Traffic Agents Trajectory Prediction Based on Spatial–Temporal Interaction Attention
Abstract
:1. Introduction
2. Related Works
2.1. Trajectory Prediction Based on Traditional Methods
2.2. Trajectory Prediction Based on Deep Learning
- (1)
- Trajectory prediction methods based on Recurrent Neural Network.
- (2)
- Trajectory prediction methods based on Generative Adversarial Network.
- (3)
- Trajectory prediction methods based on Graph Neural Network.
3. Method
3.1. Trajectory Prediction Definition
3.2. Overall Network Framework
3.3. Trajectory Feature Extraction
3.4. Spatial-Temporal Interaction Attention Module
- (1)
- Temporal interaction attention
- (2)
- Spatial interaction attention
- (3)
- Temporal and spatial attention fusion
3.5. Hidden Variable Generator
3.6. Decoder
4. Experimental Results and Analysis
4.1. Dataset
4.2. Evaluation Criteria and Experimental Settings
4.3. Experimental Settings
4.4. Trajectory Prediction Results on the UTP Dataset
4.5. Trajectory Prediction Results on the Interaction Dataset
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helbing, D.; Molnar, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Berg, A.C.; Ortiz, L.E.; Berg, T.L. Who are you with and where are you going? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1345–1352. [Google Scholar]
- Trautman, P.; Krause, A. Unfreezing the robot: Navigation in dense, interacting crowds. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 797–803. [Google Scholar]
- Morris, B.T.; Trivedi, M.M. Trajectory learning for activity understanding: Unsupervised, multilevel, and long-term adaptive approach. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2287–2301. [Google Scholar] [CrossRef] [PubMed]
- Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Savarese, S. Social LSTM: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 961–971. [Google Scholar]
- Zhang, P.; Ouyang, W.; Zhang, P.; Xue, J.; Zheng, N. SR-LSTM: State refinement for lstm towards pedestrian trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12085–12094. [Google Scholar]
- Xue, H.; Huynh, Q.D.; Reynolds, M. SS-LSTM: A hierarchical LSTM model for pedestrian trajectory prediction. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1186–1194. [Google Scholar]
- Gupta, A.; Johnson, J.; Li, F.F.; Silvio, A.; Alexandre, A. Social GAN: Socially acceptable trajectories with generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2255–2264. [Google Scholar]
- Sadeghian, A.; Kosaraju, V.; Sadeghian, A.; Hirose, N.; Rezatofighi, S.H.; Savarese, S. Sophie: An attentive gan for predicting paths compliant to social and physical constraints. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 1349–1358. [Google Scholar]
- Kosaraju, V.; Sadeghian, A.; Martin-Martin, R.; Reid, I.; Savarese, S. Social-BiGAT: Multimodal trajectory forecasting using bicycle-gan and graph attention networks. Adv. Neural Inf. Process. Syst. 2019, 32. [Google Scholar] [CrossRef]
- Mohamed, A.; Qian, K.; Elhoseiny, M.; Claudel, C. Social-STGCNN: A social spatio-temporal graph convolutional neural network for human trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14424–14432. [Google Scholar]
- Ivanovic, B.; Pavone, M. The trajectron: Probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 2375–2384. [Google Scholar]
- Tim, S.; Boris, I.; Punarjay, C.; Marco, P. Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 683–700. [Google Scholar]
- Vemula, A.; Muelling, K.; Oh, J. Social Attention: Modeling attention in human crowds. In Proceedings of the IEEE international Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018; pp. 4601–4607. [Google Scholar]
- Gu, J.; Sun, C.; Zhao, H. DenseTNT: End-to-end trajectory prediction from dense goal sets. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 20–25 June 2021; pp. 15303–15312. [Google Scholar]
- Zhao, T.; Xu, Y.; Monfort, M.; Choi, W.; Baker, C.; Zhao, Y.; Wang, Y.; Wu, Y. Multi-agent tensor fusion for contextual trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12126–12134. [Google Scholar]
- Mangalam, K.; An, Y.; Girase, H.; Malik, J. From goals, waypoints & paths to long term human trajectory forecasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 20–25 June 2021; pp. 15233–15242. [Google Scholar]
- Zhan, W.; Sun, L.; Wang, D. Interaction dataset: An international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps. arXiv 2019, arXiv:1910.03088. [Google Scholar]
- Yu, B.; Zhu, K.; Wu, K.; Zhang, M. Improved OpenCL-based implementation of social field pedestrian model. IEEE Trans. Intell. Transp. Syst. 2019, 21, 2828–2839. [Google Scholar] [CrossRef]
- Figueiredo, F.; Ribeiro, B.; Almeida, J.; Faloutsos, C. Tribeflow: Mining & predicting user trajectories. In Proceedings of the 25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 695–706. [Google Scholar]
- Kitani, K.M.; Huang, D.A.; Ma, W.C. Activity forecasting. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 201–214. [Google Scholar]
