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Abstract: With the growing interest in smart home environments and in providing seamless inter-
actions with various smart devices, robust and reliable human activity recognition (HAR) systems
are becoming essential. Such systems provide automated assistance to residents or to longitudinally
monitor their daily activities for health and well-being assessments, as well as for tracking (long-
term) behavior changes. These systems thus contribute towards an understanding of the health and
continued well-being of residents. Smart homes are personalized settings where residents engage in
everyday activities in their very own idiosyncratic ways. In order to provide a fully functional HAR
system that requires minimal supervision, we provide a systematic analysis and a technical definition
of the lifespan of activity recognition systems for smart homes. Such a designed lifespan provides
for the different phases of building the HAR system, where these different phases are motivated by
an application scenario that is typically observed in the home setting. Through the aforementioned
phases, we detail the technical solutions that are required to be developed for each phase such that it
becomes possible to derive and continuously improve the HAR system through data-driven proce-
dures. The detailed lifespan can be used as a framework for the design of state-of-the-art procedures
corresponding to the different phases.

Keywords: smart homes; lifespan; data-driven procedures; minimal supervision; human activity
recognition

1. Introduction

Developing human activity recognition (HAR) systems is at the core of ubiquitous
computing systems. With the recent resurgence of interest in smart home environments
and with the availability of technology to make smart devices helpful and engaging for
their end users [1,2], numerous applications that provide assistance to residents are now
available. Owing to the reduced cost of sensors and the advancements in Internet of Things
(IoT) technologies, as well as the accessibility of reliable and inexpensive sensing and
computing technology, instrumenting homes with sensors for everyday activity recognition
in real-world living environments is now a realistic option for many. This has encouraged,
for example, the widespread use of pervasive sensing devices in ambient assisted living
(AAL) environments. Initial works in AAL were focused on providing care for the elderly
population [3,4], but, with the aforementioned advancements, the availability of such
systems for diverse populations is now possible. Although systems developed earlier
faced technical challenges corresponding to data collection and automated analysis [5–8],
with the present advancements, this is not an issue that current deployments have to
encounter. Even when such advancements have made the data collection process seamless
and straightforward, substantial challenges remain in developing and deploying HAR
systems in smart homes.

“Off-the-shelf” human activity recognition systems are desirable in smart homes,
since they promise to be deployable “as-is” and immediately into any environment while
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not requiring additional resources in terms of cost, effort, or time. However, given the
individualized settings and the idiosyncratic behaviors of residents, it is not realistic to
assume that such systems will work without the need for adaptation to such individualistic
environments. Prior work shows that these adaptive procedures require experts in the loop
to identify sensor grouping based on the location, function, and mapping of similar types
of sensors between the source and target domains, without guarantees of obtaining optimal
performance in the target environment [9–11]. Additionally, the goal to provide a fully
functional system, requiring sample-precise annotations and the development of tailored
HAR systems, that cater to specific home settings and individuals is realistic.

In this “perspectives” article, we define the lifespan of a HAR system for smart homes,
i.e., we conceptualize how such “bespoke” systems can be derived for a range of practical
application scenarios of sensor-based human activity recognition in smart homes. We
do so by analyzing relevant related work and contextualizing the derived concept—the
“lifespan”—with respect to realistic application scenarios. This addresses the concerns
arising from the unavailability of an “off-the-shelf” system, which is often hard to achieve.
Thus we accomplish the following: (i) discuss the challenges in developing HAR systems
for smart homes and state-of-the-art procedures; (ii) detail a typical application scenario in
the smart home, which serves as a guideline for detailing the lifespan of HAR system; and
(iii) provide the technical details of the different components that make up the lifespan of
the HAR system.

2. Background

With decreasing sensor costs, automating ‘regular’ homes has become a possibility
for many. IoT or environmental sensors can collect data for extended periods of time
without concerns regarding battery recharging or privacy. Such sensors capture data on the
detecting motion [12] or on the interaction with objects that are instrumented with sensing
capabilities [13]. As such, these advances have enabled the recognition of the activities of
daily living for ambient assisted living (AAL) environments. Such automated assessment
systems are required for home automation [14].

2.1. Smart Homes

Mark Weiser, in his seminal paper ‘The Computer for the 21st Century’, stated

“The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from it.” [15]

Toward this goal, researchers in ubiquitous computing aim to enable and provide
computing away from the desktop. A unifying research theme that arose out of this was to
focus on the computing needs in everyday lives, especially those that were away from work
or office spaces. This initiated the research effort towards investigating computing in the
home [16]. Smart Homes are a branch of ubiquitous computing that involve incorporating
“intelligence” into living spaces. Smart homes for health care have been described as “a
home equipped with smart sensors such as Bluetooth, Wi-Fi, or similar technology, not
restricted to IoT, to automate, regulate, and monitor home occupants’ physical health,
mental health, and environments within the home. The focus must be on convenience,
safety, and improvement of one’s quality of life, to address the needs of the individuals,
caregivers, and health professionals” [17]. Through ambient intelligence systems, the goal
is to monitor smart homes and provide the control of home appliances and devices to users
such that it enables them to execute tasks automatically. Ambient intelligence provides for
instrumented environments that are sensitive and responsive to the presence of people [18]
through providing intelligent monitoring and access control [19].

