Concurrent Validity and Reliability of Two Portable Powermeters (Power2Max vs. PowerTap) to Measure Different Types of Efforts in Cycling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures
2.1.1. Cadence Sensor and Powermeters’ Adjustment
2.1.2. Submaximal Tests (1 and 2)
2.1.3. Incremental Maximal Test
2.1.4. Supramaximal Sprint Test
2.2. Statistical Analysis
3. Results
3.1. Concurrent Validity
3.1.1. Submaximal Test (Day 1)
3.1.2. Incremental Maximal Test
3.1.3. Supramaximal Sprint Test
3.2. Test–Retest Reliability
4. Discussion
4.1. Continuous Pedaling (Submaximal and Incremental Maximal Tests)
4.2. Sprint Pedaling (Supramaximal Sprint Test)
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iglesias-Pino, J.; Herrero-Molleda, A.; Fernández-Fernández, J.; García-López, J. Interchangeability between the Data Obtained by Two Powermeters during Road Cycling Competitions: A Case Study. Int. J. Environ. Res. Public Health 2022, 19, 16446. [Google Scholar] [CrossRef]
- Bouillod, A.; Soto-Romero, G.; Grappe, F.; Bertucci, W.; Brunet, E.; Cassirame, J. Caveats and recommendations to assess the validity and reliability of cycling power meters: A systematic scoping review. Sensors 2022, 22, 386. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, W.; Duc, S.; Villerius, V.; Pernin, J.N.; Grappe, F. Validity and reliability of the PowerTap mobile cycling powermeter when compared with the SRM device. Int. J. Sports Med. 2005, 26, 868–873. [Google Scholar] [CrossRef]
- Bouillod, A.; Pinot, J.; Soto-Romero, G.; Bertucci, W.; Grappe, F. Validity, sensitivity, reproducibility, and robustness of the PowerTap, Stages, and Garmin Vector Power Meters in comparison with the SRM device. Int. J. Sports Physiol. Perform. 2017, 12, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Schmid, L.; Müller, B.; Steiner, T.; Wehrlin, J.P. Accuracy of cycling power meters against a mathematical model of treadmill cycling. Int. J. Sports Med. 2017, 38, 456–461. [Google Scholar] [CrossRef]
- Menaspa, P.; Sias, M.; Bates, G.; La Torre, A. Demands of world cup competitions in elite women’s road cycling. Int. J. Sports Physiol. Perform. 2017, 12, 1293–1296. [Google Scholar] [CrossRef]
- Van Erp, T.; Sanders, D. Demands of professional cycling races: Influence of race category and result. Eur. J. Sport. Sci. 2021, 21, 666–677. [Google Scholar] [CrossRef]
- Van Erp, T.; Lamberts, R.P. Performance characteristics of top5 versus not-top5 races in female professional cycling. Int. J. Sports Physiol. Perform. 2022, 17, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Ansley, L.; Cangley, P. Determinants of “optimal” cadence during cycling. Eur. J. Sport. Sci. 2009, 9, 61–85. [Google Scholar] [CrossRef]
- Ferrer-Roca, V.; Rivero-Palomo, V.; Ogueta-Alday, A.; Rodríguez-Marroyo, J.A.; García-López, J. Acute effects of small changes in crank length on gross efficiency and pedalling technique during submaximal cycling. J. Sport. Sci. 2017, 35, 1328–1335. [Google Scholar] [CrossRef]
- Rodríguez-Marroyo, J.A.; Pernía, R.; Cejuela, R.; García-López, J.; Llopis, J.; Villa, J.G. Exercise intensity and load during different races in youth and junior cyclists. J. Strength Cond. Res. 2011, 25, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Goldencheetah. Available online: www.goldencheetah.org (accessed on 30 September 2022).
