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Abstract: Oral capillaroscopy is a critical and non-invasive technique used to evaluate microcir-
culation. Its ability to observe small vessels in vivo has generated significant interest in the field.
Capillaroscopy serves as an essential tool for diagnosing and prognosing various pathologies, with
anatomic–pathological lesions playing a crucial role in their progression. Despite its importance,
the utilization of videocapillaroscopy in the oral cavity encounters limitations due to the acquisition
setup, encompassing spatial and temporal resolutions of the video camera, objective magnification,
and physical probe dimensions. Moreover, the operator’s influence during the acquisition process,
particularly how the probe is maneuvered, further affects its effectiveness. This study aims to address
these challenges and improve data reliability by developing a computerized support system for
microcirculation analysis. The designed system performs stabilization, enhancement and automatic
segmentation of capillaries in oral mucosal video sequences. The stabilization phase was performed
by means of a method based on the coupling of seed points in a classification process. The enhance-
ment process implemented was based on the temporal analysis of the capillaroscopic frames. Finally,
an automatic segmentation phase of the capillaries was implemented with the additional objective
of quantitatively assessing the signal improvement achieved through the developed techniques.
Specifically, transfer learning of the renowned U-net deep network was implemented for this purpose.
The proposed method underwent testing on a database with ground truth obtained from expert
manual segmentation. The obtained results demonstrate an achieved Jaccard index of 90.1% and an
accuracy of 96.2%, highlighting the effectiveness of the developed techniques in oral capillaroscopy.
In conclusion, these promising outcomes encourage the utilization of this method to assist in the
diagnosis and monitoring of conditions that impact microcirculation, such as rheumatologic or
cardiovascular disorders.

Keywords: capillaroscopy; microcirculation; video stabilization; signal enhancement; capillaries
segmentation; U-net; deep learning

1. Introduction

Capillaroscopy is a particular non-invasive microscopic diagnostic technique that
allows the analysis of the body’s capillaries (study of the microcirculation) using a capil-
laroscope [1]. The technique provides video-making images of the capillaries, which are
fundamental for the study of microcirculation [2]. The analysis of the microcirculation is of
particular interest as alterations in the capillaroscopic picture can represent the only evi-
dence of the presence of an early-stage disease. Morphological and densitometric changes
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can affect systemic and non-systemic diseases such as rheumatoid arthritis, lichen planus,
diabetes, pemphigus and pemphigoid, hypercholesterolemia, Sjögren’s syndrome and
scleroderma [1,2]. Capillaroscopy is employed in various areas of the body, including the
fingertips, skin, tongue, and oral cavity. In particular, capillaroscopy of the oral cavity has
been recognized as a particularly useful method for investigating capillary microcirculation
in the nailfold bed, given the oral mucosa’s easy accessibility and repeatability [3–5].

During oral capillaroscopy examinations, healthcare professionals can observe and
assess the structure and morphology of capillaries present on the lips, buccal mucosa,
vestibular masticatory/gingival mucosa, and other specific sites. This technique enables
the detection of microvascular alterations that may be indicative of various pathological
conditions such as diabetes, hypertension, peripheral arterial occlusive disease, systemic
sclerosis, and other conditions that can affect microcirculation [3,6].

In capillaroscopic imaging, the quality of acquired images plays a crucial role in the
accuracy and reliability of subsequent analysis [6]. However, capillaroscopic images often
suffer from various sources of noise, artifacts, and distortions. These issues can impact
the effectiveness of image analysis and hinder the interpretation of results. Therefore,
preprocessing of capillaroscopic images is essential to enhance their quality and facilitate
accurate analysis.

Image preprocessing techniques for capillaroscopy involve a series of steps aimed
at improving image quality and removing unwanted artifacts. These steps may include
noise reduction, contrast enhancement, image normalization, and removal of motion blur
or other distortions [7]. By applying these preprocessing techniques, the visibility of
capillary structures can be improved, enabling more accurate segmentation and analysis of
capillaroscopic images. Another important aspect of capillaroscopic imaging is the need
for frame stabilization [8]. Capillaroscopic examinations often require magnification and
high-resolution imaging, which can lead to increased sensitivity to motion and micro-
movements of the subject [9]. Even slight movements can cause significant blurring and
misalignment of capillary structures, making accurate analysis challenging.

To address this issue, researchers have been actively exploring methods for frame
stabilization in capillaroscopic imaging [8]. These methods aim to minimize the impact
of subject movements and ensure that capillary structures remain in focus and aligned
throughout the imaging process. Various approaches, including physical stabilization using
brackets or cuffs, as well as digital video stabilization algorithms, have been investigated
to mitigate the effects of motion and improve the quality of capillaroscopic images [10].
The development of effective frame stabilization techniques is crucial in capillaroscopy,
as it can significantly enhance the accuracy and reliability of subsequent analysis [11]. By
minimizing motion-induced artifacts and blurring, stabilized frames enable more precise
segmentation and quantitative measurements of capillary parameters [12].

These phases of improvement and stabilization of the capillaroscopic images are also
essential to make an automatic segmentation process of the microcirculation effective.
Segmentation of capillary loops is a critical step in capillaroscopy image analysis, as it
enables the extraction of quantitative measures of capillary morphology and function.
These measures include capillary density, diameter, length, tortuosity, and blood flow
velocity, which can be used for the diagnosis and monitoring of microvascular diseases.
Various segmentation algorithms have been proposed for capillaroscopic images, including
thresholding-based methods, region-growing-based methods, and machine learning-based
methods such as convolutional neural networks [13].

Once the capillary loops are segmented, they can be analyzed to extract quantitative
measures of capillary morphology and function. These measures can be used to assess the
effectiveness of treatments and interventions and to evaluate the progression of the disease.
For example, capillary density and blood flow velocity have been shown to be useful in
monitoring the effects of vasodilator therapy in patients with systemic sclerosis [14]. Simi-
larly, capillary density and tortuosity have been shown to be predictive of microvascular
complications in patients with type 1 diabetes [15].
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The following paragraph outlines related works and the challenges that motivated us
to develop an automated system to assist in the analysis of oral cavity microcirculation.

2. Related Works

Capillaroscopy is a non-invasive imaging technique that allows visualization of the
microcirculation in vivo, and it has been widely used in the diagnosis and monitoring
of microcirculation-related diseases such as Raynaud’s phenomenon, scleroderma, and
systemic lupus erythematosus [16,17]. However, the quality of the images captured using
capillaroscopes is often affected by noise, artifacts, and low contrast, which can compro-
mise the accuracy of the subsequent analysis. Automated stabilization and processing
of capillaroscopy images could greatly enhance the accuracy and efficiency of microcir-
culation analysis and aid in the early detection and treatment of microcirculation-related
diseases. To address this challenge, several works have proposed preprocessing techniques
to improve the quality of capillaroscopic images.

In [8], the authors propose a new automated method for detecting and counting white
blood cells (WBCs) in nailfold capillary images. The method uses deep learning to segment
the capillaries, video stabilization based on FFT (Fast Fourier Transform) to reduce motion
artifacts, and WBC event detection algorithms to identify the WBCs.

The study of Doshi et al. [18], given the significant influence of image denoising and
enhancement during the preprocessing stage on subsequent analysis, focuses on evaluating
the performance of five enhancement techniques specifically designed for capillary skele-
tonization. The techniques under investigation include the α-trimmed filter, bilateral filter,
bilateral enhancer, anisotropic diffusion filter, and non-local means. The authors report the
visual and quantitative performance on a series of different capillaroscopic images.