The services facilitated through automating homes can be broadly classified into
three major categories: (i) Comfort; (ii) Healthcare; and (iii) Security [19]. Through the
provision of comfort, smart homes provide ease in daily life. “Optimization for com-
fort in the environment is possible through the identification and automation procedure,
learning user behavior, tracking user location, identifying the user, and automating tasks.
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Remote access and control enable users to remotely access, monitor and control their home
environment” [19].

Smart homes also support providing healthcare for their inhabitants. As stated in [19],
a significant portion of the world’s population would be considered the elderly by the year
2050. To aid such elderly individuals in living independently, maintaining the safety of such
individuals is of paramount importance, which can be achieved by detecting and preventing
accidents, such as detecting an event such as a fall and calling for emergency services when
such an accident occurs. Supporting aging in place (also termed as ‘Gerontechnology’ [20])
is another important aspect of helping senior adults with daily living activities, such as
reminding them to take medications. One such research initiative at Georgia Tech devoted
to the multidisciplinary exploration of emerging technologies and services based in the
home is that of the Aware Home Research Initiative (AHRI). Supporting busy families in
the generation where adults work full-time jobs is another scenario where smart home
automation provides support. Often times, such families will have both elderly parents as
well as young children that they must care for and thus the term coined for such populations
is the “Sandwich Generation” [1].

Research into smart homes gained interest in academic domains, where the focus was
on providing context awareness and smart decision making in automated environments. A
number of initiatives have been focused on providing the following: (i) home automation,
where providing comfort and convenience are of importance along with the goal of saving
energy and resources; (ii) facilitating safety and security, where the goal is to provide
monitoring of the inhabitants’ well-being and aim for the provision of safety and security
such as burglary recognition; and (iii) for entertainment, where the goal is to connect
users and media with each other and to facilitate communication. A number of research
works [1,2] were introduced with the goal of providing such services. One of the major
applications was to provide assistance and support to the elderly to make their lives easier
and provide support in daily living activities.

Toward the goal of automating homes to make human lives easier and more com-
fortable, automation efforts were initiated as early as the 19th century [21], where home
appliances were designed to automate chores. Echo IV [22] was the first smart device
that was used to manage shopping lists, control the home temperature and humidity, and
provide tips for cooking. With technological advancements such as microcontrollers [23]
and transistors [24], as well as reductions in the costs required for instrumenting homes
with sensors, new application fields of computing—such as smart home automation—have
become a possibility.

A few of the smart home automation research developed were the MavHome [8],
GatorTech [2], and the Ambient Kitchen project [25]. MavHome [8] was set up with the
goal for the environment to understand the resident’s activities and respond accordingly to
assist them in their daily living routines. GatorTech [2] (an extension of the Matilda Smart
Home [26]) created an actual live-in environment aimed at assisting older individuals
and those with special needs. Similarly, the Ambient Kitchen project [25] was aimed at
developing a high-fidelity prototype by instrumenting objects used in the home to design
applications that assist in everyday environments.

During the early 2000’s, there was a push from the industry towards automating
smart homes, and a number of appliances were developed that aided in this automation
process. This was possible due to the advent of technology that aimed at making smart
homes more accessible, engaging, and helpful to their end users [27–29]. With recent
advancements in IoT-based technologies and cloud computing practices, there has been
a renewed interest in research and development efforts. The focus has also now shifted
toward private home automation. With the increasing number of smart home devices and
vendors, sophisticated industry standards and platforms, and the number of assistants
embedded in the environment, interest in developing smart home-based devices is evident.

Designing HAR systems has been made possible through the availability of data
repositories such as the CASAS smart home datasets [30] and virtual smart home simulators
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such as the Home I/O simulator [31] or the VirtualHome simulator [32–35]. Smart homes
in [30] are aimed at identifying analysis procedures that aid in discovering user patterns.
With the advances made in machine learning and data analysis techniques, it has become
possible to analyze the data collected in such environments [36].

2.2. Activity Recognition in Smart Homes

Human activity recognition (HAR) is aimed at identifying activities that are performed
by a person as a result of analyzing the data collected from various sensing mechanisms [37].
Equipped with sensors and actuators, smart homes aim to not only detect movement within
the home [38], but also to identify interaction with objects, devices, and appliances. All
such devices, sensors, actuators, appliances, and objects in the home are interconnected
through communication protocols [39].

To utilize the services provided through the smart home, it is essential for the home to
understand and recognize the activities of the residents. Activity recognition systems in
smart homes are typically designed and deployed to provide such recognition capabilities.
Through the process of logging identified daily living activities, changes in regular routines
can be indicative of health-related concerns that can be used to inform residents and their
caregivers [6,7,30,40–42].

Sensing modalities that are used to detect movement in smart homes primarily
belong to either vision-based or sensor-based systems. Vision-based approaches use
perception-based sensing mechanisms, also known as optical sensors, to capture data
for analysis [43,44]. These optical sensors aid in the collection of 2D images, 3D images,
and video data. The use of depth-video-based HAR designed for elderly health care moni-
toring utilizes skeleton joint features to analyze behaviors and their changes therein [45],
and a depth-silhouette-based human activity recognition system has been used for the
real-time logging of performed activities [46]. However, this sensing modality comes with
privacy concerns, where residents may not be willing to accept the information collected
through the vision-based sensing mechanisms [47,48].

