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Abstract: Images captured under poor lighting conditions often suffer from low brightness, low
contrast, color distortion, and noise. The function of low-light image enhancement is to improve
the visual effect of such images for subsequent processing. Recently, deep learning has been used
more and more widely in image processing with the development of artificial intelligence technology,
and we provide a comprehensive review of the field of low-light image enhancement in terms of
network structure, training data, and evaluation metrics. In this paper, we systematically introduce
low-light image enhancement based on deep learning in four aspects. First, we introduce the related
methods of low-light image enhancement based on deep learning. We then describe the low-light
image quality evaluation methods, organize the low-light image dataset, and finally compare and
analyze the advantages and disadvantages of the related methods and give an outlook on the future
development direction.

Keywords: low-light Images; image degradation; image enhancement; deep learning

1. Introduction

Due to the development of technology and the continuous improvement of photo-
graphic equipment, we have higher and higher requirements for the quality of the images
we capture, but we often have difficulty obtaining suitable images because of the inter-
ference of environmental factors. Uneven lighting, low lighting, and other factors like
backlighting can result in imperfect image information, diminishing the overall quality
of captured images. Figure 1 shows an example of an image under suboptimal lighting
conditions. Consequently, these issues can have a cascading effect on advanced tasks such
as object recognition, detection, and classification. As artificial intelligence technologies
continue to evolve, the associated industries are also changing, and thus the requirements
for related downstream tasks are increasing. The quality of tasks completed in the image
processing area [1–5] can greatly affect the efficiency of upstream tasks.

In daily life, we often encounter uncontrollable environmental or equipment factors
that cause uneven lighting, darkness, backlighting, and blurring of captured images [6–9].
However, we have demand for high-quality images. Superior image quality is crucial
for everyday scenarios and holds significant importance across various sectors [10–14],
including intelligent transportation and vision monitoring. Therefore, quality enhancement
of images has become a subject worthy of further exploration.

The enhancement of low-light images holds a significant role in image processing.
This involves enhancing the visual quality of images captured in low-light conditions by
adjusting the contrast and brightness levels, thus improving visibility [15–17]. Conven-
tional techniques for enhancing low-light images often revolve around statistical learning,
including approaches like local exposure compensation algorithms. While these methods
can enhance image brightness effectively, they may concurrently introduce undesired noise
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and distortion. In addition, traditional methods have some limitations [18–20]. While the
favorable notion of adopting the reflection component as the enhancement outcome may
hold inconsistently, particularly when factoring in diverse lighting attributes, it could po-
tentially result in impractical improvements, such as the omission of details and distortion
of color. Additionally, the model overlooks noise, allowing it to persist or amplify within
the enhanced output [21–25].

(a) Backlight (b) Polychromatic light (c) Uneven lighting

(d) Low light (e) Extremely low light (f) Noise
Figure 1. Examples of images under suboptimal lighting conditions.

In recent years, deep learning methods have made significant advancements in various
fields, particularly in image processing tasks. Unlike traditional approaches, deep learning
techniques place a stronger emphasis on capturing the spatial features in an image, allowing
for better preservation of details and increased resistance to noise [26–29]. Deep learning
has demonstrated remarkable achievements in various fields, including enhancing low-
light images. In comparison with conventional approaches, deep learning-based solutions
for improving low-light image quality have gained substantial attention due to their
enhanced precision, robustness, and efficiency. The existing deep learning techniques for
low-light image enhancement establish a relationship between an output image and a
correspondingly enhanced input image under low-light conditions by designing a network
structure. However, this approach can result in a high dependency on the training data,
which limits its effectiveness to some extent.

This paper focuses on employing deep learning techniques for enhancing low-light
images while offering an extensive assessment and analysis of current methods within this
domain. The noteworthy contributions of this study encompass the following:

(1) We systematically classify and summarize the deep learning-based low-light image
enhancement methods proposed in recent years, introduce the core ideas of the mentioned
algorithms in detail, and provide an insightful analysis of the problems of and possible
solutions for the existing methods.

(2) We summarize the datasets in the field of low-light image enhancement in detail,
including the sources, characteristics, and application scenarios of the datasets. We also
provide a comprehensive comparison of different datasets and discuss their respective
advantages and disadvantages.

(3) We analyze the advantages and disadvantages of some existing methods through
experimental comparisons, present possible problems, and look forward to future re-
search directions.
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2. Low-Light Image Enhancement Method Based on Deep Learning

Deep learning has gained widespread popularity and is extensively utilized in various
vision processing tasks due to its efficiency and convenience. In recent years, it has emerged
as a prominent topic in machine learning and has found significant applications in the field
of image enhancement. Deep learning-based approaches have demonstrated exceptional
performance in enhancing low-light images, making them a prominent trend in current
image processing research. The purpose of low-light image enhancement is to improve
the visibility and quality of images captured in low-light conditions. Nowadays, deep
convolutional neural networks (CNNs) and generative adversarial networks (GANs) have
been applied in several directions and have proven to be effective solutions in low-light
image enhancement. In Table 1, we summarize the basic characteristics of representative
methods based on deep learning. These methods utilize the power of deep learning to
enhance image quality and improve visibility to provide impressive results.

Table 1. Summary of the basic characteristics of representative methods based on deep learning.

