α(ν) is the absorption coefficient of the gas at the
wavenumber ν, γ is the specific heat capacity of the gas, Rc is the radius of the cylindrical
photoacoustic cell, w represents the modulation frequency and C represents the concentra-
tion of the gas to be measured. When the photoacoustic spectroscopy measurement system
has been determined, the intensity of the photoacoustic signal changes linearly with the
gas concentration. For non-resonant photoacoustic cells, the smaller the volume of the PA
cavity, the stronger the photoacoustic signal.

The interferometric structure of the single-fiber photoacoustic sensor was an extrinsic
Fabry–Perot interferometer (EFPI), whose demodulation resolution could be determined
by the visibility of the fringe pattern. The coupling coefficient can be expressed as [41]:

ε(2l) =
2r(2l)r0

r2
0 + r2(2l)

(2)

where l is the F-P cavity length and r0 is the mode-field radius in the fiber. The numerical
aperture (NA) is 0.14 and the mode-field radius r0 is calculated to be 4.61 µm. The mode-
field radius of the reflective optical filed r(2d) is

r(2d) = r0

√
1 + (

2dλ

πr2
0
)

2
(3)

The visibility v of the EFPI can be expressed as

v =
IMAX − IMIN

IMAX + IMIN
=

2(1− R1)ε(2l)
√

R1R2

R1 + (1− R1)
2R2ε2(2l)

(4)

where IMAX and IMIN are the maximum and the minimum of the light intensity, respectively.
R1 and R2 are the reflectivity of the fiber tip and the cantilever, respectively. R1 of the SMF28
single-mode fiber is ~4% and R2 of the reflection surface of cantilever beam is ~90%. The
light intensity of the two-beam interference is

IR = I0(R1 + (1− R1)
2R2ε2(2l))(1 + v cos(

4πl
λ

+ π)) (5)

The silicon cantilever beam had pressed vibration from the sine pressure generated
by the acetylene gas absorption. The white light interferometric demodulation module
processed the small movement of the interference spectrum to obtain the change in F-P
cavity length; that is, the photoacoustic signal was detected via the silicon cantilever beam.
The amounts of interference spectral fringe cycles and contrast under different cavity
lengths were analyzed. High-quality interference fringes can ensure the stability of the
demodulation module. According to Formula (5), I0 was approximately set as a function
of the Gaussian distribution of the output light intensity with the wavelength, and the
wavelength range was set to 1544 nm–1556 nm. The interference light intensities under
0.5 mm, 1 mm, 1.5 mm and 2 mm cavity lengths were simulated using MATLAB R2018a.
Figure 2 shows the interference spectrum of the F-P cavity at different cavity lengths. While
the F-P cavity length increased from 0.5 mm to 2 mm, the number of interference spectrum
periods increased linearly. Due to the sampling point of the white light interference, the
demodulation module was certain. Consequently, the number of interference spectrum
periods should be within the demodulation range. The intensity of interference spectrum
increased nonlinearly with the increase in F-P cavity length. To increase the signal of the
non-resonant photoacoustic cell as much as possible, the length of the F-P cavity was set to
2 mm.
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2.2. Experimental Setup

Figure 3 depicts the schematic structure of the single-fiber photoacoustic acetylene gas
sensing system. A tunable distributed feedback (DFB) laser was used as an excitation laser
to pump acetylene gas molecules. The DFB laser was driven by the current of sinusoidal
and triangular waves. By using the 1 × 2 fiber-optical coupler, the distributed feedback
(DFB) laser and the white light interference demodulation module were coupled in the
single-fiber photoacoustic sensor. The length of the detection distance depended on the
length of the single fiber. Consequently, the single fiber photoacoustic sensing system could
be used for long-distance detection. The absorption line of acetylene gas was scanned by
changing the output wavelength of the DFB laser. The second harmonic signal generated
by acetylene gas absorption was obtained using the white light interference demodulation
module. A super-luminescent light-emitting diode (SLED) was used as a broad-spectrum
probe source. The two beams through the end face of the fiber and the reflective surface
of the cantilever caused interference. Since the wavelength of the excitation light was
near the center wavelength of the SLED, the two beams created crosstalk. Two mass-flow
controllers (MFC) were used to prepare gases of different concentrations. The single-fiber
photoacoustic sensor was placed in the gas chamber to detect the concentration of acetylene.
The excitation light and detection light were coupled to the same fiber by the fiber coupler.
The high-speed white light interference demodulation method was used to detect the
reflected probe light generated by F-P interference. It was then processed with a field
programmable gate array (FPGA)-based lock-in amplifier.