Sensor-based HAR systems comprise on-body or wearable sensing [49], sensors placed
on objects [25,50], and ambient or in-the-environment sensors [51]. HAR methods comprise
various sensors that are networked and connected with numerous devices to track the
resident’s activity or behavior. Since these modalities either record data through state
changes (ambient sensors) or more continuous-valued data (wearables), the data recorded
provides for a time series analysis problem. The sensor-based HAR system is less privacy
intrusive and has thus been widely accepted to monitor the activities of daily living [52,53].

2.2.1. Human Activity Recognition Systems

The data collected in smart homes is obtained through recording the values of sensors
that are used to capture the way residents interact with their respective environments.
Recordings that capture the actions and interactions of the resident are then used to
analyze the activities of daily living of the resident [39,43,48]. Analysis procedures either
make use of contextual knowledge such as the location, time and frequency of activities,
spatiotemporal information, and interactions of the residents with objects [39,54]. Such
procedures have been termed as ‘Knowledge-Driven Approaches’ and require knowledge
from domain experts to design the system [39]. Ontology-based approaches are used to
build these context-aware applications [55]. Complementary to this kind of analysis is
‘Data-Driven Approaches’, where statistical models are built using the data recorded in
the smart home. These require large amounts of annotated data to learn probabilistic
machine learning models, such as hidden Markov models, K-nearest neighbors, etc., that
can recognize the activities of residents [39,56,57]. Although, both ‘Knowledge-Driven
Approaches’ and ‘Data-Driven Approaches’ can be used to learn activity models, due to the
individualistic environments of smart homes that require knowledge of the idiosyncratic
behaviors or residents, either complete knowledge of the environment or large amounts of
annotated data would be required for building activity models [54]. This either requires
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domain expertise or large amounts of wait time (to collect annotated data) for an activity
model to be available to residents.

Since ambient sensors record state changes, the time series data recorded results in
an irregular sampling rate, which is unlike the data recorded from wearables or videos,
where data collected from these modalities have a more consistent sampling rate. In order
to identify the points in time where behavior changes occur in the time series analysis
problem, algorithms belonging to the family of change point detection (CPD) methods are
used [58]. A number of CPD-based methods have been applied to segment time series data
into activities of interest—also known as ‘Activity Segmentation’. Algorithms are devel-
oped to identify the activity segments automatically and then the activity in those segments
is identified through a recognition procedure [59]. Real-time activity recognition can be
essential when identifying activities that require immediate care such as fall detection [60]
or to automatically log behaviors for health monitoring. Some CPD methods that have been
developed are suitable to provide real-time activity recognition systems, whereas others
recognize activity segments after a delay from the time of occurrence. Different windowing
procedures have been compared in [61] to estimate activity boundaries. Identifying explicit
windows (EW) corresponds to the ‘pre-segment’ technique [62,63] where a given window
contains all the sensor events corresponding to a given activity. Annotations are required
to identify the beginning and end points of the activities of interest. When no such annota-
tions are available, change points corresponding to when changes occur in activities are
identified using the statistical and probability-based measures described in [64,65]. In order
to perform activity recognition, it becomes essential to identify all segments correspond-
ing to the activity instances, since the whole segment is used to predict a given activity.
Thus, it is not straightforward to use the ‘pre-segment’ technique in real-time analysis. For
real-time analysis, the time window (TW)—where windows span over a specific duration
of time [66–70]—the sensor event window (SEW)—where windows span over a specific
number of sensor event triggers [10,71]—has been used. Although, the time-based win-
dowing technique is favorable for regularly or continuously sampled data over time when
commonly used with wearable sensors, the data collected through ambient sensors can be
sampled at regular intervals through a forward-filling procedure. In both cases, however,
identifying the ideal window length of the sliding window can be challenging and requires
domain-specific knowledge to estimate the window length [72]. Heuristic approaches such
as rules, thresholds, and dissimilarity measures between window embeddings have been
used to identify window lengths dynamically [67,73,74].

A number of traditional approaches have been proposed for sensor-based HAR sys-
tems in smart homes. Classification approaches such as random forests, naive Bayes,
decision trees, and conditional random fields have been explored [75]. Some of the tradi-
tional feature representations look into the number of sensor firings, the time spent at a
given location, and the time spent moving between locations [76]. Another work made use
of the features that model contextual information by considering the mutual information
between sensor events and decay in sensor event triggers [10]. Spatiotemporal features
explored with multilayer perceptron, hidden Markov models, decision trees, etc. have
been shown to outperform traditionally used feature representations [77]. The use of SVMs
and variants of incremental SVMs have been employed to improve the performance of the
HAR systems [78]. In [79], the authors made use of sensor data contribution significance
analysis and spatial distance matrices to identify (a) the relevant sensors that are most
informative of the activities in the home; and (b) the noise caused by various factors such
as pets and visitors that are not relevant to the activity being monitored. Eliminating the
noise and sensors that do not contribute to activity recognition has been shown to improve
performance scores. Inspired from the cluster then classify paradigm, in [4], the location
was used as the contextual information to cluster data points that were assumed to belong
to the same activity. Some of these conventional procedures require handcrafted feature
extraction methods to learn relevant information from the sensor event triggers [39] or
require large amounts of labeled data to build knowledge [79]. Recent work [80] looked
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at different metrics that could be employed to obtain features that are of relevance for
classification. This still requires domain knowledge to initialize the entire list of features
that are used as a starting point. A subset of these features is then deemed to be important
for the classification procedure. Similar drawbacks exist in activity recognition systems that
make use of ontologies where detailed information about activity interactions is required
for generating feature vectors [55].