Oharazawa et al. [19] develop an algorithm capable of effectively handling regions by
employing color component separation techniques as preprocessing, followed by blood
vessel extraction filtering. The method uses independent component analysis (ICA) and
the Frangi filter to extract capillary regions. To validate the accuracy of capillary blood
vessel extraction, the resulting images were compared with ground truth data.

In [20], the authors presented a novel approach to compare images obtained from a mi-
croscope. The objective is to explore various feature extraction techniques such as template
matching and SIFT (Scale Invariant Feature Transform). The focus of the investigation lies
in the comparison between previous and real-time capillary images. By employing template
matching, the authors perform a real-time comparison between the captured image of the
target capillary and the previously acquired image, regardless of the magnification.

Nirmala et al. [21] proposed an image processing approach to measure the dimen-
sions of capillaries. To achieve this, the authors employ image processing algorithms to
identify the optimal enhancement filters and segmentation methods for accurately seg-
menting the capillaries. Specifically, they used Wiener and bilateral filters to improve
image quality. Furthermore, they applied morphological operations to detect and segment
capillary boundaries.

In the field of capillaroscopy, the research activity in the field of nail capillaroscopy
has been relatively richer. In this context, previous research has primarily focused on
reducing small-scale movements by physically stabilizing the finger and the resulting video
footage [22,23]. One common approach to achieve physical stabilization is the utilization of
a metal bracket, which effectively minimizes finger movements in relation to the microscope.
However, despite the use of the bracket, there may still be subtle finger movements, as noted
by Watanabe et al. [22]. Digital video stabilization has emerged as an effective technique for
reducing motion artifacts in capillaroscopy videos. However, the quality and computational
efficiency of different stabilization algorithms can vary significantly [24]. Various digital
video stabilization methods have been employed in capillaroscopy, including optical flow,
phase correlation, cross-correlation, feature-based, intensity-based, and block-matching
algorithms utilizing metrics such as mutual information, cross-correlation coefficient and
mean squared error (MSE) [24–27]. However, limited studies have thoroughly validated
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the outcomes of stabilization algorithms, specifically in the context of capillaroscopy. Wu
et al. [28] and Dobbe et al. [25] indirectly validated their stabilization methods by assessing
subsequent capillaroscopy measurements.

In recent years, there has been growing interest in developing automated segmentation
methods for microvasculature structures observed from medical images. Hwang et al. [29]
propose an automated method for blood vessel detection and segmentation, using the
Mask R-CNN framework, for thrombus analysis. The authors designed the utilization of
a combined approach involving complete intersection over union (CIoU) and smooth L1
loss to ensure accurate blood vessel detection. Segmentation is further improved with a
modified focal loss. The authors evaluated their method on 60 patient studies, achieving
the highest F1 score (92%).

Several studies have proposed automated segmentation methods for microcirculation
structures from capillaroscopy images. In [30], the authors proposed for nailfold capillary
images the utilization of a deep neural network with a Res-Unet architecture. To train the
network, they utilized a dataset comprising 30 nailfold capillary images. Subsequently,
the network was evaluated on a separate dataset containing 20 images, resulting in the
generation of a binarized map. The obtained results showcased a mean accuracy of 91.72%.

Liu et al. [31] introduced a novel deep learning architecture called DAFM-Net, de-
signed to achieve accurate segmentation. To enhance the convergence ability of the deep
neural network, the authors incorporated group normalization as an effective normalization
technique. To validate the effectiveness of the proposed model, they conducted ablation
studies and segmentation experiments. The results demonstrate that when compared to
the ground truth, the method achieves a Dice score of 87.34%.

Mahmoud et al. [32] introduced a novel two-step image processing algorithm aimed
at functionally analyzing microscopic images in an automated manner. Their approach
involves leveraging a trained Convolutional Neural Network (CNN) to perform this task.
The first step of our algorithm employs a modified vessel segmentation algorithm to extract
the precise location of vessel-like structures within the images. Subsequently, in the second
step, a 3D-CNN is utilized to assess whether these identified vessel-like structures exhibit
blood flow or not. The accuracy obtained was equal to 83%.

Much less investigated is capillaroscopy of the oral cavity. In this context, Tutuncu
et al. [33] presented an analysis of segmentation methods known in the literature as Otsu,
Region Growing, Fuzzy C-means, Fast Marching and H-minimum. The accuracy results
obtained for the various methods implemented ranged between 44% and 97%. The best
segmentation accuracy was obtained with the H-minimum method.

In their work, Bellavia et al. [6] employed wavelet analysis and mathematical mor-
phology as preprocessing techniques on the images. They then applied segmentation to
minimize lighting variations between capillary and background images. The result in terms
of the Jaccard index was equal to 85.8%.

Spera et al. [34] presented a methodology for identifying and extracting regions
of interest corresponding to capillaries in the oral mucosa. The extracted features are
crucial for accurate diagnosis purposes in real-time applications. To achieve this, a discrete
version of the wavelet transform is utilized to segment the images obtained from video
sequences captured using a prototype capillaroscope. Subsequently, a comprehensive set
of appropriate characteristics is automatically computed to enable a precise evaluation
of the peripheral microcirculation. However, the greatest limitation of this work is that a
quantitative analysis of the results was not carried out, but only a qualitative one.

In this work, we addressed the challenges related to the movement of the acquisition
probe in capillaroscopy and the difficulty in tracking/analyzing the microcirculation in the
oral cavity by presenting an automated system for processing videocapillaroscopy based
on a stabilization algorithm and a signal enhancement phase. Additionally, an automatic
capillary segmentation phase was implemented with a dual objective: quantitatively evalu-
ate the signal improvement achieved through the developed techniques and automatically
segment the microcirculation in the oral cavity. For this purpose, the well-known deep



Sensors 2023, 23, 7674 5 of 23

convolutional network U-net was employed using transfer learning. The performance of
the automated system was quantified by comparing the automatic segmentations with the
ground truths from a public database.

3. Materials and Methods

The relationship between the details of blood microcirculation (such as capillary
geometry and velocities of red blood cells—RBCs) and certain potential diseases requires
capturing a sequence of clear images depicting the flow of RBCs in capillaries. This process
involves creating a dataset of images that enables a comparison between patients diagnosed
with known pathologies using other techniques and healthy individuals.

In this section, we will describe the experimental setup used for video sequences
of the capillary blood flow registration and signal enhancement. The noise and the very
low contrast between the background and capillaries of the images obtained from video
capillaroscopy of the oral cavity requires a processing phase accomplished by transforming
and analyzing the image in order that capillaries appear enhanced. Figure 1 shows the flow
chart of the proposed method. In the following subsections, the phases that make up the
method will be discussed in detail.
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Figure 1. Flow chart of the proposed method. After the image stabilization step, the average image
is obtained using a temporal neighborhood of frames containing the image itself. The difference
between the stabilized image and the standard deviation image is made in order to emphasize the
motion of the blood cells over time. The images thus obtained are then filtered to obtain images that
highlight the regions where the most accentuated RBC movements are located. Finally, the last phase
performs a segmentation process that isolates the capillaries involved in RBC motion.
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As will be discussed in Section 3.2, each image of a capillaroscopy video is subject
to motion artifacts occurring due to the movement of the patient and/or the probe. In
nailfold capillaroscopy, this problem is minimal since the use of a metal bracket almost
eliminates finger movement. Conversely, in oral capillaroscopy, the movement of the probe
inside the oral cavity causes the capillary to move considerably within the resulting video
frame, reducing the accuracy of measurements, especially during a magnification of 150×
or greater. In this case, to reduce motions in the capillaroscopy video, it is necessary to use
stabilization algorithms. The outcome of the application of these stabilization algorithms
is a sequence of stabilized frames, which allows a clearer analysis of the motion of the
erythrocytes. The signal enhancement step, described in detail in Section 3.3, analyzes the
static part and the dynamic part of the signal in order to separate the microvasculature
from the background. As far as capillaroscopy is concerned, the background is the portion
of tissue not crossed by RBCs, which represents the static part of the image.

