The Lifespan of Human Activity Recognition Systems for Smart Homes
Abstract
:1. Introduction
2. Background
2.1. Smart Homes
“The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.” [15]
2.2. Activity Recognition in Smart Homes
2.2.1. Human Activity Recognition Systems
2.2.2. Active Learning
3. Need for Bespoke HAR Systems in Smart Homes
4. The Lifespan of Human Activity Recognition Systems for Smart Homes
4.1. Phase 1: Bootstrapping
4.2. Phase 2: Updating
4.3. Phase ★: Routine Discovery
5. Scalability of the Proposed Conceptual System
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kientz, J.A.; Patel, S.N.; Jones, B.; Price, E.; Mynatt, E.D.; Abowd, G.D. The georgia tech aware home. In Proceedings of the CHI’08 Extended Abstracts on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 3675–3680. [Google Scholar]
- Helal, S.; Mann, W.; El-Zabadani, H.; King, J.; Kaddoura, Y.; Jansen, E. The gator tech smart house: A programmable pervasive space. Computer 2005, 38, 50–60. [Google Scholar] [CrossRef]
- Bagaveyev, S.; Cook, D.J. Designing and evaluating active learning methods for activity recognition. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, Seattle, WA, USA, 13–17 September 2014; pp. 469–478. [Google Scholar]
- Hoque, E.; Stankovic, J. AALO: Activity recognition in smart homes using Active Learning in the presence of Overlapped activities. In Proceedings of the 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, IEEE, San Diego, CA, USA, 21–24 May 2012; pp. 139–146. [Google Scholar]
- Intille, S.S.; Larson, K.; Beaudin, J.; Tapia, E.M.; Kaushik, P.; Nawyn, J.; McLeish, T.J. The PlaceLab: A live-in laboratory for pervasive computing research (video). In Proceedings of the PERVASIVE 2005 Video Program, Online, May 2005. [Google Scholar]
- Hooper, C.J.; Preston, A.; Balaam, M.; Seedhouse, P.; Jackson, D.; Pham, C.; Ladha, C.; Ladha, K.; Plötz, T.; Olivier, P. The french kitchen: Task-based learning in an instrumented kitchen. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA, 21–24 May 2012; pp. 193–202. [Google Scholar]
- Alemdar, H.; Ertan, H.; Incel, O.D.; Ersoy, C. ARAS human activity datasets in multiple homes with multiple residents. In Proceedings of the 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, IEEE, Venice, Italy, 5–8 May 2013; pp. 232–235. [Google Scholar]
- Cook, D.J.; Youngblood, M.; Heierman, E.O.; Gopalratnam, K.; Rao, S.; Litvin, A.; Khawaja, F. MavHome: An agent-based smart home. In Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom 2003), IEEE, Fort Worth, TX, USA, 26 March 2003; pp. 521–524. [Google Scholar]
- Knox, S.; Coyle, L.; Dobson, S. Using Ontologies in Case-Based Activity Recognition. In Proceedings of the FLAIRS Conference, Daytona Beach, FL, USA, 19–21 May 2010; pp. 1–6. [Google Scholar]
- Krishnan, N.C.; Cook, D.J. Activity recognition on streaming sensor data. Pervasive Mob. Comput. 2014, 10, 138–154. [Google Scholar] [CrossRef]
- Ghods, A.; Cook, D.J. Activity2vec: Learning adl embeddings from sensor data with a sequence-to-sequence model. arXiv 2019, arXiv:1907.05597. [Google Scholar]