With the advancements in deep learning techniques, it has become possible to model
high-level abstractions from complex data [81]. Deep learning techniques can be used to
learn good high-level feature representations from raw signals by utilizing unsupervised
learning procedures, without requiring any manual engineering efforts. Such procedures
can also be used for end-to-end learning systems where the models perform classifica-
tion using the automatically extracted features [82,83]. Convolutional neural networks
(CNNs) have been used to capture local dependencies in time series data. Since they are
invariant to scale and translation, they are able to capture the local temporal dynamics
between data points [84]. Deep convolutional neural networks have been used to analyze
sequences of binary sensors that are converted into gray-scale images [85,86]. A 1D-CNN
structure developed on raw data sequences was used in [87] to extract high-level fea-
tures, to learn mappings between sensor event triggers, and for activities in an end-to-end
learning procedure. To capture the temporal information in sequential data modeling
procedures, RNNs are employed. LSTM networks have become popular due to their
ability to capture long-term dependencies [84]. Thus, different variants of LSTMs such
as bidirectional and cascading LSTMs have been used to automatically learn temporal
information from raw sensor sequences and achieve reasonable performance outcomes [88].
Using frequency encodings to capture the co-occurrence of sensor event triggers in a se-
quence has been used to model and learn good feature presentations that are then passed
through a fully convolutional network [89]. Other embedding procedures inspired by
language-based modeling techniques such as ELMO have been used to learn better feature
representations [90]. Activity2Vec [11] is a sequence-to-sequence model that is aimed at
learning feature representations for the activities of daily living and activities that occur
rarely such as fall detection. Although most of these deep-learning-based approaches
achieved state-of-the-art performances, they have a major drawback—they make use of
‘pre-segmented’ activity instances as inputs to the classification procedures. The use of the
pre-segmentation technique to identify explicit windows (EWs) is not ideal, since systems
that require knowledge of the start and end points of activities cannot be used in the
deployment scenario.

More recently, graph attention networks have been used as a classification approach
due to their increasing prevalence in various fields [91]. By utilizing a graph structure to
model human activities, a sequence is converted into a sequence graph, where each graph
node is connected to one or more nodes [92]. Information is aggregated through messages
received from neighboring nodes in the graph and is then transmitted. An attention
mechanism is used to produce node representations that allow for distinguishing the
contribution of each node on the target node. The work in [93] used sensor events as nodes,
and the edges between the nodes were represented by the intensity of the connections,
thus forming a graph. The graph attention network proposed in this work makes use
of the generated features to learn a location-oriented and time-oriented graph attention
network that is further passed through convolutional layers and subsequently through a
fully connected layer to identify the activity performed.

2.2.2. Active Learning

The successful implementation of a human activity recognition system requires the
sensor data gathered in the smart home to be accurately mapped to human behavior.
Developing supervised training approaches requires large amounts of annotated data to
achieve reasonable performance scores [94]. An annotation procedure is employed to
provide labels to activities that are identified over the duration of data collection in the
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homes. A significant challenge in obtaining a large number of such annotations is that
it is cumbersome and requires time and effort [95]. Annotator expertise determines the
quality of the annotations obtained, which can be expensive based on the expertise of the
annotator. Annotations can be obtained either in situ by residents while the activity is
being performed or retrospectively, wherein either the resident or an external annotator
provides the annotations by observing the data collected. Obtaining such labels could
cause disruptions by interrupting users frequently or requiring too much effort and time
when providing such labels retrospectively. As the recognition system evolves, new sets
of activities may be picked up by residents, such as picking up dancing as a hobby, or the
initially recognized set of activities can be performed differently, such as relaxing as an
activity that could change in definition from reading a book to taking a nap. Thus capturing
activities of interest and variants of these, without burdening the resident, requires the use
of a semisupervised machine learning paradigm—active learning.

In contrast to supervised approaches that require annotations for all the collected data,
active learning (AL) queries only those data points that are deemed informative to the
learning procedure. As such, two different components for identifying such data points
exist—(i) sampling strategies and (ii) query strategies. Sampling strategies determine
the procedure by which the data points to be picked for the annotation procedure are
identified. Two popular sampling strategies corresponding to pool-based active learning
and stream-based active learning are used [96,97]. In the pool-based active learning proce-
dure, which is suitable for an offline learning procedure, a large unlabeled dataset and a
small labeled dataset are utilized. The algorithm then selects the best data points that are
most informative from the unlabeled dataset to be queried. Similarly, in the stream-based
active learning procedure, which is suitable for an online learning procedure, streams
of data are analyzed for obtaining an annotation based on the informativeness of the in-
coming data point. Query strategies determine the specific data points to be identified
based on the informativeness of the data points for the learning procedure. Two popular
query strategies correspond to the uncertainty sampling and the margin-based uncertainty
sampling, where, for the first strategy, the model queries for those data points that it is
least confident about [98]. In the margin-based uncertainty sampling, the model queries
for those samples for which the margin between the two most probable class prediction
probabilities is small. Other query strategies such as query by committee [98] and logistic
margin sampling [99] have been explored. To determine the number of data points to be
queried for a budget, this process is predetermined. The size of the budget determines
the performance gains that can be achieved and how close the AL procedure reaches the
performance measures corresponding to supervised methods. Various strategies for how
this determined budget is spent in obtaining the annotations are discussed in [100]. Active
learning procedures have been utilized in smart home settings to learn about resident
activities and behaviors, wherein they use the sampling and query procedures described
in [101]. Markov decision processes that make use of gestures and vocal expressions to
obtain feedback from the resident, which are incorporated into the modeling procedure.
Positive and negative responses to their interactions with the system are provided as feed-
back to the modeling procedure [102]. Other works have used contextual information such
as location to annotations corresponding to informative clusters [4,103].