Year Methods Network
Structure Training Data Test Data Evaluation

Metric Platform

2017 LLNet [30] SSDA

Simulated by
gamma correction

and Gaussian
noise

Simulated
self-selected PSNR SSIM Theano

2018 LightenNet [31] Four layers

Simulated by
random

illumination
values

Simulated
self-selected

PSNR MAE SSIM
user study Caffe MATLAB

Retinex-Net [32] Multi-scale
network

LOL simulated by
adjusting
histogram

Self-selected - TensorFlow

MBLLEN [33] Multi-branch
fusion

Simulated by
gamma correction
and Poisson noise

Simulated
self-selected

PSNR SSIM AB
VIF LOE TOMI TensorFlow

SICE [34] Frequency
decomposition SICE SICE PSNR FSIM

runtime FLOPs Caffe MATLAB

2019 KinD [35]
Three

subnetworks
U-Net

LOL LOL LIME NPE
MEF

PSNR SSIM LOE
NIQE TensorFlow

EnlightenGAN [36] U-Net-like
network

Unpaired real
images

NPE LIME MEF
DICM VV
BBD-100K
ExDARK

User study NIQE
classification PyTorch

ExCNet [37] Fully connected
layers Real images IEpxD User study

CDIQA LOD PyTorch

DeepUPE [38] Illumination map Retouched image
pairs MIT-Adobe FiveK PSNR SSIM user

study TensorFlow

2020 Zero-DCE [39] U-Net-like
network SICE

SICE NPE LIME
MEF DICM VV

DARK FACE

User study PI
PNSR SSIM MAE

runtime face
detection

PyTorch
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Table 1. Cont.

Year Methods Network
Structure Training Data Test Data Evaluation

Metric Platform

DRBN [40] Recursive
network

LOL images
selected by MOS LOL PSNR SSIM

SSIM-GC PyTorch

EEMEFN [41]

U-Net-like
network edge

detection
network

SID SID PSNR SSIM TensorFlow Pad-
dle

TBEFN [42]
Three stages
U-Net-like
network

SCIE LOL SCIE LOL DICM
MEF NPE VV

PSNR SSIM NIQE
runtime P FLOPs TensorFlow

DSLR [43]

Laplacian
pyramid

U-Net-like
network

MIT-Adobe FiveK MIT-Adobe FiveK
self-selected

PSNR SSIM
NIQMC NIQE

BTMQI CaHDC
PyTorch

2021 RUAS [44]
Neural

architecture
search

LOL MIT-Adobe
FiveK

LOL MIT-Adobe
FiveK

PSNR SSIM
runtime P FLOPs PyTorch

Zero-DCE++ [45] U-Net-like
network SICE

SICE NPE LIME
MEF DICM VV

DARK FACE

User study PI
PNSR SSIM P
MAE runtime
face detection

FLOPs

PyTorch

DRBN [46] Recursive
network LOL LOL PSNR SSIM

SSIM-GC PyTorch

RetinexDIP [47] Encoder-decoder
networks -

DICM, ExDark
fusion LIME

NASA NPE VV

NIQE NIQMC
CPCQI PyTorch

PRIEN [48] Recursive
network

MEF LOL
simulated by

adjusting
histogram

LOL LIME NPE
MEF VV

PNSR SSIM LOE
TMQI PyTorch

2022 SCI [49]
Self-calibrated
illumination

network

MIT LOL LSRW
DARK FACE

MIT LSRW
DARK FACE

ACDC

PSNR SSIM DE
EME LOE NIQE PyTorch

LEDNet [15] Encoder-decoder
networks LOL-Blur LOL-Blur

PSNR SSIM
MUSIQ NRQM

NIQE
PyTorch

REENet [50] Three
subnetworks SID SID PSNR SSIM VIF

NIQE LPIPS TensorFlow

LANNet [51] U-Net-like
network LOL SID LOL SID

PSNR SSIM
GMSD NLPD
NIQE DISTS

PyTorch

2023 LPDM [52] Diffusion model LOL LIME DICM MEF
NPE

SSIM PSNR MAE
LPIPS NIQE

BRISQUE SPAQ
PyTorch

FLW-Net [53] Two-stage
network LOL-V1 LOL-V2 LOL-V1 LOL-V2 PSNR SSIM NIQE PyTorch

NeRCo [54] Encoder-decoder
networks LSRW LOL LSRW LIME PSNR SSIM

NIQE LOE PyTorch

SKF [55] Encoder-decoder
networks - LOL LOL-v2 MEF

LIME NPE DICM
PSNR SSIM
LPIPS NIQE PyTorch
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2.1. CNN-Based Methods

Utilized for low-light image enhancement, the convolutional neural network (CNN)
functions as a supervised learning approach. It effectively addresses the challenge of
improving low-light images by acquiring the mapping correlation between the input and
output images. This approach involves utilizing a multi-layer convolutional network
to obtain higher-quality enhanced images. The standard CNN architecture consists of
three key elements: the convolutional layer, the pooling layer, and the fully connected
layer. These components play distinct roles, with the convolutional layer focused on
extracting local features from the input image. Subsequently, the pooling layer plays a
role in parameter reduction, enhancing network efficiency. Ultimately, the fully connected
layer generates the desired output outcomes. By integrating these layers, a CNN effectively
enhances low-light images and achieves outstanding results.