3.1. Optical System Setup and Database

The video-capillaroscope (VCS) Horus (Adamo srl, Trapani, Italy) used in this study
consists of:

• a central unit with a cold halogen 100 W light source whose luminosity and white
balancing can be adjusted automatically or manually by a control device;

• an optical/digital probe connected to the central unit by a fiber bundle 2 m long;
• a high-resolution color micro-television camera equipped with a high magnification

(up to 500×) zoom lens system;
• a high-resolution personal computer with a dedicated graphics card connected to the

central unit through a S-video cable;
• a real-time analog to DV converter connecting the central unit to a secondary personal

computer used to record images at 120 frames per second with a spatial resolution of
640 × 480 pixels at an 8-bit grayscale.

Since manual positioning of the probe requires contact with the inside of the mouth,
very high magnifications were avoided as they caused excessive instability of the videos
produced and, therefore, the impossibility of following the blood flow. For this reason, the
videos used in this work were acquired by the operator with magnifications of 150×.

The development of automatic diagnostic support systems in medical imaging is
closely linked to the collection of a database of selected images [35–37]. For the development
of the method proposed here, a database obtained from a cohort of thirty-two patients was
used. They participated in the research study by giving their consent for capillaroscopic
examination and for the use of their personal medical information for scientific purposes.
The study strictly followed the privacy regulations and guidelines outlined by Italian laws
concerning the handling of personal data. The medical professionals in our research team
conducted a comprehensive examination of the mucosal regions encompassing the upper
and lower lips, as well as the left and right buccal mucosae. Additionally, they assessed the
vestibular masticatory/gingival mucosa of the II and V sextants.

3.2. Stabilization

A capillaroscopic video captures frames of a specific area within the oral cavity over a
defined time interval. The portion recorded at time t0, represented by the n-th frame, and the
portion captured at time t1, represented by the (n + 1)-th frame, may exhibit misalignments,
and these misalignments can be quite significant. Multiple factors contribute to the motion
observed between consecutive frames, including movements of the acquisition probe (such
as translation and rotation) and the patient’s movements (for instance, caused by breathing).
Figure 2 illustrates an example of such misalignment, visually emphasizing the magnitude
of this issue.



Sensors 2023, 23, 7674 7 of 23
Sensors 2023, 23, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 2. The figure presents a notable example illustrating the effect of motion during frame acqui-
sition. On the left, in frame n, an artifact is indicated by a square, while a section of a blood vessel is 
marked with a circle. In the center, the n + 1 frame shows a visible downward shift in relation to the 
reference points (square and circle). The same portion of the blood vessel marked by the circle re-
mains visible, but the artifact is now out of frame and no longer observable. In the right frame, frame 
n + 2, both markers are once again within the frame, indicating an upward motion of the probe. 

An additional challenge in the frame stabilization process arises from the dynamic 
displacement of RBCs along the capillaries. Typically, RBCs flow continuously within the 
blood vessels, resulting in a continuous representation of the vessel itself (indirectly ob-
tained from the presence of RBCs). Therefore, the movement of RBCs is not visible from 
frame to frame, considering the sampling frequency used by the oscilloscope. However, 
in finer capillaries, the motion of RBCs can become discontinuous, leading to variations 
between successive frames and resulting in a stroke-like visualization of the capillaries. 
Figure 3 illustrates the movement of RBCs in two consecutive captured frames, highlight-
ing how a capillary appears differently in these frames. 

 
Figure 3. The movement of RBCs is evident when comparing two frames captured at different time 
points. The intermittent flow of RBCs results in a partial visualization of the general capillary, lead-
ing to variations in the acquisition of vessels between successive frames. The arrows in the Figure 
indicate examples of this partial visualization of the capillary in consecutive frames. 

In computer vision, the video stabilization process employs a variety of techniques 
to minimize the impact of camera movement on the resulting footage. It relies on estimat-
ing the motion of captured objects within each frame. In this study, effective stabilization 
ensures the alignment of consecutive frames, specifically targeting the primary structures, 
namely the body’s capillaries. Single unchained RCBs present in the microvasculature, 
representing moving objects within the scene, should be disregarded during the stabiliza-
tion process. However, after the stabilization phase, these single unchained erythrocytes 
play a crucial role in reconstructing the finest capillaries. 

To enhance the effectiveness and robustness of the stabilization phase, the input 
video was divided into segments whenever the probe’s speed (and consequently the rel-
ative motion between frames) exceeded a threshold value. This decision was influenced 
by the acquisition method employed. During the acquisition phase, the operator focuses 
on specific areas of the oral cavity, attempting to keep the probe still on the region of in-
terest for a few seconds before moving it to another area. The significant and sudden shift 

Figure 2. The figure presents a notable example illustrating the effect of motion during frame
acquisition. On the left, in frame n, an artifact is indicated by a square, while a section of a blood
vessel is marked with a circle. In the center, the n + 1 frame shows a visible downward shift in relation
to the reference points (square and circle). The same portion of the blood vessel marked by the circle
remains visible, but the artifact is now out of frame and no longer observable. In the right frame,
frame n + 2, both markers are once again within the frame, indicating an upward motion of the probe.

An additional challenge in the frame stabilization process arises from the dynamic
displacement of RBCs along the capillaries. Typically, RBCs flow continuously within
the blood vessels, resulting in a continuous representation of the vessel itself (indirectly
obtained from the presence of RBCs). Therefore, the movement of RBCs is not visible from
frame to frame, considering the sampling frequency used by the oscilloscope. However,
in finer capillaries, the motion of RBCs can become discontinuous, leading to variations
between successive frames and resulting in a stroke-like visualization of the capillaries.
Figure 3 illustrates the movement of RBCs in two consecutive captured frames, highlighting
how a capillary appears differently in these frames.
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Figure 3. The movement of RBCs is evident when comparing two frames captured at different time
points. The intermittent flow of RBCs results in a partial visualization of the general capillary, leading
to variations in the acquisition of vessels between successive frames. The arrows in the Figure indicate
examples of this partial visualization of the capillary in consecutive frames.

In computer vision, the video stabilization process employs a variety of techniques to
minimize the impact of camera movement on the resulting footage. It relies on estimating
the motion of captured objects within each frame. In this study, effective stabilization
ensures the alignment of consecutive frames, specifically targeting the primary structures,
namely the body’s capillaries. Single unchained RCBs present in the microvasculature, rep-
resenting moving objects within the scene, should be disregarded during the stabilization
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process. However, after the stabilization phase, these single unchained erythrocytes play a
crucial role in reconstructing the finest capillaries.

To enhance the effectiveness and robustness of the stabilization phase, the input video
was divided into segments whenever the probe’s speed (and consequently the relative
motion between frames) exceeded a threshold value. This decision was influenced by
the acquisition method employed. During the acquisition phase, the operator focuses on
specific areas of the oral cavity, attempting to keep the probe still on the region of interest for
a few seconds before moving it to another area. The significant and sudden shift between
regions, and thus the frames acquired within that time interval, are not subject to analysis.