3. Need for Bespoke HAR Systems in Smart Homes

By critically analyzing the state-of-the-art approaches developed for activity recogni-
tion in smart homes, we discuss the drawbacks of said systems. Although the recognition
scores obtained through systems in [88–90] wer high, such systems are not ideal for provid-
ing an HAR solution, since they require event-based sequences, where knowledge of the
start and end times corresponding to a given activity sequence is needed. These systems,
when deployed in smart home scenarios, require the resident to provide information re-
garding this, which is often cumbersome. The resident will have to either be continuously
engaged with the system to provide these activity boundaries or provide this information
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retrospectively, which may be subject to recall bias [104]. Thus, techniques developed for
the ‘pre-segmented’ activity instances are not readily deployable in real-world scenarios.
Although the recent literature makes use of robust sequential models such as LSTMs and
graph attention networks, the reliance on the identification of ‘pre-segments’ limits the
deployable capabilities of the systems [88,90]. Some such systems are listed in Table 1,
which correspond to the category of ‘Event-based analysis’. As observed from the literature,
most other procedures to identify the appropriate data sequence length for analysis require
some knowledge of the activities performed by the resident [10,66–71]. Other approaches
require the procedure to be context-aware (e.g., location) through incorporating knowledge
of the environment [93]. This requires domain expertise to build such knowledge for every
environment analyzed. Examples of such systems are listed in Table 1, which correspond
to the category of ‘Requires domain knowledge’.

The methods developed in [11] have been tested on some of the collected CASAS
datasets but not on others; thus, it is not clear if the given method generalizes across
different smart home settings. The works in [8,9] developed methods for specific homes [5]
by making use of object and appliance interactions (developed through ontologies) that
do not generalize to other smart homes, which consist of different objects. Differences in
the sensor positions in different home settings lead to changes in sequence patterns, which
were utilized to model activities in [8]. This is a typical issue with some of the related work.
Similarly, the works in [8,9] developed systems that are specific to the given smart home of
PlaceLab [5] and MavHome [8], respectively. Contextual information, which is specific to
individualized settings, has been utilized in developing ontologies [105] and in building
recognition procedures that require context-sensitive embeddings (the examples in Table 1
corresponding to the category of ‘Requires domain knowledge’) [106–108].

The HAR system developed in [30] used specific information in the home for feature
engineering such as the number of sensor events triggered, recent sensor events, and contex-
tual information such as the day, week, or the hour of the day, as well as information related
to the resident’s activity patterns such as the elapsed time for each sensor event. These
details change across different smart home settings, and, thus, the HAR system would
require such details for every individual environment. As seen in [11], the developed
sequence-to-sequence model was developed for a given smart home of the CASAS dataset—
HH101 [30]. Similarly, in [109], the activity boundaries were identified using statistical
measures such as the Pearson coefficient, but it is unclear if it is applicable to smart homes
that are more complex. Such handcrafted features require large amounts of annotated
data, which are required to be collected in the smart home [94] to learn representations
that are suitable for a given home. Some such systems have been listed in Table 1, which
correspond to the category of ‘Requires annotated data’. These would lead to building
robust supervised learning procedures. As discussed, such analysis procedures require
large amounts of resources in terms of annotations, time, and effort [95], and the developed
system becomes available only after long periods of wait time (required to collect data in
the given home), which might not be acceptable to the resident [110].

To summarize, the design of HAR systems for the application scenario of smart homes
is challenging and not straightforward. Existing HAR systems cannot be used “as-is” when
deploying them to a new smart home setting, and each deployment requires domain-
specific modifications in order to be usable and effective. Detailed knowledge of the target
environment such as activities performed in the home, extensive ground truth annotations
for such activities, and precise activity boundaries are required for building most state-of-
the-art HAR techniques in smart home scenarios. Such knowledge is obtained in the form
of detailed extensive ground truth annotation and frame-precise activity segmentation.
Thus, developing a supervised HAR system for specific settings requires large amounts of
annotated data. Obtaining such annotations from residents is burdensome and requires
considerable effort [98,99]. We identify and list the drawbacks of the aforementioned
HAR systems as follows: (i) most systems are not developed for providing automated
recognition; (ii) idiosyncratic environments require the development of HAR systems that
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are specific to the settings of smart homes; and (iii) the approaches developed for a given
smart home environment do not necessarily generalize to other smart homes. Hence, “off-
the-shelf” systems that will be universally useful without tuning them for individual smart
homes do not exist. To address the mentioned concerns, we motivate the development of
bespoke HAR systems for such individualized settings that learn from scratch in a given
environment, with minimal involvement from the residents. Such a system is developed
through a data-driven procedure and does not make use of specific (contextual) information
in a given setting.

Table 1. Activity recognition systems developed for smart homes.