- García-López, J.; Morante, J.C.; Ogueta-Alday, A.; Rodríguez-Marroyo, J.A. The type of mat (contact vs. photocell) affects vertical jump height estimated from flight time. J. Strength Cond. Res. 2013, 27, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.; Marshall, S.; Batterham, A.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.C.; Milliken, D.L.; Cobb, J.E.; McFadden, K.L.; Coggan, A.R. Validation of a mathematical model for road cycling power. J. Appl. Biomech. 1998, 14, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Kyle, C.R.; Caiozzo, V.J. Experiments in human ergometry as applied to the design of human powered vehicles. J. Appl. Biomech. 1986, 2, 6–19. [Google Scholar] [CrossRef]
- Rodríguez-Marroyo, J.A.; García-Lopez, J.; Villa, J.G.; Córdova, A. Adaptation of pedaling rate of professional cyclist in mountain passes. Eur. J. Appl. Physiol. 2008, 103, 515–522. [Google Scholar] [CrossRef]
- Montalvo-Pérez, A.; Alejo, L.B.; Valenzuela, P.L.; Castellanos, M.; Gil-Cabrera, J.; Talavera, E.; Lucia, A.; Barranco-Gil, D. Validity of the favero assioma duo power pedal system for measuring power output and cadence. Sensors 2021, 21, 2277. [Google Scholar] [CrossRef]
- Gardner, A.S.; Stephens, S.; Martin, D.T.; Lawton, E.; Lee, H.; Jenkins, D. Accuracy of SRM and power tap power monitoring systems for bicycling. Med. Sci. Sports Exerc. 2004, 36, 1252–1258. [Google Scholar] [CrossRef]
- Borg, D.N.; Bach, A.J.; O’Brien, J.L.; Sainani, K.L. Calculating sample size for reliability studies. PM&R 2022, 14, 1018–1025. [Google Scholar] [CrossRef]
- Granier, C.; Hausswirth, C.; Dorel, S.; Le Meur, Y. Validity and reliability of the stages cycling power meter. J. Strength Cond. Res. 2020, 34, 3554–3559. [Google Scholar] [CrossRef]
- Lillo-Bevia, J.R.; Pallarés, J.G. Validity and reliability of the cycleops hammer cycle ergometer. Int. J. Sports Physiol. Perform. 2018, 13, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rielves, V.; Lillo-Beviá, J.R.; Buendía-Romero, A.; Martínez-Cava, A.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Pallarés, J.G. Are the assioma favero power meter pedals a reliable tool for monitoring cycling power output? Sensors 2021, 21, 2789. [Google Scholar] [CrossRef] [PubMed]
Speed | Cadence | Pedaling | Power (W) | Cadence (rpm) | ||
---|---|---|---|---|---|---|
(km·h−1) | (rpm) | Position | PowerTap | Power2Max | PowerTap | Power2Max |
30 | 60 | Standing | 134.9 ± 9.5 | 135.6 ± 7.9 | 59.5 ± 2.4 | 60.7 ± 2.6 |
Seated | 141.0 ± 6.7 | 141.7 ± 7.2 | 60.5 ± 1.9 | 61.4 ± 2.0 | ||
80 | Standing | 138.2 ± 9.7 | 139.5 ± 11.9 | 75.2 ± 2.5 | 75.5 ± 2.6 | |