- Peng, Y.; Zhang, G.; Shi, J.; Xu, B.; Zheng, L. SRAI-LSTM: A Social Relation Attention-based Interaction-aware LSTM for human trajectory prediction. Neurocomputing 2022, 490, 258–268. [Google Scholar] [CrossRef]
- Amirian, J.; Hayet, J.B.; Pettre, J. Social ways: Learning multi-modal distributions of pedestrian trajectories with gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019; pp. 2964–2972. [Google Scholar]
- Dendorfer, P.; Elflein, S.; Leal-Taixe, L. MG-GAN: A multi-generator model preventing out-of-distribution samples in pedestrian trajectory prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 13158–13167. [Google Scholar]
- Kong, W.; Liu, Y.; Li, H.; Wang, C.; Tao, Y.; Kong, X. GSTA: Pedestrian trajectory prediction based on global spatio-temporal association of graph attention network. Pattern Recognit. Lett. 2022, 160, 90–97. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Q.; Cai, Y.; Wang, H.; Li, Y. CAE-GAN: A hybrid model for vehicle trajectory prediction. IET Intell. Transp. Syst. 2022, 16, 1682–1696. [Google Scholar] [CrossRef]
- Li, X.; Ying, X.; Chuah, C. GRIP: Graph-based interaction-aware trajectory prediction. In Proceedings of the IEEE Intelligent Transportation Systems Conference, Auckland, New Zealand, 27–30 October 2019; pp. 3960–3966. [Google Scholar]
- Xu, C.; Li, M.; Ni, Z.; Zhang, Y.; Chen, S. GroupNet: Multiscale hypergraph neural networks for trajectory prediction with relational reasoning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 6498–6507. [Google Scholar]
- Zhang, K.; Zhao, L.; Xiang, D.; Wu, L. AI-TP: Attention-based interaction-aware trajectory prediction for autonomous driving. IEEE Trans. Intell. Veh. 2023, 8, 73–83. [Google Scholar] [CrossRef]
- Mo, X.; Huang, Z.; Xing, Y.; Lv, C. Multi-agent trajectory prediction with heterogeneous edge-enhanced graph attention network. IEEE Trans. Intell. Transp. Syst. 2022, 23, 9554–9567. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Sun, J.; Mao, T. An efficient Spatial-Temporal model based on gated linear units for trajectory prediction. Neurocomputing 2022, 492, 592–600. [Google Scholar] [CrossRef]
- Pang, Y.; Zhao, X.; Hu, J.; Yan, H.; Liu, Y. Bayesian Spatio-Temporal grAph tRansformer network (B-STAR) for multi-aircraft trajectory prediction. Knowl.-Based Syst. 2022, 249, 108998. [Google Scholar] [CrossRef]
- Velickovic, P.; Cucurull, G.; Casanova, A. Graph attention networks. arXiv 2019, arXiv:1910.03088. [Google Scholar]
- Sohn, K.; Yan, X.; Lee, H. Learning Structured Output Representation using Deep Conditional Generative Models. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.H. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Seong Hyeon, P.; ByeongDo, K.; Chang Mook, K.; Chung Choo, C.; Jun Won, C. Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture. In Proceedings of the IEEE Intelligent Vehicles Symposium, Changshu, China, 26–30 June 2018; pp. 1672–1678. [Google Scholar]
- Huang, Y.; Bi, H.; Li, Z.; Tianlu, M.; Wang, Z. STGAT: Modeling spatial-temporal interactions for human trajectory prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6272–6281. [Google Scholar]
- Chen, G.; Li, J.; Zhou, N.; Ren, L.; Lu, J. Personalized trajectory prediction via distribution discrimination. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 15580–15589. [Google Scholar]
- Mohamed, A.; Zhu, D.; Vu, W.; Elhoseiny, M.; Claudel, C. Social-Implicit: Rethinking Trajectory Prediction Evaluation and The Effectiveness of Implicit Maximum Likelihood Estimation. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2022; pp. 463–479. [Google Scholar]
Method | ADE ↓ | FDE ↓ |
---|---|---|
Vanilla LSTM [36] | 10.06 | 23.86 |
Social LSTM [5] | 10.04 | 23.67 |
STGAT [37] | 10.82 | 24.67 |
Social STGCNN [11] | 14.29 | 29.51 |
DisDis [38] | 5.82 | 13.89 |
Social Implicit [39] | 11.22 | 27.86 |
GSTA [25] | 10.67 | 21.12 |
Cae-gan [26] | 9.56 | 18.23 |
Trajectron++ [13] | 5.82 | 10.31 |
STIA-TPNet (Ours) | 5.56 | 10.21 |
Method | STIA Module | ADE ↓ | FDE ↓ |
---|---|---|---|
Baseline | 5.82 | 10.31 | |
STIA-TPNet | ✓ | 5.56 | 10.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Li, S.; Liu, C. Traffic Agents Trajectory Prediction Based on Spatial–Temporal Interaction Attention. Sensors 2023, 23, 7830. https://doi.org/10.3390/s23187830
Xie J, Li S, Liu C. Traffic Agents Trajectory Prediction Based on Spatial–Temporal Interaction Attention. Sensors. 2023; 23(18):7830. https://doi.org/10.3390/s23187830
Chicago/Turabian StyleXie, Jincan, Shuang Li, and Chunsheng Liu. 2023. "Traffic Agents Trajectory Prediction Based on Spatial–Temporal Interaction Attention" Sensors 23, no. 18: 7830. https://doi.org/10.3390/s23187830
APA StyleXie, J., Li, S., & Liu, C. (2023). Traffic Agents Trajectory Prediction Based on Spatial–Temporal Interaction Attention. Sensors, 23(18), 7830. https://doi.org/10.3390/s23187830