Reference Category of HAR System Activity Recognition System Datasets(s)

A sequential deep learning
application for recognizing

human activities [88]

Event-based analysis; requires
annotated data

Variations in sequential
modeling techniques (LSTMs)

were used on event-based
data instances

CASAS datasets (Milan, Cairo,
Kyoto7, Kyoto8, and Kyoto11)

[30]

Fully convolutional network
bootstrapped by word

encoding and embedding for
activity recognition in smart

homes [89]

Event-based analysis; requires
annotated data

A word2vec encoding was
applied to sensor event-based

windows, which were then
passed through a fully

convolutional network for
classification

CASAS datasets (Aruba and
Milan) [30]

Using the language model to
bootstrap human activity
recognition that utilized
ambient sensors Based in

smart homes [90]

Event-based analysis; requires
annotated data

Different embedding
techniques were used to

obtain the learned features
followed by a sequential

modeling procedure (LSTM)
on the event-based data

instances

CASAS datasets (Aruba,
Milan, and Cairo) [30]

Activity2vec: Learning adl
embeddings from sensor data
with a sequence-to-sequence

model [11]

Requires annotated data

A sequence-to-sequence
model was used to generate

features followed by a random
forest model for classification

CASAS dataset (HH101) [30]

Enhancing activity
recognition using CPD-based

activity segmentation [71]
Requires annotated data

A heuristic function followed
by a dissimilarity-based
approach were used to
identify change points.

Handcrafted features were
extracted.

A random-forest-based
modeling procedure was
employed to perform the

classification

CASAS dataset
(Apt 101-130) [30]

Using ontologies in
case-based activity [9] Requires domain knowledge

Rules case-based reasoning,
where the information gained

for each feature for a given
activity is used to provide the

predictions

PlaceLab [5]

Activity recognition on
streaming sensor data [10] Requires annotated data

Handcrafted features
generated over sliding

windows. An SVM-based
classification model was

employed.

Smart home TestBeds—B1, B2,
and B3 [62]

MavHome: An agent-based
smart home [8] Requires domain knowledge

Episode discovery algorithm
that identified significant

episodes in the sequence of
patterns mined

MavHome [8]
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We designed bespoke HAR systems for these individual environments by defining
the various components that they should encompass, where the goal was to develop a
fully functional HAR system. Such a system was derived through the assumption of a
cold start scenario, where (initially) unlabeled sensor data were passively observed in the
smart home. Thus, the design of the system did not require any contextual information or
knowledge specific to a given home setting. An initial functional HAR system becomes
quickly available to the resident without requiring long periods of wait time. As the system
observed data in the home, it built and incorporated knowledge hierarchically. Minimal
supervision provided by the residents was used to develop these HAR systems and their
updates therein in order to reduce the effort and burden on the resident. To motivate the
technical aspects of the said lifespan, we detailed an application scenario that observed
the different scenarios that are typical in a smart home. Technical aspects were designed
through various components to address these different scenarios in the home.

4. The Lifespan of Human Activity Recognition Systems for Smart Homes

To motivate the need for defining the lifespan of HAR systems for smart homes, we
provide an illustration of a typical application scenario for activity recognition in these
settings, which is shown in Figure 1. It details the scenario in a smart home and the need
for a functional HAR system that addresses these. In the beginning (Scene 1), a resident
moves into a new smart home, with installed motion and door sensors to track movement
patterns that are essential for activity monitoring. Given that no actual HAR system exists
at this time (“cold-start”), because “off-the-shelf” HAR systems will not work in highly
individualized and situated environments such as a private home.

As such, an initial bootstrapping procedure was deployed that first collected raw
sensor readings while the resident conducted their regular activities (Scene 2). The initial
HAR system aimed at detecting the most prominent or frequently occurring activities in
the home (e.g., ‘sleeping’, as shown in the figure). However, the resident also performs
less-frequent activities such as ‘leaving home’ (Scene 3), which do not get modeled yet.
’Leaving Home’ can be considered as a less-frequent activity in the case of an elderly living
environment, where the activity is not one of the prominent activities. The HAR system
would now be continuously updated to capture both the more and less prominent activities
in the smart home (Scene 4).

As the resident continues to live in the smart home, the model additionally focuses
on assessing activity routines. Most developed HAR systems are utilized to identify
activities that help with logging behaviors performed by residents. However, there is more
to understanding these behaviors than just recognizing individual instances. Thus, the
assessment of routines helps in the analysis of (any) changes that occur in a resident’s life
at a level higher than just analyzing individual activity patterns, for example, when the
resident is forgetting to “take medicine” (Scene 5). Identifying regular routines can inform
any deviations that will be used to inform the resident or caregivers (Scene 6).

In order to detail the technical concepts that aim at capturing the scenarios illustrated
in Figure 1, we provide detailed technical specifications of the various components of this
overarching technical concept in what follows. The development of individualized HAR
systems for smart homes requires minimal human intervention, and the focus is on the
rapid availability of essential functionality to the resident. As part of the technical details,
we also ensure that the HAR system continuously improves and adapts to changes in the
home system over time.
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Resident Smart
Home

Resident
Sleeps

Resident
Model

Model

Resident
leaves home

Resident Resident forgets
to Take Medicine

Model

   Human Activity Recognition System for a Smart Home

Scene 1 Scene 2 Scene 3

Scene 4 Scene 5 Scene 6

Figure 1. The lifespan of a human activity recognition system for smart homes in terms of require-
ments evolving over time and the needed responses of such systems to a life that is ever-changing.
See text for description.