- Skubic, M.; Alexander, G.; Popescu, M.; Rantz, M.; Keller, J. A smart home application to eldercare: Current status and lessons learned. Technol. Health Care 2009, 17, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Cooper, R.A.; Pasquina, P.F.; Fici-Pasquina, L. Sensor technology for smart homes. Maturitas 2011, 69, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Tragos, E.Z.; Foti, M.; Surligas, M.; Lambropoulos, G.; Pournaras, S.; Papadakis, S.; Angelakis, V. An IoT based intelligent building management system for ambient assisted living. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), IEEE, London, UK, 8–12 June 2015; pp. 246–252. [Google Scholar]
- Weiser, M. The computer for the 21st century. ACM SIGMOBILE Mob. Comput. Commun. Rev. 1999, 3, 3–11. [Google Scholar] [CrossRef]
- Kidd, C.D.; Orr, R.; Abowd, G.D.; Atkeson, C.G.; Essa, I.A.; MacIntyre, B.; Mynatt, E.; Starner, T.E.; Newstetter, W. The aware home: A living laboratory for ubiquitous computing research. In Proceedings of the Cooperative Buildings, Integrating Information, Organizations, and Architecture: Second International Workshop, CoBuild’99, Pittsburgh, PA, USA, 1–2 October 1999; Proceedings 2. Springer: Pittsburgh, PA, USA, 1999; pp. 191–198. [Google Scholar]
- Morita, P.P.; Sahu, K.S.; Oetomo, A. Health Monitoring Using Smart Home Technologies: Scoping Review. JMIR MHealth UHealth 2023, 11, e37347. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Estève, D.; Escriba, C.; Campo, E. A review of smart homes—Present state and future challenges. Comput. Methods Programs Biomed. 2008, 91, 55–81. [Google Scholar] [CrossRef]
- Alam, M.R.; Reaz, M.B.I.; Ali, M.A.M. A review of smart homes—Past, present, and future. IEEE Trans. Syst. Man, Cybern. Part C (Appl. Rev.) 2012, 42, 1190–1203. [Google Scholar] [CrossRef]
- Bouma, H.; Graafmans, J.A. Gerontechnology; IOS Press: Amsterdam, The Netherlands, 1992; Volume 3. [Google Scholar]
- Chatting, D. Automated Indifference. Interactions 2023, 30, 22–26. [Google Scholar] [CrossRef]
- Ray, A.K.; Bagwari, A. Study of smart home communication protocol’s and security & privacy aspects. In Proceedings of the 2017 7th International Conference on Communication Systems and Network Technologies (CSNT), IEEE, Nagpur, India, 11–13 November 2017; pp. 240–245. [Google Scholar]
- Spasov, P. Microcontroller Technology: The 68HC11; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- Riordan, M.; Hoddeson, L.; Herring, C. The invention of the transistor. Rev. Mod. Phys. 1999, 71, S336. [Google Scholar] [CrossRef]
- Olivier, P.; Xu, G.; Monk, A.; Hoey, J. Ambient kitchen: Designing situated services using a high fidelity prototyping environment. In Proceedings of the 2nd International Conference on Pervasive Technologies Related to Assistive Environments, Corfu, Greece, 9–13 June 2009; pp. 1–7. [Google Scholar]
- Schneps-Schneppe, M.; Maximenko, A.; Namiot, D.; Malov, D. Wired Smart Home: Energy metering, security, and emergency issues. In Proceedings of the 2012 IV International Congress on Ultra Modern Telecommunications and Control Systems, IEEE, St. Petersburg, Russia, 3–5 October 2012; pp. 405–410. [Google Scholar]
- Smart Home—United States: Statista Market Forecast. 2021. Available online: www.statista.com/outlook/dmo/smart-home/united-states (accessed on 29 April 2022).
- Smart Home Market Size, Share, Ecosystems, and Dynamics (Driver, Restrain, Opportunities) 2030. Available online: www.verifiedmarketresearch.com/product/global-smart-home-market-size-and-forecast (accessed on 29 April 2022).
- Global Smart Home Market Research Report (2021 to 2026)—By Product, Technologies, Service, Deployment and Region. 2021. Available online: www.researchandmarkets.com (accessed on 29 April 2022).