In the literature, various families of digital stabilization methods are available, in-
cluding block-matching, optical flow, and feature-based methods [38]. In this study, the
feature-based approach was chosen due to its computational efficiency compared to other
methods, given the satisfactory frame rate achievable in videocapillaroscopy of the oral
cavity (120 frames/s). This approach has the potential to enable near real-time medical
applications despite the high frame rate. While this type of solution is not new to medical
imaging, its application to the specific problem addressed is novel. This method operates
by detecting and tracking features such as corners or edges in a sequence of frames. By
tracking these features over time, the camera motion can be estimated. The feature-based
approach, whose flowchart is shown in Figure 4, involves several steps, including keypoints
detection, feature extraction, descriptor matching and motion estimation.
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The SURF (SpeedUp Robust Features) algorithm has been implemented as a detector
of keypoints and as a feature descriptor [39]. Figure 5 highlights the key steps to find
keypoints. The ability to identify keypoints between two frames enables motion estimation.
However, it is important to note that there may be incorrect matches or keypoints detected
on moving objects, such as unchained RCBs. To mitigate this issue, a substantial number of
keypoints need to be extracted. For this purpose, we have developed an iterative procedure
in order to extract at least ten keypoints from each frame; the process continues until the
number of keypoints detected in each analyzed frame exceeds this lower limit. In our
specific problem, in the matching phase, most of the matches are related to fixed structures
such as capillaries, and only a few matches will concern moving objects in the scene (not
concatenated globules) or artifacts. To limit the matches of non-fixed structures, a threshold
on the match score has been applied. The matching method implemented in this work is
based on FLANN (Fast Library for Approximate Nearest Neighbor Search) [40].
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Figure 5. Key steps to find the keypoints of the method: (a) two consecutive frames; (b) in each frame,
the key points are identified, and their characteristics are extracted, then all the correspondences
between the keypoints found by the procedure are identified; (c) the accurately matching keypoints
are selected by applying a threshold to the match score.
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For easy repeatability of the method, we report below the pseudocode of the developed
stabilization algorithm (Algorithm 1); it was implemented in C++ with the VS2010 IDE,
making use of the OpenCV [41] library.

Algorithm 1. Pseudocode of Stabilization Algorithm.

Take frame-n and frame-n+1
set hessian_threshold to 1000
#detect keypoints in frame_n and in frame_n+1
while (hessian_threshold > 0) ‘and’ (keypoints in frame_n ‘or’ in frame_n+1 are < 10)

detect the keypoints using SURF on the two frames
set hessian_threshold to hessian_threshold − 20

#extract descriptors
calculate SURF descriptors (feature vectors) from keypoints in frame_n and in frame_n+1
#matching the frame_n and frame_n+1 keypoints
matching descriptor vectors using FLANN matcher
#check matches number
If size of matches < 5

Exit and print “matches are too few”
#Search good match
calculate min distances between keypoints
take the good match if the distance is less than max(2*min_dist, 0.02) # 0.02 is a small arbitrary
value in the event that min_dist is very small
#check good match number, if too few calculate with a less stringent value
If good match keypoints < 5

take the good match if distance is less than max(3*min_dist, 0.03)
#check good match number, if too few take the best four match
If good match keypoint < 5

take the best 4 match as good match keypoints
#discard good match that are clearly out of average
calculate movement for every good match
calculate mean and standard deviation of movements
for every good match

if good match movement is out of twice the deviation standard
delete good match

#motion estimation with good match
calculate translation and rotation motion between frame_n and frame_n+1

Figure 6 shows an example of application of the stabilization method implemented to
two consecutive frames in which the couplings between keypoints are highlighted.
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Figure 6. An example of the application of the stabilization method to two consecutive frames of
videocapillaroscopy, with the keypoints highlighted. For better clarity, only parts of the frames
containing few capillaries are presented, rather than the entire frames. The blue lines graphically
show the couplings between keypoints.
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After locating the corresponding keypoints in consecutive frames, a perspective trans-
formation can be applied, and motion estimation is evaluated. With motion estimation, the
stitching technique can be used to generate a larger image by merging the pixel values of
overlapping parts while maintaining the pixel values without overlap.

Figure 7 highlights the stitching of some frames; to make the overlapping and the
non-overlapping portions perceived, the crop in a corner has been taken.
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Figure 7. The stitching of some frames with a cropped corner to highlight both the overlapping and
non-overlapping portions of the image.

3.3. Signal Enhancement Process

Once the stabilization phase of the frames has been carried out, it is possible to improve
the content of the signal (the microcirculation), for example, by reconstructing parts of
missing capillaries or emphasizing capillaries that are not very visible, in order to correctly
segment the microcirculation. The phase described in this subsection, therefore, has the
objective of improving the signal-to-noise ratio, and this passes through the identification
in the most suitable way of the continuous structure of the capillaries after stabilization. To
this end, the video frames were averaged over time. The arithmetic mean B(i,j,k) for a set
of n consecutive frames of intensity value I(i,j,k) for each discrete pixel coordinate (i,j) is
given by:

B(i, j, k) =
1

2n + 1

k+n

∑
k′=k−n

I(i, j,k′) (1)

where k is the current video frame number of a full video frames set containing N frames
(N total number of video frames), while 2n + 1 represents the time environment under
analysis, in terms of number of frames. The video acquisition rate being 120 frames per
second and considering the characteristic recovery time of the regions to be around one
second, we chose a value of n equal to 5. This allowed us to analyze an interval of 11 frames
for each image. Obviously, if k is smaller than n or greater than N − n, then the average
must be calculated only on the frames with k′ ∈ [0, N].

As suggested by Japee et al. [42], a video of the microcirculation contains a notable
quantity of information. To obtain the best visibility of the capillary network with regard
to its geometry and perfusion by RBCs, the authors proposed different two-dimensional
visualization techniques. In our study, we used the standard deviation images properly
calculated as a useful tool capable of enhancing the video signal. The areas where the
variance is small correspond typically to tissue regions, whereas the regions with high
variance contain capillaries having numerous RBCs flowing through there. The flow of
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operations implemented in this work for signal enhancement is the one already presented
in Figure 1. The standard deviation is then found as follows:

σ(i, j, k) =

√√√√ 1
2n + 1

k+n

∑
k′=k−n

[I(i, j, k′)− B(i, j, k)]2 (2)

The standard deviation image is subsequently subtracted from the specific frame.

H(i, j, k) = I(i, j, k)− σ(i, j, k) (3)

The resulting H matrix values are then shifted to ensure positive values, followed by
normalization to ensure intensity values fall within the range of [0, 255]. Finally, a median
filter with a 3 × 3 convolution mask was applied to reduce noise. Figures 8 and 9 show
two examples of applications of the enhancement method presented.
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Figure 8. (a) Frame I(i,j,k) showing RBCs flowing along capillaries of a subject; (b) arithmetic mean 
B(i,j,k); (c) standard deviation σ(i,j,k); (d) H(j,j,k) subtraction between I(i,j,k) and σ(i,j,k), the image is 
normalized; (e) image HF(i,j,k) after applying the median filter, the image is normalized. It is easy 
to see how parts of the capillaries missing inframe I(i,j,k) are clearly reconstructed in HF(i,j,k). (f) 
The difference between the original frame I(i,j,k) and the enhanced frame HF(i,j,k) is presented in 
false color to easily appreciate the results achieved via the image enhancement method. 