Seated | 130.8 ± 8.8 | 130.3 ± 11.4 | 80.5 ± 2.5 | 80.3 ± 4.0 | ||
100 | Standing | 125.4 ± 9.9 | 125.0 ± 7.8 | 95.8 ± 2.6 | 97.1 ± 2.6 | |
Seated | 126.5 ± 9.0 | 126.9 ± 9.9 | 97.6 ± 1.7 | 99.0 ± 1.5 | ||
35 | 60 | Standing | 163.0 ± 10.7 | 164.5 ± 10.1 | 65.2 ± 3.7 | 67.2 ± 3.5 |
Seated | 170.5 ± 9.2 | 173.2 ± 9.2 | 64.6 ± 2.3 | 65.8 ± 2.4 | ||
80 | Standing | 169.5 ± 12.3 | 169.8 ± 10.2 | 76.3 ± 1.5 | 76.9 ± 1.4 | |
Seated | 172.3 ± 9.1 | 174.6 ± 10.1 | 78.5 ± 1.6 | 79.8 ± 1.5 | ||
100 | Standing | 164.2 ± 11.2 | 165.9 ± 11.3 | 95.7 ± 3.7 | 96.3 ± 2.8 | |
Seated | 170.0 ± 13.2 | 171.5 ± 13.1 | 95.8 ± 3.2 | 97.0 ± 2.9 | ||
40 | 60 | Standing | 207.4 ± 12.8 | 209.5 ± 12.0 | 72.1 ± 3.1 | 73.9 ± 3.0 |
Seated | 217.4 ± 20.9 | 218.5 ± 15.1 | 70.9 ± 4.4 | 72.5 ± 3.3 | ||
80 | Standing | 219.7 ± 13.0 | 219.4 ± 13.8 | 77.8 ± 1.3 | 78.5 ± 2.1 | |
Seated | 227.5 ± 13.6 | 228.9 ± 7.4 | 79.5 ± 2.6 | 80.6 ± 2.3 | ||
100 | Standing | 225.4 ± 21.0 | 227.0 ± 19.3 | 94.8 ± 3.4 | 95.4 ± 3.3 | |
Seated | 243.6 ± 15.1 | 246.2 ± 13.3 | 97.7 ± 2.1 | 98.7 ± 2.0 | ||
Overall | 174.8 ± 40.0 | 176.0 ± 40.1 * | 79.9 ± 13.3 | 81.0 ± 13.2 * |
Speed | Cyclists | Power (W) | Cadence (rpm) | ||
---|---|---|---|---|---|
(km·h−1) | (n) | PowerTap | Power2Max | PowerTap | Power2Max |
27 | 10 | 105.3 ± 5.1 | 106.4 ± 4.3 | 85.9 ± 6.8 | 86.8 ± 6.7 |
28 | 10 | 111.3 ± 5.5 | 112.0 ± 6.3 | 88.1 ± 9.0 | 88.7 ± 8.7 |
29 | 10 | 119.5 ± 4.8 | 121.4 ± 4.6 | 88.8 ± 8.1 | 89.7 ± 8.0 |
30 | 10 | 127.8 ± 4.8 | 130.1 ± 4.4 | 88.7 ± 6.9 | 89.8 ± 6.6 |
31 | 10 | 136.5 ± 4.9 | 139.0 ± 4.3 | 89.0 ± 4.9 | 90.3 ± 5.0 |
32 | 10 | 143.9 ± 6.8 | 147.2 ± 4.4 | 90.4 ± 4.7 | 91.4 ± 4.5 |
33 | 10 | 154.9 ± 6.9 | 157.0 ± 6.4 | 90.7 ± 7.0 | 91.4 ± 6.7 |
34 | 10 | 164.2 ± 7.7 | 167.4 ± 5.4 | 88.8 ± 6.7 | 90.1 ± 6.9 |
35 | 10 | 177.3 ± 5.3 | 180.4 ± 5.3 | 90.8 ± 5.4 | 92.2 ± 5.4 |
36 | 10 | 187.8 ± 9.3 | 191.6 ± 7.0 | 92.0 ± 6.8 | 93.1 ± 6.5 |
37 | 10 | 199.8 ± 7.6 | 203.1 ± 7.2 | 93.6 ± 7.2 | 94.5 ± 7.2 |
38 | 10 | 213.8 ± 8.7 | 216.7 ± 9.0 | 95.1 ± 8.6 | 96.0 ± 8.3 |
39 | 10 | 224.7 ± 13.0 | 229.0 ± 10.0 | 95.4 ± 7.7 | 96.7 ± 7.6 |
40 | 10 | 236.9 ± 11.2 | 242.4 ± 9.4 | 94.7 ± 4.5 | 95.9 ± 4.6 |
41 | 10 | 251.1 ± 12.7 | 255.6 ± 10.0 | 95.9 ± 5.0 | 96.6 ± 4.7 |
42 | 10 | 270.2 ± 16.9 | 275.4 ± 13.8 | 96.0 ± 5.1 | 97.1 ± 4.9 |
43 | 10 | 286.5 ± 24.3 | 291.9 ± 21.6 | 96.6 ± 5.8 | 97.8 ± 5.7 |
44 | 10 | 301.7 ± 26.2 | 307.2 ± 24.9 | 97.5 ± 7.9 | 98.5 ± 7.6 |
45 | 9 | 311.7 ± 17.1 | 320.0 ± 9.7 | 99.1 ± 8.3 | 99.9 ± 8.3 |
46 | 6 | 339.9 ± 33.5 | 344.5 ± 26.7 | 99.5 ± 7.4 | 100.0 ± 7.7 |
47 | 4 | 380.1 ± 43.4 | 382.2 ± 38.3 | 98.1 ± 7.2 | 99.0 ± 7.0 |