- Cook, D.J.; Crandall, A.S.; Thomas, B.L.; Krishnan, N.C. CASAS: A smart home in a box. Computer 2012, 46, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Philippot, A.; Riera, B.; Koza, M.; Pichard, R.; Saddem, R.; Gellot, F.; Annebicque, D.; Emprin, F. HOME I/O and FACTORY I/O: 2 Pieces of innovative PO simulation software for automation education. In Proceedings of the 2017 27th EAEEIE Annual Conference (EAEEIE), IEEE, Grenoble, France, 7–9 June 2017; pp. 1–6. [Google Scholar]
- Puig, X.; Ra, K.; Boben, M.; Li, J.; Wang, T.; Fidler, S.; Torralba, A. Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8494–8502. [Google Scholar]
- Liao, Y.H.; Puig, X.; Boben, M.; Torralba, A.; Fidler, S. Synthesizing environment-aware activities via activity sketches. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6291–6299. [Google Scholar]
- Puig, X.; Shu, T.; Li, S.; Wang, Z.; Liao, Y.H.; Tenenbaum, J.B.; Fidler, S.; Torralba, A. Watch-and-help: A challenge for social perception and human-ai collaboration. arXiv 2020, arXiv:2010.09890. [Google Scholar]
- Li, S.; Puig, X.; Du, Y.; Wang, C.; Akyurek, E.; Torralba, A.; Andreas, J.; Mordatch, I. Pre-trained language models for interactive decision-making. arXiv 2022, arXiv:2202.01771. [Google Scholar]
- Ramasamy Ramamurthy, S.; Roy, N. Recent trends in machine learning for human activity recognition—A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1254. [Google Scholar] [CrossRef]
- González, S.; Sedano, J.; Villar, J.R.; Corchado, E.; Herrero, Á.; Baruque, B. Features and models for human activity recognition. Neurocomputing 2015, 167, 52–60. [Google Scholar] [CrossRef]
- Chan, M.; Campo, E.; Estève, D.; Fourniols, J.Y. Smart homes—current features and future perspectives. Maturitas 2009, 64, 90–97. [Google Scholar] [CrossRef]
- Bouchabou, D.; Nguyen, S.M.; Lohr, C.; LeDuc, B.; Kanellos, I. A survey of human activity recognition in smart homes based on IoT sensors algorithms: Taxonomies, challenges, and opportunities with deep learning. Sensors 2021, 21, 6037. [Google Scholar] [CrossRef]
- Plötz, T.; Moynihan, P.; Pham, C.; Olivier, P. Activity recognition and healthier food preparation. Act. Recognit. Pervasive Intell. Environ. 2011, 313–329. [Google Scholar] [CrossRef]
- Tapia, E.M.; Intille, S.S.; Larson, K. Activity recognition in the home using simple and ubiquitous sensors. In Proceedings of the Pervasive Computing: Second International Conference, PERVASIVE 2004, Linz/Vienna, Austria, 21–23 April 2004; Proceedings 2. Springer: Linz/Vienna, Austria, 2004; pp. 158–175. [Google Scholar]
- Van Kasteren, T.; Noulas, A.; Englebienne, G.; Kröse, B. Accurate activity recognition in a home setting. In Proceedings of the 10th International Conference on Ubiquitous Computing, Seoul, Republic of Korea, 21–24 September 2008; pp. 1–9. [Google Scholar]
- Dang, L.M.; Min, K.; Wang, H.; Piran, M.J.; Lee, C.H.; Moon, H. Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognit. 2020, 108, 107561. [Google Scholar] [CrossRef]
- Beddiar, D.R.; Nini, B.; Sabokrou, M.; Hadid, A. Vision-based human activity recognition: A survey. Multimed. Tools Appl. 2020, 79, 30509–30555. [Google Scholar] [CrossRef]
- Kim, K.; Jalal, A.; Mahmood, M. Vision-based human activity recognition system using depth silhouettes: A smart home system for monitoring the residents. J. Electr. Eng. Technol. 2019, 14, 2567–2573. [Google Scholar] [CrossRef]
- Jalal, A.; Kamal, S. Real-time life logging via a depth silhouette-based human activity recognition system for smart home services. In Proceedings of the 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), IEEE, Seoul, Republic of Korea, 26–29 August 2014; pp. 74–80. [Google Scholar]