2.1.1. Physical Model-Based Methods

Lore et al. [30] introduced the pioneering Low Light Net (LLNet), a deep learning-
based technique for enhancing low-light images. They employed a densely layered sparse
denoising autoencoder to execute contrast enhancement and denoising procedures. This
groundbreaking research set the foundation for comprehensive web applications in low-
light image enhancement (LLIE). Building upon this foundation, Lv et al. [33] introduced the
MBLLEN, an innovative end-to-end multi-branch enhancement network. This architecture
markedly improves low-light image enhancement performance, achieving this through the
extraction of impactful feature representations across a feature extraction module, enhance-
ment module, and fusion module. Furthermore, Ren et al. [56] developed a sophisticated
end-to-end architecture involving an encoder-decoder network dedicated to enhancing
image content alongside a recurrent neural network specifically for improving image edge
enhancements. Their approach offers comprehensive enhancement capabilities, addressing
both image content and edges. These studies highlight the continuous advancements
in low-light image enhancement through deep learning techniques, demonstrating the
potential for improving image quality in challenging lighting conditions. Tao et al. [57] in-
troduced a learning framework based on a low-light CNN (LLCNN) to address the gradient
disappearance problem in low-light image enhancement. They utilized multi-scale feature
maps to mitigate this issue and incorporated SSIM loss to preserve the image texture during
model training. This approach enables the adaptive enhancement of low-light images by
effectively enhancing contrast while maintaining image details. Similarly, Xu et al. [58]
introduced a decomposition enhancement network. Their method is centered on restoring
image content by addressing noise within the low-frequency layer while highlighting
intricate details in the high-frequency layer. By leveraging this approach, they achieved
enhanced image quality while effectively preserving the image details. Zhu et al. [41]
introduced the Edge-Enhanced Multi-Exposure Fusion Network (EEMEFN) [42], a method
structured into two primary stages: multi-exposure fusion (MEF) and edge enhancement.
The multi-exposure fusion network is tailored to enhancing low-light images and calculates
a transfer function in both branches to produce a pair of improved images. These images
are then fused using a simple averaging scheme and further refined using refinement units,
resulting in improved enhancement results. These works highlight various innovative
approaches in low-light image enhancement, showcasing the ongoing advancements in
the field. Figure 2 provides a flow chart of CNN method combined with physical model.
These methods employ different strategies, such as multi-scale feature maps, frequency-
based decomposition, and fusion techniques, to achieve superior results in enhancing
low-light images.
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Figure 2. Flow chart of CNN method combined with physical model.

2.1.2. Non-Physical Model-Based Methods

Gharbi et al. [59] introduced a novel real-time image enhancement technique that seam-
lessly integrates deep learning and the bilateral filter. This inventive approach reimagines
the conventional bilateral filter as a deep neural network, facilitating end-to-end learning.
This methodology enables real-time image enhancement but also harnesses the capabili-
ties of deep learning for enhanced performance. Similarly, Shen et al. [60] introduced an
innovative approach known as the multi-scale Retinex network (MSR-net), which fuses
CNN technology with Retinex theory. This technique parallels the concept of feedforward
convolutional neural networks, using diverse Gaussian convolutional kernels to create
a multi-scale Retinex framework. By directly learning the mapping between low-light
images and standard-brightness images, this method effectively enhances low-light im-
ages. These studies showcase innovative methods that combine deep learning techniques
with well-established image enhancement theories. By integrating deep neural networks
and Retinex theory, researchers have made significant strides in developing end-to-end
networks that effectively enhance low-light images. Wei et al. [32] introduced a deep
neural network that draws on Retinex theory to enhance images taken in low-light settings.
Utilizing the principles of Retinex theory rooted in physics, this technique involves image
decomposition into reflection, intermediate reflection, and shadow components, followed
by individualized enhancement of each constituent element. In a similar vein, Li et al. [31]
introduced LightenNet, a trainable convolutional neural network designed specifically
for enhancing low-light images. Through training, the network is fed dimly lit images
as the input and produces corresponding light maps as the output. The output image is
then processed by a Retinex-based model to obtain the enhanced image. Although this
method can achieve desirable enhancement results for some images, it still performs poorly
in some challenging real-life scenes. It is worth noting that while the proposed methods
show promise in improving image enhancement under low-light conditions, there is still
room for further improvement, particularly in challenging real-world scenes. Cai et al. [34]
introduced a method for learning a contrast enhancer for individual images using multiple
exposure images. Their approach employs a deep neural network to learn the mapping
from low-contrast images to high-contrast images. By leveraging the information from
multiple exposure images, this method enables effective enhancement of contrast in in-
dividual images. In a similar vein, Wu et al. [61] proposed a rapid end-to-end trainable
image enhancement method based on the guided filter. This approach performs enhance-
ment while preserving high-frequency information by incorporating the concept of the
guided filter. By leveraging this technique, this method achieves efficient and effective
image enhancement. Additionally, Wei et al. [62] introduced an image denoising and
enhancement method based on recurrent neural networks (RNNs). Their approach incor-
porates the concept of nonlocal mean filtering by integrating nonlocal mean filters into
the RNN architecture. By utilizing nonlocal mean filters to model the spatial information
of images, this method achieves effective denoising and enhancement of images. These
methods highlight different approaches to image enhancement, including learning-based
contrast enhancement, guided filter-based enhancement, and RNN-based denoising and
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enhancement. Figure 3 provides a flow chart of CNN method for non-physical model.
By leveraging various techniques and models, researchers are continuously advancing the
field of image enhancement, addressing challenges related to contrast, noise, and preserving
image details.

Figure 3. Flow chart of CNN method for non-physical model.

Overall, the advantages of CNN-based low-light image enhancement methods lie
first in the fact that local feature learning is more robust, and more image information
can be extracted. Secondly, no additional processing steps are required, as it is usually an
end-to-end process. In addition, the structure of CNNs is controllable and can be adapted
according to the needs. Lastly, as CNNs are driven by a large amount of data, it is possible
to be able to learn from the data how to perform low-light image enhancement.

Although there are many advantages to CNN-based low-light image enhancement
methods, some disadvantages that cannot be hidden also need to be overcome. The first is
that the global information of the image may be ignored, resulting in enhanced images that
are not natural enough globally. The second disadvantage is that if the training data are
insufficient, this may lead to overfitting. Finally, the performance of the CNN receives the
influence of a variety of factors, which need to be debugged in a comprehensive manner.