Figure 8. (a) Frame I(i,j,k) showing RBCs flowing along capillaries of a subject; (b) arithmetic mean
B(i,j,k); (c) standard deviation σ(i,j,k); (d) H(j,j,k) subtraction between I(i,j,k) and σ(i,j,k), the image is
normalized; (e) image HF(i,j,k) after applying the median filter, the image is normalized. It is easy to
see how parts of the capillaries missing inframe I(i,j,k) are clearly reconstructed in HF(i,j,k). (f) The
difference between the original frame I(i,j,k) and the enhanced frame HF(i,j,k) is presented in false
color to easily appreciate the results achieved via the image enhancement method.
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Figure 9. (a) Frame I(i,j,k) showing RBCs flowing along capillaries of a subject; (b) arithmetic mean 
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normalized; (e) image HF(i,j,k) after applying the median filter, the image is normalized. It is easy 
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color to easily appreciate the results achieved via the image enhancement method. 

As can be seen from Figures 8 and 9, the procedure allows for a much better appre-
ciation of the vessels, reconstructing missing parts of capillaries or emphasizing vessels 
that are not very visible. Clearly, the capillaroscopic frames after the enhancement process 
can lead to a more effective segmentation of the microvasculature. 
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The previous phases of the proposed methodology aimed to enhance the signal to 
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Figure 9. (a) Frame I(i,j,k) showing RBCs flowing along capillaries of a subject; (b) arithmetic mean
B(i,j,k); (c) standard deviation σ(i,j,k); (d) H(j,j,k) subtraction between I(i,j,k) and σ(i,j,k), the image is
normalized; (e) image HF(i,j,k) after applying the median filter, the image is normalized. It is easy
to see how the blood vessels in frame I(i,j,k) are more clearly visible in the HF(i,j,k) image. (f) The
difference between the original frame I(i,j,k) and the enhanced frame HF(i,j,k) is presented in false
color to easily appreciate the results achieved via the image enhancement method.

As can be seen from Figures 8 and 9, the procedure allows for a much better apprecia-
tion of the vessels, reconstructing missing parts of capillaries or emphasizing vessels that
are not very visible. Clearly, the capillaroscopic frames after the enhancement process can
lead to a more effective segmentation of the microvasculature.
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3.4. Capillaries Segmentation U-Net Based

The previous phases of the proposed methodology aimed to enhance the signal
to accurately identify the microcirculation in the oral cavity. Subsequently, a capillary
segmentation procedure based on deep learning was implemented, also with the objective
of quantitatively evaluating the preceding stages. We, therefore, want to evaluate the degree
of similarity between manual segmentation and automatic segmentation for the cases for
which we have the ground truth. The goal of our work was to implement an algorithm
to segment input images in order to obtain binary masks, where white pixels represent
areas with capillaries. To this end, we decided to implement a U-Net-based approach.
U-Net is a convolutional neural network developed by Ronneberger et al. in 2015 [43], and
it was specifically developed for biomedical image segmentation. More specifically, this
network’s structure is made up of a contracting path consisting of a typical convolutional
network with a series of repeated applications of convolutions, each followed by a rectified
linear unit (ReLU) and a max pooling operation. Then, a second expansive path consists of
a sequence of up-convolutions and concatenations with high-resolution features from the
contracting path. These two paths are usually represented with the characteristic U-shaped
scheme shown in Figure 10.
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During the contraction phase, the spatial information is reduced while the feature
information is enhanced. Conversely, the expansive pathway combines both the feature
and spatial information, increasing the output resolution. This results in a final output that
has the same dimensions as the input image. We implemented a U-Net architecture using
Keras, consisting of four contracting blocks with 32, 64, 128, and 256 convolutional filters,
respectively. Similarly, we employed four expanding blocks with the same filter sizes. The
models were designed to accept grayscale images with a size of 160 × 160 pixels as input,
where each pixel’s gray value ranged from 0 to 1. The output produced was also of size
160 × 160, with values converted to binary form.
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3.4.1. Dataset and Data Preparation

In order to test the implemented methods, the database of intra-oral capillaroscopic im-
ages presented in the research titled “A non-parametric segmentation methodology for oral
videocapillaroscopic images” (Bellavia et al. [6]) was used. The authors had obtained ethical
approval from the Ethics Committee of the Policlinico Hospital of Palermo (Italy) [6,34].
Proper correspondence was established with the authors to obtain the necessary images.
It was necessary to use this database for the test phase of the developed method as this
database is accompanied by a ground truth, i.e., the optimal segmentation masks, in this
case, produced as a synthesis of the segmentation of different physicians. Indeed, the
authors obtained 620 × 476 sized images labeled by 6 different domain experts, each of
whom superimposed white pixels on those areas where capillaries were present. The
6 binary masks thus obtained were then summarized, and a new average binary mask was
constructed and used to realize the ground truth needed to evaluate automated algorithms.
Overall, the database consists of 22 images captured with a capillaroscopy and related to
22 different patients. It is evident that the number of images available for evaluating the
segmentation is certainly limited in any case. To make up for this deficiency, we applied a
series of rotations to the input images by α angles, where α was sampled equally spaced in
(0◦, 360◦). Since the U-Net requires input images of 160 × 160, we had to divide each image
into smaller subregions, each of which becomes an input. From these images, we removed
all of those with less than 200 white pixels. With all these augmentations and subdivisions,
we obtained a total of 4334 images, representing the entire dataset we used for training.

For the various techniques implemented, the result obtained in terms of segmentation
goodness was evaluated, obviously referring to the ground truth and quantitatively evalu-
ating it by means of the Jaccard index. The Jaccard similarity coefficient [44], also known as
Intersection over Union (IoU), is a numerical value in the range [0, 1], where 1 indicates
a perfect segmentation between ground truth and automatic segmentation. This index is
among the most used in quantifying the quality of segmentation, as it considers both the
background and the foreground.

3.4.2. Training

The U-Net described above was trained using the Keras API for 20 epochs, with the
ADAM optimizer and weighted categorical cross-entropy as the loss function. We incorpo-
rated weights due to the imbalanced nature of the dataset, where black pixels outnumbered
white pixels significantly. Hence, the weights were computed to be proportional to the
number of white and black pixels. For evaluation, a Leave-One-Out Cross-Validation
(LOOCV) procedure was implemented, involving 22 separate trainings. Each training
utilized all the images, except one, as the training set, while the remaining image was used
as the validation set. This approach was adopted to achieve more generalizable results,
especially considering the limited number of original images available. Moreover, we also
compared the results considering different preprocessing configurations:

• no preprocessing;
• enhancement;
• stabilization and enhancement.

In addition to the preprocessing configurations using the techniques proposed here,
configurations with well-known techniques, particularly those already employed in cap-
illaroscopy, have also been analyzed. These are presented in the following Section 3.5.
Figure 11 shows three examples of segmentation of capillaries obtained with the U-net
network trained with the method described here.
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segmentation. From left to right: input image, ground truth, prediction (automatic segmentation
produced by the U-net trained).
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3.5. Alternative Comparative Techniques

In this section, we present the state-of-the-art techniques that we have implemented
to enable a more effective evaluation alongside the techniques proposed here. The perfor-
mance results of these additional techniques will be reported in the “Results” section.

3.5.1. Stabilization

For a quantitative comparison of the proposed stabilization method, we employed
a well-known approach based on Fast Fourier Transform (FFT), as introduced in [45].
This method calculates the motion between two frames by determining the translation
vector that maximizes the cross-correlation between them. To achieve this, each frame
is transformed into the frequency domain using FFT. Subsequently, the two images are
element-wise multiplied, and the result is inverse-transformed into the spatial domain.
This technique has also been used in the field of nailfold capillaroscopy [8]. In that context,
the authors utilized labels obtained from the segmentation process rather than raw frames.
For the implementation, we utilized the code provided by the authors in MATLAB [46].
This code iteratively registers two frames using selective oversampling through a Fourier
transform multiplied with a matrix.