- Singh, D.; Psychoula, I.; Kropf, J.; Hanke, S.; Holzinger, A. Users’ perceptions and attitudes towards smart home technologies. In Proceedings of the Smart Homes and Health Telematics, Designing a Better Future: Urban Assisted Living: 16th International Conference, ICOST 2018, Singapore, 10–12 July 2018; Proceedings 16. Springer: Singapore, 2018; pp. 203–214. [Google Scholar]
- Kulsoom, F.; Narejo, S.; Mehmood, Z.; Chaudhry, H.N.; Butt, A.; Bashir, A.K. A review of machine learning-based human activity recognition for diverse applications. Neural Comput. Appl. 2022, 34, 18289–18324. [Google Scholar] [CrossRef]
- Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Marsic, I.; Sarcevic, A.; Burd, R.S. Deep learning for rfid-based activity recognition. In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, Stanford, CA, USA, 14–16 November 2016; pp. 164–175. [Google Scholar]
- Gomes, L.; Sousa, F.; Vale, Z. An intelligent smart plug with shared knowledge capabilities. Sensors 2018, 18, 3961. [Google Scholar] [CrossRef]
- Hussain, Z.; Sheng, M.; Zhang, W.E. Different approaches for human activity recognition: A survey. arXiv 2019, arXiv:1906.05074. [Google Scholar]
- Chen, L.; Hoey, J.; Nugent, C.D.; Cook, D.J.; Yu, Z. Sensor-based activity recognition. IEEE Trans. Syst. Man, Cybern. Part C (Appl. Rev.) 2012, 42, 790–808. [Google Scholar] [CrossRef]
- Chen, L.; Nugent, C.D. Human Activity Recognition and Behaviour Analysis; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Chen, L.; Nugent, C. Ontology-based activity recognition in intelligent pervasive environments. Int. J. Web Inf. Syst. 2009, 5, 410–430. [Google Scholar] [CrossRef]
- Cook, D.J. Learning setting-generalized activity models for smart spaces. IEEE Intell. Syst. 2012, 27, 32. [Google Scholar] [CrossRef]
- Fahad, L.G.; Tahir, S.F.; Rajarajan, M. Activity recognition in smart homes using clustering based classification. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, IEEE, Stockholm, Sweden, 24–28 August 2014; pp. 1348–1353. [Google Scholar]
- Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017, 51, 339–367. [Google Scholar] [CrossRef]
- Khan, M.A.; Mittal, M.; Goyal, L.M.; Roy, S. A deep survey on supervised learning based human detection and activity classification methods. Multimed. Tools Appl. 2021, 80, 27867–27923. [Google Scholar] [CrossRef]
- Yu, M.; Rhuma, A.; Naqvi, S.M.; Wang, L.; Chambers, J. A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 1274–1286. [Google Scholar] [CrossRef]
- Quigley, B.; Donnelly, M.; Moore, G.; Galway, L. A comparative analysis of windowing approaches in dense sensing environments. Proceedings 2018, 2, 1245. [Google Scholar]
- Cook, D.J.; Krishnan, N.C.; Rashidi, P. Activity discovery and activity recognition: A new partnership. IEEE Trans. Cybern. 2013, 43, 820–828. [Google Scholar] [CrossRef]
- Yala, N.; Fergani, B.; Fleury, A. Feature extraction for human activity recognition on streaming data. In Proceedings of the 2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), IEEE, Madrid, Spain, 2–4 September 2015; pp. 1–6. [Google Scholar]
- Aminikhanghahi, S.; Cook, D.J. Using change point detection to automate daily activity segmentation. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), IEEE, Kona, Hawaii, 13–17 March 2017; pp. 262–267. [Google Scholar]
- Aminikhanghahi, S.; Wang, T.; Cook, D.J. Real-time change point detection with application to smart home time series data. IEEE Trans. Knowl. Data Eng. 2018, 31, 1010–1023. [Google Scholar] [CrossRef] [PubMed]