2.2. GAN-Based Methods

Generative adversarial networks (GANs) constitute a class of unsupervised deep learn-
ing models composed of two primary components: a generator and a discriminator. GANs
operate on the foundational concept of a competitive interplay between the generator and
discriminator, fostering mutual learning to produce high-quality outcomes. The generator’s
role involves creating simulated realistic samples aimed at deceiving the discriminator,
which in turn specializes in discerning real samples from synthetically generated ones.
In the context of low-light image enhancement, the generator focuses on extracting en-
hanced features from low-light images, while the discriminator evaluates the quality and
authenticity of the generated images. During an iterative procedure, the generator strives
to enhance its capability to generate images that closely resemble authentic ones. Mean-
while, the discriminator hones its proficiency in discerning between actual and synthetic
samples. The objective is pursued until the discriminator reaches a point where it can no
longer differentiate between real and generated samples. Figure 4 provides a flow chart of
GAN-based method. Compared with other generative models, GANs offer the advantage
of generating clear and realistic samples without relying on complex Markov chains. GANs
utilize back propagation as the primary mechanism for learning, allowing for efficient
training and the generation of high-quality samples.
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Figure 4. Flow chart of GAN-based method.

2.2.1. Condition-Based Methods

Jiang et al. [36] introduced EnlightenGAN, a GAN-based method that addresses the
issue of overfitting and the limited generalization ability when training deep models on
paired data. EnlightenGAN employs a U-Net architecture for generation and a composite
global-local discriminator. This amalgamation involves global and local adversarial losses
accompanied by self-feature preservation losses, ensuring fidelity between the augmented
and authentic images. The objective behind these loss functions is to preserve coherence in
the image content prior to and after enhancement, a vital aspect for maintaining structural
stability during training. By combining these elements, EnlightenGAN achieves stable
training and enhances the quality of low-light images. The attention-guided U-Net genera-
tor, along with the global-local discriminator and self-feature retention losses, contribute
to generating more realistic and visually pleasing enhanced results, mitigating the limi-
tations associated with overfitting and improving the generalization ability of the model.
Meng et al. [63] introduced a GAN-based nighttime image enhancement framework that
utilizes the properties of the GAN to generate pseudo-real images from real image distri-
butions. The results prove its effectiveness and signify that a GAN applied to nighttime
image enhancement is viable. In 2017, Ignatov et al. [64] introduced an image enhance-
ment technique utilizing the GAN model. While this approach enhances image quality, its
broader applicability is constrained by the pronounced correspondence-matching associa-
tion between the initial and improved images, resulting in a heavily supervised procedure.
To address this limitation, the authors later introduced an improvement using a weakly
supervised network model called WESPE [65], reducing the reliance on strong supervision
and yielding a more generalized algorithm. The VGG19 network calculates the content
loss to maintain image content consistency, mitigating the risk of an excessively promi-
nent correspondence match between the original and enhanced images. Furthermore,
Chen et al. [66] proposed an image enhancement method based on adversarial genera-
tive networks (GANs). This approach utilizes a generator and a discriminator to achieve
the mapping from ordinary photos to high-quality photos, enabling effective image en-
hancement. These studies demonstrate the utilization of GAN-based models for image
enhancement, particularly for nighttime images. They address challenges such as strong
supervision, generalizability, and quality improvement, showcasing the potential of GANs
in advancing image enhancement techniques.

2.2.2. Circular Consistency-Based Methods

Zhu et al. [67] introduced a generative adversarial network (GAN) framework that
utilizes a recurrent consistency loss function for unpaired image transformation. This
method enables learning to transform images from one domain to another while preserving
the semantic information of the images. In a similar vein, Fu et al. [68] introduced LE-GAN,
an innovative unsupervised low-light image enhancement network founded on generative
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adversarial networks. This network is trained using disparate pairs of low-light and normal-
light images. To improve the quality of vision and address issues such as noise and color
bias, they added an illumination-aware attention module to improve feature extraction.
Additionally, a new invariant loss is introduced to tackle overexposure problems, allowing
the network to adaptively enhance low-light images. These methods highlight the use of
GANs for unpaired image transformation and low-light image enhancement. By incorpo-
rating recurrent consistency loss and attention modules, researchers have made significant
advancements in preserving semantic information, reducing noise and color bias, and im-
proving the visual quality of transformed and enhanced images. Yan et al. [69] introduced
a low-light image enhancement method that leverages an optimization-enhanced enhance-
ment network module within the generative adversarial network (GAN) framework. This
method utilizes an enhancement network to input images into a generator, generating
similar images in a new space. Subsequently, a loss function is constructed and minimized
to train a discriminator, which then compares the generated images with real images to
enhance the network’s performance. Similarly, You et al. [70] introduced Cycle-CBAM,
a retinal image enhancement technique built upon the foundation of Cycle-GAN. This
method aims to elevate the quality of fundus images from lower to higher levels without
necessitating paired training data. To tackle challenges posed by texture information loss
and detail degradation due to unpaired image training, Cycle-GAN is augmented by the
integration of Convolutional Block Attention Module (CBAM). These strategies highlight
the utilization of GAN-based methodologies in enhancing both low-light and retinal images.
By optimizing the enhancement network module and incorporating attention mechanisms,
researchers strive to enhance the quality and fidelity of the resulting enhanced images.

Overall, the advantages of GAN-based low-light image enhancement methods lie
first in the fact that they are good at generating more realistic enhanced images. Secondly,
they can learn more advanced image features, which can be used to recover image details
and information. In addition, GANs are able to perform complex nonlinear modeling and
capture complex features. Lastly, GANs are able to generate diversity images, which makes
the results more diverse.

Although there are many advantages of GAN-based low-light image enhancement
methods, there are some significant drawbacks for the direction of our future work. The first
is that the training process of a GAN is complex, and the problem of unstable training may
occur. The second is that the training may suffer from the problem of pattern collapse,
which may lead to a lack of diversity in the results. In addition, a GAN also requires a
certain amount of data to support the training of the model. Finally, the performance
of a GAN receives the influence of various hyperparameters, which need to be carefully
adjusted to keep it stable.