According to the HITRAN database, gas absorption lines of acetylene, water and
carbon dioxide were obtained. As can be seen from Figure 4, there was 1 ppm acetylene,
1000 ppm methane, 1000 ppm carbon monoxide, 1000 ppm water and 500 ppm carbon
dioxide interference at 1527.1 nm to 1538.5 nm. Acetylene had a large absorption coefficient
at 1532.8 nm and 1531.6 nm. Considering the interference of H2O and CO2 in the air,
1532.83 nm DFB laser was selected as the detection wavelength of acetylene. Moreover,
near the center of the absorption line at 1532.8 nm, acetylene was almost unaffected by
CH4 and CO. Therefore, a DFB laser with a central wavelength of 1532.8 nm was selected
as the excitation light source. However, white light interferometer interrogators have a
wavelength range of 1525 nm–1570 nm. As a result, the excitation light is reflected by the
photoacoustic sensor and is superimposed into the F-P interference spectrum.
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Figure 4. The absorption coefficients of 1 ppm acetylene, 1000 ppm methane, 1000 ppm carbon
monoxide, 1000 ppm water and 500 ppm carbon dioxide at 1527.1 nm to 1538.5 nm, plotted according
to HITRAN data.

The 1532.8 nm distributed feedback (DFB) laser and the white light interference
demodulation module were connected in the single-fiber photoacoustic sensor with the
1 × 2 fiber optical coupler. The F-P interferometric spectrum interfered by excitation light
with a central wavelength of 1532.8 nm was obtained, as shown in Figure 5. The full
interference spectrum of the F-P cavity was affected by the excitation light reflected to the
fiber at the wavelengths around 1532.8 nm. The power of the DFB laser was 19.1 mW, which
was greater than the power of the SLED. In order to avoid demodulation errors such as
mode hopping, the feasible method in this article was to cut off the disturbed interference
spectrum. The F-P cavity length was phase-demodulated using the interference spectrum
in the wavelength range of 1535–1570 nm to enable the highly sensitive detection of the
photoacoustic signal.
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3. Experimental Results
3.1. Frequency Response

By testing the sensitivity of the cantilever beam to the sound pressure, the detection
performance of the single-fiber photoacoustic sensor could be reflected to some extent.
An acoustic test system was established to assess the sound pressure sensitivity of the
single-fiber photoacoustic sensor. The static cavity length of the F-P cavity was measured
to be 2049.16 nm; meanwhile, the volume of the PA cavity was 14 µL. Figure 6 shows the
amplitude–frequency response of the single-fiber photoacoustic sensor. The response of the
single-fiber photoacoustic sensor to sound pressure was stable near 1000 Hz, with a strong
anti-interference ability to the environment. When the frequency of the silicon cantilever
beam was set to 1000 Hz, the sensitivity was 139.5 nm/Pa. The resonant frequency of the
cantilever beam was 4000 Hz. However, with the small F-P cavity, the cantilever beam was
affected by the air dumping. The frequency response curve of the cantilever beam drifted
easily due to the change in the ambient temperature in the single fiber photoacoustic sensor.
Consequently, the working frequency of the single-fiber photoacoustic sensor was selected
to be far away from the resonant frequency of the silicon cantilever beam. According to
Formula 1, for the non-resonant photoacoustic cell, the size of the photoacoustic signal
decreased as the operating frequency increased. The sensitivity fluctuation of the silicon
cantilever beam at 1000 Hz was relatively small. While the sensitivity of the silicon can-
tilever beam was relatively small, it was less affected by environmental noise. Moreover,
the photoacoustic signal generated by the non-resonant photoacoustic cell at 1000 Hz was
relatively large.

The sound pressure on a reference microphone (4189, B&K) and the silicon cantilever
was adjusted to 120 mPa and the time domain responses of the cantilever were, respectively,
measured at the frequencies of 700 Hz, 1000 Hz, 2200 Hz and 4000 Hz, as shown in Figure 7.
The resonant frequency of the cantilever beam was around 4000 Hz. The time domain
signal of the single-fiber photoacoustic sensor became denser with the increase in frequency.
The variations in cavity length were detected by the white light interference demodulation
module. While the sound pressure was 120 mPa, the displacement of the silicon cantilever
beam swinging up and down was about 36 nm at 1000 Hz frequency.
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3.2. Concentration Measurement