- van Kasteren, T.L.M. Activity recognition for health monitoring elderly using temporal probabilistic models. In Proceedings of the ASCI, Seoul, Republic of Korea, 22–25 August 2011. [Google Scholar]
- Medina-Quero, J.; Zhang, S.; Nugent, C.; Espinilla, M. Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition. Expert Syst. Appl. 2018, 114, 441–453. [Google Scholar] [CrossRef]
- Hamad, R.A.; Hidalgo, A.S.; Bouguelia, M.R.; Estevez, M.E.; Quero, J.M. Efficient activity recognition in smart homes using delayed fuzzy temporal windows on binary sensors. IEEE J. Biomed. Health Inform. 2019, 24, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Hamad, R.A.; Yang, L.; Woo, W.L.; Wei, B. Joint learning of temporal models to handle imbalanced data for human activity recognition. Appl. Sci. 2020, 10, 5293. [Google Scholar] [CrossRef]
- Hamad, R.A.; Kimura, M.; Yang, L.; Woo, W.L.; Wei, B. Dilated causal convolution with multi-head self attention for sensor human activity recognition. Neural Comput. Appl. 2021, 33, 13705–13722. [Google Scholar] [CrossRef]
- Aminikhanghahi, S.; Cook, D.J. Enhancing activity recognition using CPD-based activity segmentation. Pervasive Mob. Comput. 2019, 53, 75–89. [Google Scholar] [CrossRef]
- Li, H.; Abowd, G.D.; Plötz, T. On specialized window lengths and detector based human activity recognition. In Proceedings of the 2018 ACM International Symposium on Wearable Computers, Singapore, 8–12 October 2018; pp. 68–71. [Google Scholar]
- Al Machot, F.; Mayr, H.C.; Ranasinghe, S. A windowing approach for activity recognition in sensor data streams. In Proceedings of the 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), IEEE, Vienna, Austria, 5–8 July 2016; pp. 951–953. [Google Scholar]
- Bermejo, U.; Almeida, A.; Bilbao-Jayo, A.; Azkune, G. Embedding-based real-time change point detection with application to activity segmentation in smart home time series data. Expert Syst. Appl. 2021, 185, 115641. [Google Scholar] [CrossRef]
- Jethanandani, M.; Sharma, A.; Perumal, T.; Chang, J.R. Multi-label classification based ensemble learning for human activity recognition in smart home. Internet Things 2020, 12, 100324. [Google Scholar] [CrossRef]
- Petersen, J.; Larimer, N.; Kaye, J.A.; Pavel, M.; Hayes, T.L. SVM to detect the presence of visitors in a smart home environment. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, San Diego, CA, USA, 28 August–1 September 2012; pp. 5850–5853. [Google Scholar]
- SEDKY, M.; HOWARD, C.; Alshammari, T.; Alshammari, N. Evaluating machine learning techniques for activity classification in smart home environments. Int. J. Inf. Syst. Comput. Sci. 2018, 12, 48–54. [Google Scholar]
- Nawal, Y.; Oussalah, M.; Fergani, B.; Fleury, A. New incremental SVM algorithms for human activity recognition in smart homes. J. Ambient. Intell. Humaniz. Comput. 2022, 1–18. [Google Scholar] [CrossRef]
- Li, Y.; Yang, G.; Su, Z.; Li, S.; Wang, Y. Human activity recognition based on multienvironment sensor data. Inf. Fusion 2023, 91, 47–63. [Google Scholar] [CrossRef]
- Fang, H.; Tang, P.; Si, H. Feature selections using minimal redundancy maximal relevance algorithm for human activity recognition in smart home environments. J. Healthc. Eng. 2020, 2020, 8876782. [Google Scholar] [CrossRef]
- Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.L.; Chen, S.C.; Iyengar, S.S. A survey on deep learning: Algorithms, techniques, and applications. ACM Comput. Surv. (CSUR) 2018, 51, 1–36. [Google Scholar] [CrossRef]