4.1. Phase 1: Bootstrapping

Figure 2 illustrates the various components of the HAR system as we defined it to
provide the basis for the design of the lifespan of an HAR system for smart homes. At
the beginning of the HAR system (Phase 1 in Figure 2) there is a bootstrapping procedure,
which aims at getting the first working version of the HAR system in place, thereby
focusing on minimal user involvement and rapid deployment. As such, it collects unlabeled
sensor readings as soon as the resident moves into the home, thereby targeting the most
frequently occurring and most prominent activities in a specific home. Identifying such
prominent activities, albeit certainly not all of them, has more practical value than designing
a sophisticated system that would require large training data and a longer wait time for
the resident, thus, overall requiring more resident involvement. Residents are expected to
be involved at a minimal level primarily to confirm the identified sequences of movement
patterns, which correspond to the aforementioned most frequent and prominent activities,
which will be modeled by the HAR system. The resident is asked to provide annotations in
an active learning scenario [98]. Annotations corresponding to only the most prominent
movement patterns are requested from the resident. These patterns can be identified
through a set of designed filtering procedures that are implemented during the construction
of the initial analysis pipeline.

The design of the state-of-the-art analysis pipelines faces technical challenges due
to the sparse set of annotations obtained from the smart homes provided by residents.
Additionally, there is a lack of availability of high-quality annotations, since these anno-
tations come from the resident, who provides them retrospectively. Thus, the goal of this
stage, as described in previous work, is “to provide a system that “jump-starts” the activity
recognition pipeline for the smart home” [111].

At the end of this initial phase, the HAR system should be able to recognize the most
prominent activities with satisfactory accuracy for a subset of activity classes observed
in the smart home. Also, there is typically more happening in a home than those limited
sets of activities, which corresponds to those activities that are not captured by the initial
system and variants of the initial set of captured activity classes that are missed [112,113].
However, with such an automatically derived (“bootstrapped”), functional HAR system,
the smart home can already fulfill a range of routine operations. For example, it would be
able to monitor and track sleeping patterns or the work-life balance of its residents. This
phase corresponds to Scenes 1 and 2 in Figure 1. Previous work has presented prototypes
that cover Phase 1 of the lifespan of a smart home’s HAR system as we have defined in this
paper (e.g., [111]).
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moves in

Prominent Activities

Resident

Update system with
changing data patterns

Smart Home

Refinement of Activity
Recognition System

Phase 2(Updating): Captures
varying data patterns

Phase 1(Bootstrapping):
Captures varying data patterns

Phase   (Discovery): Assessment of activity routines

Figure 2. Illustration of the three components of HAR system for smart homes consisting of bootstrap-
ping, updating, and assessment. Phase 1: An initial, fully functional HAR system is bootstrapped from
scratch in a data-driven procedure. Phase 2: Maintenance of the sensor-based HAR system. Phase ?:
Aims at the assessment of activity routines.

4.2. Phase 2: Updating

In the next phase of the HAR system (Phase 2 in Figure 2), an initial HAR system
(from Phase 1) will be updated and extended in an incremental fashion—as more data is
captured in the smart home, this likely increases the variability of the activities themselves,
as well as their individual appearances. At the technical level, updating and extending an
initial HAR system is targeted by the second phase of the lifespan, and it requires a class- as
well as style–incremental approach. Through the former, the HAR system learns to identify
new activities, and through the latter, the HAR system learns to identify variants of already
identified activities, and, as such, refines them with regard to, for example, more accurate
segmentation and/ or covering specific variants of individualized activities. An example
corresponding to a new class corresponds to an activity that the HAR system cannot
recognize at the end of Phase 1, for example, ‘leaving home’, which occurs infrequently
as shown in Figure 1. As the resident continues to stay at home, they may adopt different
ways to relax, which, for example, may change from reading a book to taking a nap. This
corresponds to identifying changes in activities already identified through Phase 1. This
phase corresponds to Scenes 3 and 4 in Figure 1.

Building on the initial HAR system (from Phase 1) shifts the manual efforts, which are
still required for the occasional annotation of significant, new movement patterns, which
are away from the activity patterns that are already known (from Phase 1) and thus keeps
the burden on the resident at a reasonable level. A suitable approach to accommodating
novel activity class instances and potential concept drift in already modeled activities
is through utilizing continual learning (CL) models [114–120] when such instances are
observed. Continual learning as a concept corresponds to situations when a model—any
model not restricted to the recent surge in CL research in the deep learning community,
but rather which adopts the general concept of continuously updating existing HAR mod-
els to changed circumstances—learns sequentially from data or tasks without forgetting
knowledge obtained from preceding tasks. Throughout Phase 2—which, essentially spans
from the end of Phase 1,i.e., when the first HAR system is available—the HAR system is
continuously updated and extended with the goal of keeping up with the ever-changing cir-
cumstances of life, which, however, does not forget the already learned concepts (activities
and their styles).
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4.3. Phase ?: Routine Discovery

Phases 1 and 2 aim at developing a functional HAR system that recognizes regular
activities in the home. To complete the lifespan of the HAR, we next detail the final phase
to consist in assessing activity routines. Thus, Phase ? (occurring in parallel to Phase 2)
is aimed at using the developed activity recognition system in assessing these routines.
Monitoring these routines helps in establishing regularity (or not) of the behavior patterns
of the resident. Thus, this phase is aimed at identifying these different routines in the home.