The PA signal of the single-fiber photoacoustic sensing system was measured with
different concentrations of C2H2 gas. The bias current of the DFB laser was increased
from 95 mA to 110 mA. C2H2/N2 gas mixtures of 100 ppm, 250 ppm and 500 ppm were,
respectively, diffused into the PA cell of the single-fiber photoacoustic senor. The modu-
lation frequency of the DFB laser was set to 500 Hz, and the generated second harmonic
signal was detected. Consequently, the detection frequency of the cantilever beam was
1000 Hz. The root mean square (RMS) value of the second harmonic signal was measured
by the lock-in amplifier in the FPGA. Figure 8a shows the second harmonic signal of the
single-fiber photoacoustic sensor at the concentrations of 100 ppm, 250 ppm and 500 ppm,
respectively. While the wavelength and bias current of the DFB laser were 1532.8 nm and
4.5 mA, respectively, which corresponds to the gas absorption peak, the second harmonic
PA signal value was the largest. Figure 8b shows the peak of the second-harmonic pho-
toacoustic signal as a function of C2H2 concentration. The results show that the sensitivity
of the single-fiber photoacoustic sensor sensing system to C2H2 gas was 0.48 pm/ppm
and the regression coefficient was 0.9989, indicating that the detection system had good
linearity in the concentration range of 500 ppm C2H2.
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3.3. Detection Limit

To detect the MDL of the single-fiber photoacoustic sensor, a long-term stability
monitoring experiment of the single-fiber PA gas sensing system was carried out. The
bias current of the DFB laser was set to 101.2 mA with a 1 s lock-in integral time. The
single-fiber photoacoustic sensor was placed in a pure N2 environment to detect the noise
level of the system within 200 s. Figure 9a,b show the analysis results of Allan–Werle
variance as a function of the averaging time. The Allan–Werle variance shows a decreasing
trend with increasing acquisition time. The MDL of C2H2 gas was 0.2 ppm with an
averaging time of 100 s. In addition, the power of the DFB laser was tested to be 19.1 mW at
1532.8 nm, and the calculated normalized noise equivalent absorption (NNEA) coefficient
was 4.4 × 10−9 W·cm−1·Hz−1/2. In order to reflect the small volume and high sensitivity
performance of the proposed sensor, Table 1 shows the comparison of the NNEA/MDL
and the chamber volume with other miniaturized photoacoustic sensors.

Table 1. Performance of the proposed sensor in comparison with other miniaturized photoacoustic
sensors.

Scheme NNEA/MDL Gas Chamber Volume

Zhang in 2023 [27] 0.49 ppm ~1.57 mL
Guo in 2022 [32] 2.1 × 10−8 W·cm−1·Hz−1/2 31.8 µL
Chen in 2021 [33] 0.5 µL/L 74 µL

Li in 2022 [39] 2.1 × 10−8 W·cm−1·Hz−1/2 1.7 µL
This paper 4.4×10−9 W·cm−1·Hz−1/2 14 µL
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4. Conclusions

In conclusion, a single-fiber photoacoustic (PA) sensor has been proposed for trace
acetylene (C2H2) gas analysis with the advantages of having high sensitivity, miniatur-
ization and long-distance detection and of being intrinsically safe. The single-fiber pho-
toacoustic sensor mainly consisted of a microcantilever and a non-resonant photoacoustic
cell for the real-time detection of trace acetylene gas. The trace acetylene gas could diffuse
into the silicon cantilever gap opened in the wall of the PA cell. The volume of the PA
cell in the sensor was about 14 µL. The influence of different lengths of photoacoustic
cells on the single-fiber photoacoustic sensing system was compared theoretically. The
optimized length of the PA cell was 2 mm. The amplitude-frequency response of the silicon
cantilever with a small inner cavity was tested and analyzed. The single-fiber photoacoustic
sensor had a good linearity response for C2H2 concentration, of less than 500 ppm with a
responsivity of 0.48 pm/ppm. In addition, the minimum detectable limit and the minimum
detectable absorption coefficient of the single-fiber photoacoustic sensor were achieved to
be 0.2 ppm and 1.2 × 10−7 cm−1 with a 100 s averaging time, respectively. The calculated
NNEA coefficient was 4.4 × 10−9 W·cm−1·Hz−1/2. The photoacoustic sensor designed
had the advantages of small volume, simple structure, high sensitivity and no need for
gas valves or pumps. By changing the laser source, it is possible to detect various trace
diffused gases such as CH4, CO2, NH3, H2S and C2H4.
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