- Fang, H.; He, L.; Si, H.; Liu, P.; Xie, X. Human activity recognition based on feature selection in smart home using back-propagation algorithm. ISA Trans. 2014, 53, 1629–1638. [Google Scholar] [CrossRef]
- Irvine, N.; Nugent, C.; Zhang, S.; Wang, H.; Ng, W.W. Neural network ensembles for sensor-based human activity recognition within smart environments. Sensors 2019, 20, 216. [Google Scholar] [CrossRef]
- Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv 2016, arXiv:1604.08880. [Google Scholar]
- Gochoo, M.; Tan, T.H.; Liu, S.H.; Jean, F.R.; Alnajjar, F.S.; Huang, S.C. Unobtrusive activity recognition of elderly people living alone using anonymous binary sensors and DCNN. IEEE J. Biomed. Health Inform. 2018, 23, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Mohmed, G.; Lotfi, A.; Pourabdollah, A. Employing a deep convolutional neural network for human activity recognition based on binary ambient sensor data. In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 30 June–3 July 2020; pp. 1–7. [Google Scholar]
- Singh, D.; Merdivan, E.; Hanke, S.; Kropf, J.; Geist, M.; Holzinger, A. Convolutional and recurrent neural networks for activity recognition in smart environment. In Proceedings of the Towards Integrative Machine Learning and Knowledge Extraction: BIRS Workshop, Banff, AB, Canada, 24–26 July 2015; Revised Selected Papers. Springer: Banff, AB, Canada, 2017; pp. 194–205. [Google Scholar]
- Liciotti, D.; Bernardini, M.; Romeo, L.; Frontoni, E. A sequential deep learning application for recognising human activities in smart homes. Neurocomputing 2020, 396, 501–513. [Google Scholar] [CrossRef]
- Bouchabou, D.; Nguyen, S.M.; Lohr, C.; Leduc, B.; Kanellos, I. Fully convolutional network bootstrapped by word encoding and embedding for activity recognition in smart homes. In Proceedings of the Deep Learning for Human Activity Recognition: Second International Workshop, DL-HAR 2020, Held in Conjunction with IJCAI-PRICAI 2020, Kyoto, Japan, 8 January 2021; Proceedings 2. Springer: Kyoto, Japan, 2021; pp. 111–125. [Google Scholar]
- Bouchabou, D.; Nguyen, S.M.; Lohr, C.; LeDuc, B.; Kanellos, I. Using language model to bootstrap human activity recognition ambient sensors based in smart homes. Electronics 2021, 10, 2498. [Google Scholar] [CrossRef]
- Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Li, L.; Gan, Z.; Cheng, Y.; Liu, J. Relation-aware graph attention network for visual question answering. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 10313–10322. [Google Scholar]
- Ye, J.; Jiang, H.; Zhong, J. A Graph-Attention-Based Method for Single-Resident Daily Activity Recognition in Smart Homes. Sensors 2023, 23, 1626. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A survey on contrastive self-supervised learning. Technologies 2020, 9, 2. [Google Scholar] [CrossRef]
- Hiremath, S.K.; Plötz, T. Deriving effective human activity recognition systems through objective task complexity assessment. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–24. [Google Scholar] [CrossRef]
- Atlas, L.; Cohn, D.; Ladner, R. Training connectionist networks with queries and selective sampling. Adv. Neural Inf. Process. Syst. 1989, 2. [Google Scholar]
- Lewis, D.D. A sequential algorithm for training text classifiers: Corrigendum and additional data. In Acm Sigir Forum; ACM: New York, NY, USA, 1995; Volume 29, pp. 13–19. [Google Scholar]
- Settles, B. Active Learning Literature Survey. 2009. Available online: http://digital.library.wisc.edu/1793/60660 (accessed on 9 July 2023).