3. Low-Light Image Quality Evaluation

Commonly used image quality assessment (IQA) methods can be categorized into
two main categories: reference-based and referenceless. Reference-based algorithms rely
on having both the original (considered to be of high quality) and distorted images in
order to calculate quality scores. These algorithms are commonly employed to measure the
quality of images after undergoing processes such as image compression, image transfer,
or image stitching. Referenceless methods, on the other hand, do not require a reference
image. They estimate image quality by analyzing the characteristics and features of the
distorted image itself. These methods are particularly useful when a reference image is not
available or when evaluating image quality in real-time scenarios. By categorizing IQA
methods into reference-based and referenceless approaches, researchers have been able
to develop techniques suitable for various scenarios, enhancing our ability to assess and
quantify image quality accurately.
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3.1. Full-Reference Metrics

Commonly used reference-based image quality evaluation methods include the peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM) [71]. These methods evaluate
image quality by comparing the target image with the original image. These evaluation
methods have found widespread application in tasks such as image compression and
evaluating image quality after processes like image transmission and stitching. However,
it is important to note that if the reference image itself has inherently poor quality, then
the credibility of these evaluation indices is significantly compromised. The accuracy of the
evaluation depends on the assumption that the reference image represents a high-definition
image. On the other hand, due to the complexity of the signal perceived by the human
eye, different types of images, such as those with varying texture complexity or different
image attributes, may yield similar PSNR or SSIM scores but can be judged differently by
the human eye. This highlights the limitations of relying solely on objective evaluation
metrics, as subjective human perception may vary even when objective metrics suggest
similar quality. Overall, while the PSNR and SSIM serve as widely used reference-based
evaluation metrics, the credibility of their results depends on the quality of the reference
image, and the subjective perception of image quality can differ based on various image
attributes and human interpretation.

In 2004, a research paper published by the University of Texas at Austin presented
SSIM, a metric employed to gauge the similarity between two images. The metric assigns a
value between 0 and 1, where higher values signify increased image similarity and lower
values indicate greater dissimilarity. SSIM is a comprehensive reference tool to assess the
likeness of x and y images. The calculation of SSIM is as follows:

l(m, n) =
2µmµn + C1

µ2
m + µ2

n + C1
,

c(m, n) =
2σmσn + C2

σ2
m + σ2

n + C2
, (1)

s(m, n) =
σmn + C3

σmσn + C3
.

In the above equation, l(m, n) is the mean to estimate the brightness, c(m, n) is the
variance to estimate the contrast, and s(m, n) is the covariance to estimate the structural
similarity. Meanwhile, µm and µn represent the mean of m and n, respectively, σm and σn
represent the standard deviation of m and n, respectively, σmn represents the covariance of
m and n, and C1, C2, and C3 all represent constants. Therefore, SSIM is defined as

SSIM(m, n) =
(2µmµn + C1)(2σmn + C2)

(µ2
m + µ2

n + C1)(σ2
m + σ2

n + C2)
, (2)

where SSIM takes a value between 0 and 1. When two images are identical, the SSIM value
is one.

The PSNR is a widely used objective criterion for evaluating images in engineering
projects. It measures the ratio between the maximum signal and the background noise and
is commonly employed to assess the amount of information loss in a compressed image
compared with the original. The PSNR is measured in decibels (dB), with higher values
indicating better image quality (i.e., less noise). The range of PSNR values is from 0 to
positive infinity.

The PSNR is often calculated using the mean squared error (MSE). Considering a
pair of monochrome images labeled as I and J, where I signifies an unadulterated original
image and J denotes an angry rendition of I (e.g., I as the uncompressed source image
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and J as its compressed iteration), the calculation of their mean squared error involves
the following:

MSE =
1

xy

x

∑
i=1

y

∑
j=1

(I(i, j)− J(i, j))2. (3)

The PSNR is defined as

PSNR = 10 · log10(
MAX2

I
MSE

) = 20 · log10(
MAXI√

MSE
), (4)

where MAX is the maximum pixel value of the image and the PSNR is measured in decibels
(dB). A higher PSNR value indicates better image quality. Generally speaking, PSNR
values above 40 dB are considered excellent, meaning the image quality is very close to
the original. PSNR values between 30 dB and 40 dB typically indicate good image quality,
with detectable but acceptable distortion. On the other hand, PSNR values between 20 dB
and 30 dB signify poor image quality. PSNR values below 20 dB indicate unacceptable
image quality. It is worth noting that PSNR values below −30 dB also indicate poor image
quality and are considered unacceptable.

3.2. Non-Reference Metrics

In evaluating non-reference images, image clarity is a crucial indicator for measuring
image quality. It closely aligns with the subjective perception of individuals, as low image
clarity indicates a blurred image. Traditional reference-free methods for image quality
evaluation, such as the Brenner gradient function, Tenengrad gradient function, and image
information entropy function (Information entropy), can provide insights into the level
of image clarity to a certain extent. These methods contribute to the assessment of image
quality by quantifying the clarity of the image, thereby facilitating objective evaluations of
image quality in the absence of reference images.

The Brenner gradient function serves as a fundamental gradient assessment approach
involving the computation of the squared difference between adjacent pixel grayscale
values. This function is defined as follows:

B( f ) = ∑
n

∑
m
| f (m + 2, n)− f (m, n)|2, (5)

where f (m, n) denotes the grayscale value of the image f corresponding to the pixel (m, n)
and B( f ) is the result of the image sharpness calculation.

The Tenengrad gradient function applies the Sobel operator to capture gradients both
horizontally and vertically. The definition for image sharpness within the context of the
base and Tenengrad gradient functions is outlined as follows:

B( f ) = ∑n∑m|E(m, n)|(E(m, n) > Q). (6)

E(m, n) takes the following form:

E(m, n) =
√

E2
m(m, n) + E2

n(m, n), (7)

where Q is the given edge detection threshold and Em and En are the convolution of the
Sobel horizontal and vertical edge detection operators at pixel point (m, n), respectively.