3.5.2. Enhancement

For enhancement, we chose to compare the Contrast-Limited Adaptive Histogram
Equalization (CLAHE) method [47]. This enhancement procedure has already been effec-
tively employed in the field of capillaroscopy, as seen in [48]. In contrast to histogram
equalization, CLAHE operates on small regions within the image, enhancing the contrast of
each region by equalizing its histogram. Subsequently, the enhanced neighboring regions
are merged using bilinear interpolation to eliminate artificially induced boundaries. The
main parameter to be adjusted is the number of regions in which to divide the image. The
implementation was carried out using MATLAB. The parameter value that yielded the best
result was 64 regions.

3.5.3. Segmentation

We conducted our analysis to include a comparative evaluation using the Mask R-
CNN model with a ResNet-50-FPN backbone [49]. Mask R-CNN [50], used, for instance in
segmentation problems and already used for the segmentation of blood vessels [29], is an
extension of Faster R-CNN. In comparison to the latter, it introduces an additional third
branch, for instance mask prediction. This operation runs in parallel with the two existing
branches within Faster R-CNN (bounding box regressor and classifier). For each detected
instance, Mask R-CNN provides the output class, its bounding box, and an overlaid
binary mask. For the implementation, Detectron2 [51] was used, a framework created by
Facebook AI Research, and implemented in Pytroch. Specifically, the R-CNN mask has
been configured with the “COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml”
configuration, as provided by Detectron2′s model zoo [52]. We fine-tuned the solver
configuration to process batches of 2 images with a learning rate of 0.00025. Additionally,
during the training, we specified the regions of interest (ROI) heads to handle a batch
size of 512 per image, tailored for a single-class segmentation problem. Both the tested
methods (U-Net and Detectron2) displayed competent segmentations. However, in a
consistent manner, our original U-Net approach manifested superior performance in terms
of accuracy and Jaccard’s index. This deepened comparative analysis further accentuates
the efficacy of our proposed U-Net model, shedding light on its relative strengths over
prevalent techniques. The method used for training data processing is the same used for
U-net and described in Section 3.4.2.
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4. Results

In this section, we report the results in terms of the goodness of segmentation obtained
for the capillaries. Table 1 shows the segmentation results obtained for the different
configurations explored.

Table 1. Segmentation results.

Configuration Jaccard Index

No preprocessing 84.1%

Enhancement (CLAHE based) 85.9%
Enhancement (our method) 86.8%

Stabilization + Enhancement (FFT + CLAHE based) 88.3%
Stabilization + Enhancement (our methods) 90.1%

Figures 12 and 13 show the training graphs for the Jaccard index and the accuracy
for the configuration that reported the best result in Table 1. The values reported in the
graphs represent the averages obtained from the 22 sessions of training carried out using
the LOOCV method. For this training, the point of minimum validation loss during the
training was obtained in seven epochs.
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To obtain a more objective assessment of the effectiveness of the implemented tech-
niques and, consequently, the achieved outcomes, Table 2 presents a performance com-
parison with the two existing methods in the literature for oral cavity microcirculation
segmentation. It is important to highlight that the performance values in the table are
derived from the analysis of the same database across all studies. For a more direct compar-
ison with the aforementioned works, we have also computed the following performance
metrics: sensitivity, specificity, and accuracy.

Table 2. Performance comparison.

Method Jaccard Index Sensitivity Specificity Accuracy

Tutuncu et al. [33] - 81.1% 98.4% 96.7%
Bellavia et al. [6] 85.8% - - -

Our Method 90.1% 85.3% 96.9% 96.2%

Finally, the configuration that yielded the best result in Table 1 was evaluated using
the mask R-CNN segmentation method, obtaining a Jaccard index of 90.0% and an accuracy
of 96.3%.

5. Discussion

The outcomes presented in Table 1 unmistakably illustrate the efficacy of the stabi-
lization process in achieving noteworthy enhancement. The implemented stabilization
and enhancement techniques have notably contributed to a statistically significant im-
provement in the segmentation process. Notably, the techniques proposed in this study,
both for enhancement and stabilization, demonstrated performance that is certainly not
inferior to the respective state-of-the-art methods (CLAHE and FFT-based stabilization).
Statistically, it cannot be asserted that they are superior due to an error magnitude of
approximately 4% observed in both accuracy and the Jaccard index. Although with a low
statistical significance, we can say that the proposed temporal analysis technique, in the
specific problem of blood vessel reconstruction, allows a better signal-to-noise ratio than
the CLAHE technique.
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The results obtained with the techniques presented in this work in comparison with
other methods presented in the literature and presented in Table 2 are certainly encouraging.
In particular, the result obtained in terms of the Jaccard index is significantly better than
that obtained in [6]. Despite employing data augmentation and training with the LOOCV
method, the performance results are still influenced by the limited number of test data
available in the public database. This limitation hinders a comprehensive appreciation of
the performance results concerning the effectiveness of the implemented techniques, both
for preprocessing and segmentation. This is probably the reason why our best result is
not significantly better than the one obtained by Tutuncu et al. [33]; however, in terms of
sensitivity (ability to locate capillaries), our method reported a better result. We add to the
discussion that it is important to acknowledge that accuracy is not an ideal figure of merit
for quantifying the segmentation of biomedical images, particularly when the foreground
is significantly smaller than the background, as observed in this case. Finally, it is worth
noting that the two segmentation methods used (U-net and mask R-CNN) yielded nearly
identical results. Certainly, expanding the test database could allow for better statistics
(reduced error associated with the results) as well as greater model robustness.

6. Conclusions

In this paper, we have presented techniques for stabilizing, enhancing and segmenting
capillaroscopic images.

These techniques are of paramount importance in ensuring accurate assessments
of the microvasculature, offering invaluable insights into a diverse array of pathological
conditions. Despite capillaroscopy’s established status as an imaging modality, the quality
of the resultant images can frequently be compromised by a multitude of factors. Challenges
such as the inherently low contrast within the capillary network, unwelcome motion
artifacts, and suboptimal lighting conditions often plague the fidelity of the images. As
a result, several methods have been developed to address these limitations and improve
the image quality for more accurate analysis. The techniques discussed in this paper
include image stabilization, signal enhancement, noise reduction, data augmentation,
and leave-one-out cross-validation for the training procedure. Additionally, we have
presented a method for capillary segmentation based on a deep learning approach. The
deep network implemented allowed the comparison between the result of automatic
segmentation and that produced by experts in relation to the problem. A quantitative
performance evaluation was carried out, both for the techniques presented and for the
techniques of comparison of the state of the art. In particular, the stabilization with the
keypoints matching method based on FLANN (Fast Library for Approximate Nearest
Neighbor Search) and the enhancement process through the temporal analysis of the
standard deviations allowed the best segmentation result, Jaccard index equal to 90.1%.

It is noteworthy that the primary objective of these endeavors is the enhancement of
diagnostic and monitoring capabilities for a range of conditions impacting microcirculation,
encompassing rheumatologic and cardiovascular disorders. Employing capillaroscopy
within the oral cavity holds the potential to offer a promising avenue for early identification
and understanding of oral diseases, potentially culminating in improved treatment results
and patient well-being.