- Adaimi, R.; Thomaz, E. Leveraging active learning and conditional mutual information to minimize data annotation in human activity recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–23. [Google Scholar] [CrossRef]
- Miu, T.; Plötz, T.; Missier, P.; Roggen, D. On strategies for budget-based online annotation in human activity recognition. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, Seattle, WA, USA, 13–17 September 2014; pp. 767–776. [Google Scholar]
- Alemdar, H.; Van Kasteren, T.; Ersoy, C. Active learning with uncertainty sampling for large scale activity recognition in smart homes. J. Ambient Intell. Smart Environ. 2017, 9, 209–223. [Google Scholar] [CrossRef]
- Karami, A.B.; Fleury, A.; Boonaert, J.; Lecoeuche, S. User in the loop: Adaptive smart homes exploiting user feedback—state of the art and future directions. Information 2016, 7, 35. [Google Scholar] [CrossRef]
- Li, J.; Shlizerman, E. Iterate & cluster: Iterative semi-supervised action recognition. arXiv 2020, arXiv:2006.06911. [Google Scholar]
- Mikelsons, G.; Smith, M.; Mehrotra, A.; Musolesi, M. Towards deep learning models for psychological state prediction using smartphone data: Challenges and opportunities. arXiv 2017, arXiv:1711.06350. [Google Scholar]
- Asghari, P.; Soleimani, E.; Nazerfard, E. Online human activity recognition employing hierarchical hidden Markov models. J. Ambient Intell. Humaniz. Comput. 2020, 11, 1141–1152. [Google Scholar] [CrossRef]
- Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations. arXiv 1802, arXiv:1802.05365. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Najeh, H.; Lohr, C.; Leduc, B. Convolutional Neural Network Bootstrapped by Dynamic Segmentation and Stigmergy-Based Encoding for Real-Time Human Activity Recognition in Smart Homes. Sensors 2023, 23, 1969. [Google Scholar] [CrossRef]
- Codispoti, J.; Khamesi, A.R.; Penn, N.; Silvestri, S.; Shin, E. Learning from non-experts: An interactive and adaptive learning approach for appliance recognition in smart homes. ACM Trans. Cyber-Phys. Syst. (TCPS) 2022, 6, 1–22. [Google Scholar] [CrossRef]
- Hiremath, S.K.; Nishimura, Y.; Chernova, S.; Plötz, T. Bootstrapping Human Activity Recognition Systems for Smart Homes from Scratch. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–27. [Google Scholar] [CrossRef]
- Cook, D.J.; Schmitter-Edgecombe, M. Assessing the quality of activities in a smart environment. Methods Inf. Med. 2009, 48, 480–485. [Google Scholar]
- Chen, L.; Nugent, C.D.; Wang, H. A knowledge-driven approach to activity recognition in smart homes. IEEE Trans. Knowl. Data Eng. 2011, 24, 961–974. [Google Scholar] [CrossRef]
- Diethe, T.; Borchert, T.; Thereska, E.; Balle, B.; Lawrence, N. Continual learning in practice. arXiv 2019, arXiv:1903.05202. [Google Scholar]
- Farquhar, S.; Gal, Y. Towards robust evaluations of continual learning. arXiv 2018, arXiv:1805.09733. [Google Scholar]
- Ho, S.; Liu, M.; Du, L.; Gao, L.; Xiang, Y. Prototype-Guided Memory Replay for Continual Learning. IEEE Trans. Neural Netw. Learn. Syst. 2023. [Google Scholar] [CrossRef]
- Jha, S.; Schiemer, M.; Ye, J. Continual learning in human activity recognition: An empirical analysis of regularization. arXiv 2020, arXiv:2007.03032. [Google Scholar]
- Jha, S.; Schiemer, M.; Zambonelli, F.; Ye, J. Continual learning in sensor-based human activity recognition: An empirical benchmark analysis. Inf. Sci. 2021, 575, 1–21. [Google Scholar] [CrossRef]
- Kim, C.D.; Jeong, J.; Kim, G. Imbalanced continual learning with partitioning reservoir sampling. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XIII 16. Springer: Virtual, 2020; pp. 411–428. [Google Scholar]
- Mai, Z.; Li, R.; Kim, H.; Sanner, S. Supervised contrastive replay: Revisiting the nearest class mean classifier in online class-incremental continual learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3589–3599. [Google Scholar]
- Fatima, I.; Fahim, M.; Lee, Y.K.; Lee, S. A unified framework for activity recognition-based behavior analysis and action prediction in smart homes. Sensors 2013, 13, 2682–2699. [Google Scholar] [CrossRef]