The information entropy function stands as a crucial metric for assessing the informa-
tion abundance within an image. As established by information theory, the information
held within an image f is quantified through the information entropy B( f ) associated with
said image:

B( f ) = −
G−1

∑
a=0

Pa ln(Pa), (8)
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where Pa signifies the probability of encountering a pixel with the gray value a within
the image and G represents the total count of gray levels (typically set at 256). As per
Shannon’s information theory, maximal information is attained when entropy reaches its
peak. Applying this principle to image focusing, heightened B( f ) values correlate with
sharper images. It is noteworthy that the entropy function’s sensitivity is not particularly
pronounced, and due to image content variations, outcomes might occasionally deviate
from actual scenarios.

4. Benchmark Dataset

Deep learning relies on deep neural networks that require extensive training with
substantial data samples to achieve generalizability in the final model. Consequently, the
dataset size significantly influences deep learning endeavors. To cater to the needs of
low-light image enhancement research, there are several publicly available datasets with
varying sizes and diverse scenarios. Table 2 provides summary of different low-light image
data. These datasets include naturalness preserved enhancement (NPE), Vasileios Vonikakis
(VV), the low-light dataset (LOL), and multi-exposure image fusion (MEF), Figures 5 and 6
provide examples of different datasets. Researchers can utilize these datasets to train and
evaluate their low-light image enhancement models, providing a range of options to suit
different research requirements.

Table 2. Summary of different low-light image datasets.

Name Year Quantity Features Type

NPE 2013 84 Multi-scene natural images Real
MEF 2015 17 Fusion images Real
VV / 24 Uneven local exposure Real
SID 2018 5094 Combination of long and short exposures Real
LOL 2018 500 pairs Paired normal and low-light images Synthetic + Real
SCIE 2019 4413 Large-scale multi-exposure images Real

ExDark 2019 7363 Multi-category, multi-scene Real
RELLISUR 2021 12,750 Different resolutions, pairs Real

LLIV-Phone 2021 45,148 Large scale, image and video Real

NPE MEF VV ExDark
Figure 5. Example of a partial low-light dataset.
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(a)

(b)

LOL

Figure 6. Example of paired low-light dataset for LOL. Here, (a) is a reference image, and (b) is a low
light image.

(1) NPE dataset

In 2013, Wang et al. [72] introduced the NPE dataset, which comprises two components:
a natural image dataset and a low-light image dataset. The natural image dataset consists
of a diverse collection of indoor and outdoor scenes captured under normal lighting
conditions. In contrast, the low-light image dataset is derived from natural images through
specific processing techniques that simulate low-illumination conditions. The low-light
image dataset further categorizes the images into two levels: “low” and “high”, which
represent different degrees of low-light situations.

(2) MEF dataset

In 2015, Ma et al. [73] introduced the MEF dataset, comprising images capturing
multiple low-light scenes. The dataset encompasses a diverse range of scenes and shooting
conditions, including indoor and outdoor environments, various lighting scenarios, can-
dlelight, and daytime and nighttime shots. It has found extensive usage in both academic
and industrial settings, serving a wide array of applications. These include the research
and development of image enhancement algorithms, testing, and evaluation of digital
cameras, among other related areas. The MEF dataset has proven to be a valuable resource
for advancing image processing techniques, enabling advancements in the field of low-light
photography, and supporting various imaging technology-related endeavors.

(3) VV dataset

The VV dataset was explicitly designed to explore images that are significantly under-
exposed or overexposed, exhibiting a key characteristic of having areas that are properly
exposed alongside regions that are grossly underexposed or overexposed. This dataset
serves as a valuable resource for evaluating algorithms focused on local exposure correction
and enhancement. It provides an ideal testing ground for techniques aiming to address the
challenges posed by varying exposure levels within an image.

(4) SID dataset

In 2018, Chen et al. [74] introduced the SID dataset to facilitate the advancement
of deep learning approaches in low-light image processing. The dataset encompasses
5094 original short-exposure images, each with a matching long-exposure reference image.
These image pairs were obtained using two distinct camera models: the Sony α7SII and
the Fujifilm X-T2. Raw data were collected under low-light conditions with short exposure
times, typically around 0.1 seconds or 0.04 seconds. The ground truth images were captured
with long exposure times of 10 or 30 seconds, ensuring minimal noise presence. The SID
dataset offers a valuable resource for training and evaluating deep learning models in
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the domain of low-light image processing, providing paired images with well-defined
exposure characteristics.

(5) LOL dataset

In 2018, Wei et al. [32] introduced the LOL dataset, a paired collection comprising
500 low-light and normal-light image pairs. These pairs were further divided into 485
training pairs and 15 test pairs for evaluation purposes. The low-light images in the dataset
accurately represent the noise typically encountered during the process of capturing pho-
tographs. The majority of the images depict indoor scenes and are sourced from diverse
scenes and devices, including cell phones and digital cameras. As a result, the dataset
encompasses a wide variety of objects captured within the images. Additionally, the LOL
dataset covers various low-light conditions, including twilight and indoor low-light scenar-
ios, providing a comprehensive representation of challenging lighting situations. To ensure
consistency and comparability, all raw images were adjusted to a standardized resolution
of 400 × 600 pixels and converted to the portable web graphics format. Its diverse range
of images and realistic representation of low-light conditions make it a valuable tool for
research and development in the field.

(6) SICE dataset

In 2019, Cai et al. [34] presented the SICE dataset, an extensive collection of multi-
exposure images. The dataset creation process involved deploying multi-exposure fusion
(MEF) and high dynamic range (HDR) techniques to reconstruct reference images, yielding
heightened contrast and visibility improvements. To create the SICE dataset, the authors
employed 1200 sequences and applied 13 MEF and HDR algorithms, resulting in a total
of 15,600 fusion results (1200 sequences × 13 algorithms). The dataset comprises 589
meticulously selected high-resolution multiple-exposure sequences, consisting of a total of
4413 images. For each sequence, a set of contrast-enhanced images was produced using 13
diverse multiple-exposure image fusion techniques and a stack-based high dynamic range
imaging algorithm. Following this, subjective evaluations were carried out to determine
the optimal reference images for each scene.