Additionally, encouraging from the results obtained, our future research activities
on the subject could concern the targeted application of the system developed to support
the diagnosis of specific diseases diagnosable by means of oral capillaroscopy, such as
autoimmune diseases or rheumatological diseases.
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6. Bellavia, F.; Cacioppo, A.; Lupaşcu, C.A.; Messina, P.; Scardina, G.; Tegolo, D.; Valenti, C. A non-parametric segmentation
methodology for oral videocapillaroscopic images. Comput. Methods Programs Biomed. 2014, 114, 240–246. [CrossRef] [PubMed]

7. Pakbin, M.; Hejazi, S.M.; Najafizadeh, S.R. Quantitative Nail Fold Capillary Blood Flow Using Capillaroscopy System and ImageJ
Software in Healthy Individuals. Front. Biomed. Technol. 2022, 10, 38–46. [CrossRef]

8. Kim, B.; Hariyani, Y.-S.; Cho, Y.-H.; Park, C. Automated white blood cell counting in nailfold capillary using deep learning
segmentation and video stabilization. Sensors 2020, 20, 7101. [CrossRef] [PubMed]

9. Smith, V.; Herrick, A.L.; Ingegnoli, F.; Damjanov, N.; De Angelis, R.; Denton, C.P.; Distler, O.; Espejo, K.; Foeldvari, I.; Frech,
T.; et al. Standardisation of nailfold capillaroscopy for the assessment of patients with Raynaud’s phenomenon and systemic
sclerosis. Autoimmun. Rev. 2020, 19, 102458. [CrossRef] [PubMed]

10. Volkov, M.V.; Margaryants, N.B.; Potemkin, A.V.; Gurov, I.P. The method of compensation for local displacements of images of
capillaries in the evaluation of capillary blood flow parameters. J. Phys. Conf. Ser. 2019, 1421, 012054. [CrossRef]

11. Machikhin, A.S.; Volkov, M.V.; Khokhlov, D.D.; Lovchikova, E.D.; Potemkin, A.V.; Danilycheva, I.V.; Dorofeeva, I.V.; Shulzhenko,
A.E. Exoscope-based videocapillaroscopy system for in vivo skin microcirculation imaging of various body areas. Biomed. Opt.
Express 2021, 12, 4627–4636. [CrossRef]

12. Acquaro, A.; Brusca, G.; Casella, S.; Cumbo, E.M.; Della Valle, A.; Karobari, M.I.; Marino, G.; Marya, A.; Messina, P.; Scardina,
G.A.; et al. Evaluation of the Oral Microcirculation in Patients Undergoing Anti COVID-19 Vaccination: A Preliminary Study.
Vaccines 2022, 10, 1978. [CrossRef] [PubMed]

13. Niizawa, T.; Yokemura, K.; Kusaka, T.; Sugashi, T.; Miura, I.; Kawagoe, K.; Masamoto, K. Automated capillary flow segmentation
and mapping for nailfold video capillaroscopy. Microcirculation 2022, 29, e12753. [CrossRef] [PubMed]

14. Melsens, K.; Cutolo, M.; Schonenberg-Meinema, D.; Foeldvari, I.; Leone, M.C.; Mostmans, Y.; Badot, V.; Cimaz, R.; Dehoorne, J.;
Deschepper, E.; et al. Standardized nailfold capillaroscopy in children with rheumatic diseases: A worldwide study. Rheumatology
2022, 62, 1605–1615. [CrossRef] [PubMed]

15. Dan, A.O.; S, tefănescu-Dima, A.; Bălăs, oiu, A.T.; Puiu, I.; Mocanu, C.L.; Ionescu, M.; Tănasie, A.C.; Târtea, A.E.; Sfredel, V. Early
Retinal Microvascular Alterations in Young Type 1 Diabetic Patients without Clinical Retinopathy. Diagnostics 2023, 13, 1648.
[CrossRef]

16. Trombetta, A.C.; Smith, V.; Pizzorni, C.; Meroni, M.; Paolino, S.; Cariti, C.; Ruaro, B.; Sulli, A.; Cutolo, M. Quantitative alterations
of capillary diameter have a predictive value for development of the capillaroscopic systemic sclerosis pattern. J. Rheumatol. 2016,
43, 599–606. [CrossRef]

17. Lambova, S.N. Scleroderma-like capillaroscopic pattern in SLE is not a sign of overlap syndrome in both adults and children.
Lupus Sci. Med. 2022, 9, e000749. [CrossRef]

18. Doshi, N.P.; Schaefer, G.; Zhu, S.Y. An Evaluation of image enhancement techniques for nailfold capillary skeletonisation. Procedia
Comput. Sci. 2015, 60, 1613–1621. [CrossRef]

https://doi.org/10.1097/SMJ.0b013e318205ddf1
https://www.ncbi.nlm.nih.gov/pubmed/21206411
https://doi.org/10.1016/j.berh.2013.03.001
https://www.ncbi.nlm.nih.gov/pubmed/23731933
https://doi.org/10.3390/diagnostics13010055
https://www.ncbi.nlm.nih.gov/pubmed/36611347
https://doi.org/10.1093/rheumatology/ket153
https://www.ncbi.nlm.nih.gov/pubmed/23620555
https://doi.org/10.1016/j.cmpb.2014.02.009
https://www.ncbi.nlm.nih.gov/pubmed/24657094
https://doi.org/10.18502/fbt.v10i1.11511
https://doi.org/10.3390/s20247101
https://www.ncbi.nlm.nih.gov/pubmed/33322435
https://doi.org/10.1016/j.autrev.2020.102458
https://www.ncbi.nlm.nih.gov/pubmed/31927087
https://doi.org/10.1088/1742-6596/1421/1/012054
https://doi.org/10.1364/BOE.420786
https://doi.org/10.3390/vaccines10111978
https://www.ncbi.nlm.nih.gov/pubmed/36423073
https://doi.org/10.1111/micc.12753
https://www.ncbi.nlm.nih.gov/pubmed/35212076
https://doi.org/10.1093/rheumatology/keac487
https://www.ncbi.nlm.nih.gov/pubmed/36005889
https://doi.org/10.3390/diagnostics13091648
https://doi.org/10.3899/jrheum.150900
https://doi.org/10.1136/lupus-2022-000749
https://doi.org/10.1016/j.procs.2015.08.271


Sensors 2023, 23, 7674 22 of 23

19. Oharazawa, A.; Ogino, M.; Sugahara, M.; Tanahashi, M. Skin capillary extraction technique based on independent component
analysis and Frangi filter using videomicroscopy. Ski. Res. Technol. 2020, 26, 664–670. [CrossRef]

20. Phuong, H.N.T.; Jeong, H.; Shin, C. Study on Image Processing of Capillaries Using Microscope: Initial Considerations. In
Proceedings of the 27th International Workshop on Frontiers of Computer Vision (IW-FCV 2021), Daegu, Republic of Korea,
22–23 February 2021; Volume 27, pp. 157–167.

21. Nirmala, K.; Naveen, P.; Farazallah, M.; Raj, S.A.K. Study of Microvascular Morphology from Optical Image of Nailfold Capillary
using Image Processing Techniques. In Proceedings of the 2022 International Conference on Futuristic Technologies (INCOFT),
Belgaum, India, 25–27 November 2022; pp. 1–5. [CrossRef]

22. Watanabe, M.; Matsubara, M.; Sanada, T.; Kuroda, H.; Iribe, M.; Furue, M. High speed digital video capillaroscopy: Nailfold
capillary shape analysis and red blood cell velocity measurement. J. Biomech. Sci. Eng. 2007, 2, 81–92. [CrossRef]

23. Chang, C.-H.; Tsai, R.-K.; Wu, W.-C.; Kuo, S.-L.; Yu, H.-S. Use of Dynamic capillaroscopy for studying cutaneous microcirculation
in patients with diabetes mellitus. Microvasc. Res. 1997, 53, 121–127. [CrossRef] [PubMed]

24. Karimov, K.A.; Volkov, M.V. The phase correlation algorithm for stabilization of capillary blood flow video frames. In Videometrics,
Range Imaging, and Applications XIII; SPIE: Washington, DC, USA, 2015; Volume 9528, pp. 319–327.