The previously described phases detailed the recognition system that can be utilized
for monitoring the activities of the resident. In addition to providing such monitoring,
assessing the activity routines of the residents is beneficial in the long-term goal of providing
assistance in smart homes, for example, in providing care to the resident. Activity routines
are patterns of behavior constituting sequences of activities [121]. Monitoring the regularity
of such routine patterns can inform of the resident’s health and be utilized in, for example,
observing circadian rhythms [122]. Aberrations from regular routines are indicative of
deviant behaviors which may be a cause for concern. Hence, changes in behavior patterns
can be informed to caregivers, especially in the case of the elderly. Thus, this phase—Phase
? of the lifespan of the HAR (Figure 2)—is aimed at assessing activity routines from the
recognition models identified previously. Refinement of the identified activity routines can
be further used in refining the designed recognition system through the previous phases.
This phase corresponds to Scenes 5 and 6 in Figure 1.

5. Scalability of the Proposed Conceptual System

Developing an activity recognition system for the settings of smart homes is not
straightforward. Several challenges to developing HAR systems for providing activity
monitoring in smart homes exist. Most of the developed state-of-the-art procedures are
not aimed at providing automated recognition, and they often-times make use of ‘pre-
segmented’ activity instanced for analysis. Smart homes are individualized environments
with the idiosyncratic behaviors of residents. Thus, HAR systems are required to be
developed specifically for the settings of a given home. This leads to a lack of an “off-the-
shelf” HAR system that can be used “as-is” in a different smart home setting. The lack
of such universally usable systems, which require at least some modifications in terms of
tuning to different smart homes, motivates the need to develop “bespoke” HAR systems
for such environments.

To aid in developing the “bespoke” HAR system, in this work, we propose a conceptual
system. This conceptual system details the lifespan of a HAR system for smart homes. The
designed lifespan provides for the different phases of building the fully-functional HAR
system, which require minimal resident supervision. Such a designed lifespan provides for
the different phases of building the system, which is motivated by a typical application
scenario in the home setting. Through the use of data-driven procedures, the technical
solutions developed for each of these phases makes it possible to derive and continuously
improve the HAR system. We discuss the scalability of the proposed conceptual system
with regard to (i) the performance in new and unseen environments and (ii) the performance
in multi-resident smart homes.

Developing machine learning models on a generic population, where data is collected
from various data sources, and fine-tuning these models to specific populations or individ-
uals is of interest [123–125]. At its core, this idea of personalization is aimed at adapting to
specific persons to provide for better activity monitoring. In order to achieve this goal, in a
fine-tuning procedure, a small portion of data from the specific population or individual
is used to fine-tune a model built using generic data. The expectation of building such a
personalized model is to adapt to the given specific population. The phases corresponding
to Phase 1 and Phase 2 of the conceptual system—the lifespan of the HAR—mirror this
phenomenon. In Phase 1, the procedure starts in a cold-start scenario, to “jump-start” the
activity recognition system. Since such a system learns from passively observing data in a
given home and builds knowledge hierarchically, thus, the procedure is designed to learn
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the activity patterns of any given setting. Through the update and maintenance procedure,
in Phase 2, the initial HAR system is updated through a continual learning procedure. This
HAR system learns a refined model that is personalized to a given home setting and the
idiosyncrasies of the resident occupying the home. Thus, the conceptual system is a generic
approach and can be used “as-is” in any new and unseen smart home. The HAR system
developed through the phases of the conceptual system is personalized to the individual
home and to the behaviors of its residents.

The design of the conceptual system, with its various phases, does not differentiate
between a single-resident household and a multi-resident household. Differentiating
between the activities performed by different inhabitants in a multi-resident household is
possible using a person identifier, which helps distinguish between the different residents.
Various studies have looked into such identification techniques such as, but not limited
to, radio frequency signals, WiFi, and using videos. Fusing data from different modalities
to analyze activities pertaining to a given individual has also been developed [126]. In
the absence of a way to identify different residents, the HAR system learns of the activity
patterns in the home without making a distinction between who performed a given activity.
However, this is not a limitation of the conceptual system, and these methods can be
incorporated into the HAR system obtained from the implementation of the conceptual
system. Such integration will result in activity monitoring that learns activity patterns for
the different residents in the home.

6. Conclusions

A number of activity recognition systems have been developed for smart homes.
Analyzing these systems developed across the various smart home datasets [5,8,30] pro-
vides insights into the complex and challenging application scenario, which requires such
systems to be developed for specific environments [4,8,11].

The proposed lifespan for the HAR is aimed at capturing three important and essential
technical challenges that building recognition systems in smart homes face: (i) requiring
large amounts of in situ data to build (supervised) activity recognition systems, (ii) requiring
a large number of annotations from residents or experts over the entire duration of data
collected, to provide labels, and; (iii) requiring a substantial amount of wait time (by the
resident) before the system becomes available for use in the home.

In order to primarily address these challenges as observed with the current state-of-
the-art procedures, in this “perspectives” track we introduced the lifespan of the HAR
systems for smart homes. The lifespan of the HAR addresses the aforementioned challenges
by providing a fully functional HAR system that becomes available quickly to its residents—
after observing data for an initial period of time and obtaining annotations for the most
prominent movement patterns during Phase 1. The update procedure detailed in Phase 2
serves to identify movement patterns that are not observed initially yet require minimal
supervision from the resident. Since updates to the system are available after the update
procedure, the “new” HAR system becomes available as soon as it is ready for resident
usage. Lastly, this developed recognition procedure serves as a tool to understand user
activity patterns and regularities in daily routines.
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