(7) ExDark dataset

In 2019, Loh et al. [75] introduced the Exclusively Dark (ExDark) dataset, consisting
of 7363 low-light images. The dataset covers a range of low-light conditions from very
low-light environments to twilight, encompassing 10 different lighting conditions. The im-
ages were captured in various real-world scenarios using a diverse array of devices and
cameras, providing a wide representation of different scenes and shooting conditions.
These low-light images are subject to multiple factors, including insufficient lighting, noise,
and blur, which further contribute to the challenges associated with low-light photography.
The dataset includes annotations at both the image class level and the local object bounding
box level for 12 object classes, such as bicycle, car, cat, dog, chair, and cup. The ExDark
dataset serves as a valuable resource for researchers and practitioners in the field of low-
light image analysis. Its comprehensive collection of low-light images, diverse lighting
conditions, and detailed object annotations provide an excellent foundation for developing
and evaluating algorithms related to object recognition, localization, and other tasks in
challenging low-light environments.

(8) RELLISUR dataset

In 2021, Aakerberg et al. [76] introduced the RELLISUR dataset, a large-scale paired
dataset specifically designed for low-light and low-resolution image enhancement tasks.
The RELLISUR dataset comprises 12,750 paired images, consisting of real low-light and
low-resolution images paired with high-resolution reference images captured under normal
lighting conditions. The dataset covers a wide range of resolutions and low-light levels,
enabling the development and training of deep learning-based models. It enables the
exploration and development of deep learning models that can effectively enhance the
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quality and resolution of low-light images, bridging the gap between these two important
image enhancement tasks.

(9) LLIV-Phone dataset

In 2021, Li et al. [77] introduced the LLIV-Phone dataset, a comprehensive and challeng-
ing dataset specifically designed for low-illumination image and video analysis. The LLIV-
Phone dataset comprises 120 videos and 45,148 images captured using 18 different cell
phone cameras. The dataset covers a wide range of indoor and outdoor scenes with diverse
lighting conditions, including low light, underexposure, moonlight, dusk, darkness, ex-
treme darkness, backlighting, non-uniform lighting, and colored lighting. These real-world
scenes present various challenges associated with low-light conditions. It offers a wide
variety of low-light images and videos collected from real scenes, making it suitable for
testing and comparing the performance of different enhancement algorithms. By providing
a comprehensive collection of real low-illumination images and videos, the LLIV-Phone
dataset significantly contributes to the advancement of research in low-light image and
video enhancement, enabling the development and evaluation of robust algorithms in
this domain.

5. Experimental Evaluation and Analysis
5.1. Performance Comparison

To evaluate and analyze different methods, experiments were conducted using various
datasets, including NPE [72], MEF [73], VV, and ExDark [75]. The comparison methods
considered in the study included CERL [78], Zero-DCE [39], Zero-DCE++ [45], and SCI [49].
For quantitative analysis, the researchers selected the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) as evaluation metrics. These metrics were used to measure and
analyze the performance of the selected methods. The researchers utilized the pretrained
models provided in the original papers for validation and comparison. The comparison re-
sults were divided into two main parts: qualitative and quantitative evaluation. Qualitative
evaluation involves human perception and judgment of the visual quality of the enhanced
images, due to the unique capabilities and sensitivities of the human visual system in image
processing and perception. The quantitative evaluation focuses on quantitative metrics,
such as the PSNR and SSIM, to provide a more systematic analysis of the performance
of the methods. By conducting qualitative and quantitative evaluations, the researchers
aimed to comprehensively assess and compare the selected methods by using multiple
criteria to elucidate their strengths and weaknesses in enhancing low-light images.

5.2. Qualitative Evaluation

Qualitative evaluation involves comparing the visual differences between the en-
hanced image and the original low-light image based on human perception. It typically
entails presenting the same low-illumination image processed by different algorithms to
individuals, who are then asked to evaluate and select the best algorithm based on their
visual judgment. However, qualitative evaluation is susceptible to various external factors
that can introduce subjectivity and make it challenging to establish a fixed standard. Fac-
tors like individual aesthetics, color preferences, and variations in observation angles can
influence the evaluation. These subjective factors contribute to the difficulty of achieving a
standardized and scientific subjective evaluation. While qualitative evaluation provides
valuable insights into the visual effect and overall preference of the enhanced images, it
is important to acknowledge its limitations and potential biases. Therefore, it is often
combined with quantitative evaluation methods, such as quantitative metrics like the PSNR
and SSIM, which provide more standardized and measurable criteria for assessing the
performance of image enhancement algorithms.

Figure 7 presents a qualitative comparison of several different methods using four
datasets. Upon examining the qualitative comparison images in Figure 7, certain obser-
vations can be made regarding the visual effects of the algorithms. The Zero-DCE [39]
algorithm model demonstrated superior subjective visual effects. The enhanced image
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exhibited appropriate brightness without overexposure, and it effectively extracted detailed
information from the image, resulting in a more visually pleasing outcome. In contrast,
the CERL [78] algorithm model did not appear to be particularly effective in terms of
overall image enhancement. The quantitative evaluation suggests that it may not achieve
satisfactory results for improving the overall visual quality of the images. The SCI-easy [49]
algorithm model showed room for improvement, particularly in addressing local darkness.
The images revealed uneven enhancement in certain areas, indicating the need for further
refinement to achieve more consistent results. On the other hand, the SCI-medium [49]
algorithm model performed well in enhancing extremely dark images. However, for cer-
tain specific images, there was an issue of overexposure, where certain areas of the image
appeared to be excessively bright. These subjective observations highlight the strengths
and weaknesses of each algorithm in terms of their visual effects.