48 | 1 | 371.9 | 376.8 | 91.4 | 92.8 |
49 | 1 | 385.0 | 390.8 | 92.8 | 94.2 |
Overall | 205.2 ± 75.2 | 208.8 ± 76.2 * | 92.8 ± 7.5 | 93.8 ± 7.4 * |
Gear | Sprint | Power (W) | Cadence (rpm) | |||
---|---|---|---|---|---|---|
Ratio | Number | PowerTap | Power2Max | PowerTap | Power2Max | Garmin GSC10 |
36-19 | 1 | 502.8 ± 86.7 | 415.9 ± 149.6 | 108.8 ± 23.6 | 163.4 ± 37.6 | 184.1 ± 27.2 |
2 | 561.4 ± 103.0 | 630.2 ± 104.0 | 107.6 ± 10.5 | 173.2 ± 40.2 | 195.5 ± 17.4 | |
3 | 541.6 ± 79.6 | 442.8 ± 185.4 | 106.0 ± 16.1 | 153.1 ± 57.8 | 195.1 ± 15.4 | |
36-13 | 1 | 759.8 ± 85.8 | 831.4 ± 199.5 | 118.2 ± 18.6 | 177.6 ± 14.6 | 177.7 ± 4.9 |
2 | 769.6 ± 71.1 | 783.1 ± 88.1 | 116.4 ± 21.7 | 180.0 ± 10.3 | 179.0 ± 4.9 | |
3 | 800.6 ± 54.2 | 824.3 ± 65.4 | 115.7 ± 24.9 | 180.0 ± 5.2 | 179.6 ± 4.2 | |
52-15 | 1 | 882.7 ± 105.7 | 862.9 ± 108.1 | 139.4 ± 12.0 | 151.6 ± 6.5 | 152.9 ± 6.7 |
2 | 917.1 ± 112.9 | 887.7 ± 146.1 | 143.1 ± 20.7 | 152.1 ± 5.4 | 154.3 ± 6.6 | |
3 | 910.9 ± 75.0 | 872.3 ± 84.1 | 141.0 ± 17.7 | 152.7 ± 7.1 | 153.7 ± 5.5 | |
52-12 | 1 | 928.1 ± 115.8 | 872.9 ± 119.8 | 127.0 ± 5.6 | 124.1 ± 4.8 | 125.7 ± 5.8 |
2 | 896.2 ± 107.8 | 836.3 ± 122.0 | 125.0 ± 5.5 | 122.8 ± 5.5 | 123.9 ± 6.0 | |
3 | 937.7 ± 99.7 | 894.8 ± 104.9 | 126.6 ± 6.0 | 126.9 ± 5.0 | 127.3 ± 6.6 | |
Overall | 784.0 ± 179.2 | 762.9 ± 204.9 * | 122.9 ± 20.2 # | 154.8 ± 30.6 # | 162.4 ± 27.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iglesias-Pino, J.; Herrero-Molleda, A.; Saavedra-García, M.Á.; García-López, J. Concurrent Validity and Reliability of Two Portable Powermeters (Power2Max vs. PowerTap) to Measure Different Types of Efforts in Cycling. Sensors 2023, 23, 7745. https://doi.org/10.3390/s23187745
Iglesias-Pino J, Herrero-Molleda A, Saavedra-García MÁ, García-López J. Concurrent Validity and Reliability of Two Portable Powermeters (Power2Max vs. PowerTap) to Measure Different Types of Efforts in Cycling. Sensors. 2023; 23(18):7745. https://doi.org/10.3390/s23187745
Chicago/Turabian StyleIglesias-Pino, Javier, Alba Herrero-Molleda, Miguel Ángel Saavedra-García, and Juan García-López. 2023. "Concurrent Validity and Reliability of Two Portable Powermeters (Power2Max vs. PowerTap) to Measure Different Types of Efforts in Cycling" Sensors 23, no. 18: 7745. https://doi.org/10.3390/s23187745
APA StyleIglesias-Pino, J., Herrero-Molleda, A., Saavedra-García, M. Á., & García-López, J. (2023). Concurrent Validity and Reliability of Two Portable Powermeters (Power2Max vs. PowerTap) to Measure Different Types of Efforts in Cycling. Sensors, 23(18), 7745. https://doi.org/10.3390/s23187745