- Monk, T.H.; Petrie, S.R.; Hayes, A.J.; Kupfer, D.J. Regularity of daily life in relation to personality, age, gender, sleep quality and circadian rhythms. J. Sleep Res. 1994, 3, 196–205. [Google Scholar] [CrossRef]
- Banovic, N.; Krumm, J. Warming up to cold start personalization. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Mazankiewicz, A.; Böhm, K.; Bergés, M. Incremental real-time personalization in human activity recognition using domain adaptive batch normalization. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020, 4, 1–20. [Google Scholar] [CrossRef]
- Xu, M.; Qian, F.; Mei, Q.; Huang, K.; Liu, X. Deeptype: On-device deep learning for input personalization service with minimal privacy concern. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–26. [Google Scholar] [CrossRef]
- Li, Q.; Gravina, R.; Li, Y.; Alsamhi, S.H.; Sun, F.; Fortino, G. Multi-user activity recognition: Challenges and opportunities. Inf. Fusion 2020, 63, 121–135. [Google Scholar] [CrossRef]
Reference | Category of HAR System | Activity Recognition System | Datasets(s) |
---|---|---|---|
A sequential deep learning application for recognizing human activities [88] | Event-based analysis; requires annotated data | Variations in sequential modeling techniques (LSTMs) were used on event-based data instances | CASAS datasets (Milan, Cairo, Kyoto7, Kyoto8, and Kyoto11) [30] |
Fully convolutional network bootstrapped by word encoding and embedding for activity recognition in smart homes [89] | Event-based analysis; requires annotated data | A word2vec encoding was applied to sensor event-based windows, which were then passed through a fully convolutional network for classification | CASAS datasets (Aruba and Milan) [30] |
Using the language model to bootstrap human activity recognition that utilized ambient sensors Based in smart homes [90] | Event-based analysis; requires annotated data | Different embedding techniques were used to obtain the learned features followed by a sequential modeling procedure (LSTM) on the event-based data instances | CASAS datasets (Aruba, Milan, and Cairo) [30] |
Activity2vec: Learning adl embeddings from sensor data with a sequence-to-sequence model [11] | Requires annotated data | A sequence-to-sequence model was used to generate features followed by a random forest model for classification | CASAS dataset (HH101) [30] |
Enhancing activity recognition using CPD-based activity segmentation [71] | Requires annotated data | A heuristic function followed by a dissimilarity-based approach were used to identify change points. Handcrafted features were extracted. A random-forest-based modeling procedure was employed to perform the classification | CASAS dataset (Apt 101-130) [30] |
Using ontologies in case-based activity [9] | Requires domain knowledge | Rules case-based reasoning, where the information gained for each feature for a given activity is used to provide the predictions | PlaceLab [5] |
Activity recognition on streaming sensor data [10] | Requires annotated data | Handcrafted features generated over sliding windows. An SVM-based classification model was employed. | Smart home TestBeds—B1, B2, and B3 [62] |
MavHome: An agent-based smart home [8] | Requires domain knowledge | Episode discovery algorithm that identified significant episodes in the sequence of patterns mined | MavHome [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiremath, S.K.; Plötz, T. The Lifespan of Human Activity Recognition Systems for Smart Homes. Sensors 2023, 23, 7729. https://doi.org/10.3390/s23187729
Hiremath SK, Plötz T. The Lifespan of Human Activity Recognition Systems for Smart Homes. Sensors. 2023; 23(18):7729. https://doi.org/10.3390/s23187729
Chicago/Turabian StyleHiremath, Shruthi K., and Thomas Plötz. 2023. "The Lifespan of Human Activity Recognition Systems for Smart Homes" Sensors 23, no. 18: 7729. https://doi.org/10.3390/s23187729
APA StyleHiremath, S. K., & Plötz, T. (2023). The Lifespan of Human Activity Recognition Systems for Smart Homes. Sensors, 23(18), 7729. https://doi.org/10.3390/s23187729