NPE

MEF

VV

ExDark

methods (a) (b) (c) (d) (e) (f) (g)

Figure 7. Qualitative comparison of different low-light image enhancement algorithms. Where,
(a) represents the original image, (b) represents the result map after processing by the CERL [78]
method, (c) represents the result map after processing by the Zero-DCE [39] method, (d) represents
the result map after processing by the Zero-DCE++ [45] method, (e) represents the result map after
processing by the SCI-difficult [49] method, (f) represents the result map after processing by the
SCI-easy [49] method, and (g) represents the results of the SCI-medium [49] method.

5.3. Quantitative Evaluation

Quantitative evaluation involves assessing image enhancement algorithms using spe-
cific criteria and quantitative measurements. In image enhancement, this evaluation method
quantifies the differences between the original and enhanced images using mathematical
models and calculates the indicators to determine the quality of the image. Quantita-
tive evaluation methods are characterized by their simplicity, computational efficiency,
and ability to provide quantitative assessments based on established models, ensuring
high stability and reproducibility. The evaluation indicators used in the compared methods
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in this paper include the PSNR and SSIM. These quantitative evaluation metrics enable a
quantitative assessment of image enhancement algorithms, allowing for direct comparisons
and providing a basis for performance analysis.

Tables 3–5 provide a quantitative analysis of several different methods, using the
PSNR, SSIM, and NIQE as evaluation metrics. In these three metrics, the higher the values
of the PSNR and SSIM, the better the result, reflecting an improvement in image quality,
while the opposite is true for the NIQE; the smaller the value of the NIQE, the better the
perceived quality. Upon reviewing the tables, it can be observed that the SCI-easy [49]
algorithm consistently achieved excellent results for the PSNR, SSIM, and NIQE. The algo-
rithm’s performance surpassed that of the other methods evaluated, demonstrating better
quantitative metrics in terms of image quality. These quantitative assessments provide
valuable insights into the algorithms’ performance and their ability to enhance image
quality. It is important to consider these metrics along with qualitative evaluations and
other factors to gain a comprehensive understanding of the algorithms’ effectiveness in
different aspects.

Table 3. Quantitative comparison of different deep learning low-light image enhancement algorithms
in terms of PSNR.

Metrics PSNR

Methods CERL Zero-DCE Zero-DCE++ SCI-difficult SCI-easy SCI-medium

NPE 17.932 14.509 13.963 13.989 18.892 12.185

MEF 17.537 11.8 11.841 11.842 18.693 10.279

VV 18.006 15.606 13.984 14.016 17.459 11.481

ExDark 17.188 15.468 12.62 12.633 14.35 9.898

Table 4. Quantitative comparison of different deep learning low-light image enhancement algorithms
in terms of SSIM.

Metrics SSIM

Methods CERL Zero-DCE Zero-DCE++ SCI-difficult SCI-easy SCI-medium

NPE 0.729 0.322 0.323 0.326 0.677 0.268

MEF 0.768 0.428 0.438 0.432 0.791 0.417

VV 0.689 0.500 0.532 0.528 0.790 0.488

ExDark 0.702 0.567 0.580 0.583 0.797 0.535
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Table 5. Quantitative comparison of different deep learning low-light image enhancement algorithms
in terms of NIQE.

Metrics NIQE

Methods Input CERL Zero-DCE Zero-DCE++ SCI-difficult SCI-easy SCI-medium

NPE 4.319 2.959 3.082 2.552 3.082 2.838 3.052

MEF 4.265 3.760 3.156 3.434 3.963 3.261 3.201

VV 3.525 2.615 3.145 3.211 2.815 2.740 3.083

ExDark 4.435 3.609 3.651 2.729 3.836 3.284 3.882

6. Summary and Outlook

Low-light image enhancement plays a crucial role in various applications, both in
everyday life and in industries. Deep learning technology has emerged as a powerful tool
for tackling this challenge. However, there are still certain limitations associated with deep
learning-based approaches. One notable drawback is the heavy reliance on a substantial
amount of training data, which can be time-consuming to collect and annotate. Moreover,
the selection of the dataset needs to be carefully considered to ensure it represents a wide
range of scenes and categories, which adds complexity to the training process. Additionally,
some existing deep learning methods for low-light image enhancement primarily focus on
improving model performance, potentially overlooking the practicality and generalizability
of the results. It is crucial to address these limitations and propose algorithms that benefit
higher-level image processing tasks. Efforts should be made to develop techniques that
require less training data and have shorter training times while still achieving high-quality
results. Furthermore, it is important to prioritize the practical application and universality
of the enhanced images. By addressing these challenges, researchers can pave the way
for more efficient and effective low-light image enhancement methods that align with the
needs of various image processing tasks in real-world scenarios.

Finally, this paper will introduce some possible future research directions. First of
all, integrating models from different tasks to achieve multi-task image enhancement
is an important area for exploration. By combining the strengths of various models,
researchers can develop more comprehensive and versatile solutions. Secondly, addressing
the generalization problem of deep learning models is crucial. Enhancing the models’
ability to perform well in diverse scenarios and adapt to different image characteristics will
be a key focus. This can involve techniques such as transfer learning, domain adaptation,
or developing robust feature representations. Lastly, improving the speed and efficiency
of deep learning models is a prominent concern. Developing algorithms that can achieve
real-time or near-real-time processing for low-light image enhancement tasks is essential
for practical applications.

In summary, deep learning-based low-light image enhancement techniques hold great
potential in computer vision and image processing domains. Future research should focus
on exploring more efficient and accurate deep-learning models to achieve superior image
enhancement effects. By addressing these research directions, we can advance the state
of the art in low-light image enhancement and facilitate its broader applications in vari-
ous fields.
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