25. Dobbe, J.G.G.; Streekstra, G.J.; Atasever, B.; van Zijderveld, R.; Ince, C. Measurement of functional microcirculatory geometry and
velocity distributions using automated image analysis. Med. Biol. Eng. Comput. 2008, 46, 659–670. [CrossRef]

26. Lin, W.C.; Wu, C.C.; Huang, T.C.; Lin, W.C.; Chiu, B.Y.C.; Liu, R.S.; Lin, K.P. Red blood cell velocity measurement in rodent tumor
model: An in vivo microscopic study. J. Med. Biol. Eng. 2012, 32, 97–102. [CrossRef]

27. Wang, C. Video Processing for Nail-Fold Capillary Blood Velocity Detection. Master’s Thesis, KTH Royal Institute of Technology,
Stockholm, Sweden, 2015.

28. Wu, C.-C.; Zhang, G.; Huang, T.-C.; Lin, K.-P. Red blood cell velocity measurements of complete capillary in finger nail-fold using
optical flow estimation. Microvasc. Res. 2009, 78, 319–324. [CrossRef] [PubMed]

29. Hwang, B.; Kim, J.; Lee, S.; Kim, E.; Kim, J.; Jung, Y.; Hwang, H. Automatic detection and segmentation of thrombi in abdominal
aortic aneurysms using a mask region-based convolutional neural network with optimized loss functions. Sensors 2022, 22, 3643.
[CrossRef]

30. Liu, S.; Li, Y.; Zhou, J.; Hu, J.; Chen, N.; Shang, Y.; Chen, Z.; Li, T. Segmenting nailfold capillaries using an improved U-net
network. Microvasc. Res. 2020, 130, 104011. [CrossRef]

31. Liu, R.; Tian, J.; Li, Y.; Chen, N.; Yan, J.; Li, T.; Liu, S. Nailfold Microhemorrhage Segmentation with Modified U-Shape
Convolutional Neural Network. Appl. Sci. 2022, 12, 5068. [CrossRef]

32. Mahmoud, O.; El-Sakka, M.; Janssen, B.G.H. Two-step machine learning method for the rapid analysis of microvascular flow in
intravital video microscopy. Sci. Rep. 2021, 11, 10047. [CrossRef] [PubMed]

33. Tutuncu, K.; Buber, M. Segmentation of Capillaroscopic Images. In Proceedings of the International Conference on Engineering
Technologies, Konya, Turkey, 25–27 October 2019.

34. Spera, E.; Tegolo, D.; Valenti, C. Segmentation and feature extraction in capillaroscopic videos. In Proceedings of the 16th
International Conference on Computer Systems and Technologies, Dublin, Ireland, 25–26 June 2015; pp. 244–251.

35. Tabacchi, M.E.; Tegolo, D.; Cascio, D.; Valenti, C.; Sorce, S.; Gentile, V.; Taormina, V.; Brusca, I.; Magazzu, G.; Giuliano, A.; et al. A
Fuzzy-Based Clinical Decision Support System for Coeliac Disease. IEEE Access 2022, 10, 102223–102236. [CrossRef]

36. Vivona, L.; Cascio, D.; Bruno, S.; Fauci, A.; Taormina, V.; Elgaaied, A.B.; Gorgi, Y.; Triki, R.M.; Ben Ahmed, M.; Yalaoui, S.; et al.
Unsupervised clustering method for pattern recognition in IIF images. In Proceedings of the IPAS 2016—2nd International Image
Processing, Applications and Systems Conference, Hammamet, Tunisia, 5–7 November 2016.

37. Iacomi, M.; Cascio, D.; Fauci, F.; Raso, G. Mammographic images segmentation based on chaotic map clustering algorithm. BMC
Med. Imaging 2014, 14, 12. [CrossRef]

38. Roberto e Souza, M.; Maia, H.d.A.; Pedrini, H. Survey on digital video stabilization: Concepts, methods, and challenges. ACM
Comput. Surv. 2022, 55, 3494525. [CrossRef]

39. Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359.
[CrossRef]

40. Muja, M.; Lowe, D. Flann, fast library for approximate nearest neighbors. In Proceedings of the International Conference on
Computer Vision Theory and Applications 2009, Setúbal, Portugal, 5–8 February 2009; pp. 1–21.

41. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 25, 122–125.
42. Japee, S.A.; Pittman, R.; Ellis, C.G. A New Video Image Analysis System to Study Red Blood Cell Dynamics and Oxygenation in

Capillary Networks. Microcirculation 2005, 12, 489–506. [CrossRef]
43. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of

the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; pp. 234–241.

44. Jaccard, P. The distribution of the flora in the alpine zone. New Phytol. 1912, 11, 37–50. [CrossRef]
45. Guizar-Sicairos, M.; Thurman, S.T.; Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158.

[CrossRef] [PubMed]

https://doi.org/10.1111/srt.12850
https://doi.org/10.1109/incoft55651.2022.10094554
https://doi.org/10.1299/jbse.2.81
https://doi.org/10.1006/mvre.1996.2003
https://www.ncbi.nlm.nih.gov/pubmed/9143543
https://doi.org/10.1007/s11517-008-0349-4
https://doi.org/10.5405/jmbe.875
https://doi.org/10.1016/j.mvr.2009.07.002
https://www.ncbi.nlm.nih.gov/pubmed/19647002
https://doi.org/10.3390/s22103643
https://doi.org/10.1016/j.mvr.2020.104011
https://doi.org/10.3390/app12105068
https://doi.org/10.1038/s41598-021-89469-w
https://www.ncbi.nlm.nih.gov/pubmed/33976293
https://doi.org/10.1109/ACCESS.2022.3208903
https://doi.org/10.1186/1471-2342-14-12
https://doi.org/10.1145/3494525
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1080/10739680591003332
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1364/OL.33.000156
https://www.ncbi.nlm.nih.gov/pubmed/18197224


Sensors 2023, 23, 7674 23 of 23

46. Guizar-Sicairos, M. Efficient Subpixel Image Registration by Cross-Correlation. MATLAB Central File Exchange. Available online:
https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation (ac-
cessed on 21 August 2023).

47. Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems IV; Academic Press: Cambridge, MA, USA,
1994; pp. 474–485.

48. Lo, L.C.; Chiang, J.Y.; Cai, Y.S. Three-dimensional vision-based nail-fold morphological and hemodynamic analysis. In Proceed-
ings of the 2011 IEEE 11th International Conference on Bioinformatics and Bioengineering, Taichung, Taiwan, 24–26 October 2011;
pp. 44–51.

49. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

50. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey.
IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [CrossRef]

51. Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/
(accessed on 17 August 2023).

52. Detectron2’s Model Zoo. Available online: https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
(accessed on 17 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TPAMI.2021.3059968
https://github.com/facebookresearch/
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md

	Introduction 
	Related Works 
	Materials and Methods 
	Optical System Setup and Database 
	Stabilization 
	Signal Enhancement Process 
	Capillaries Segmentation U-Net Based 
	Dataset and Data Preparation 
	Training 

	Alternative Comparative Techniques 
	Stabilization 
	Enhancement 
	Segmentation 


	Results 
	Discussion 
	Conclusions 
	References

