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Abstract: This paper discusses the use of networks of Inertial Measurement Units (IMUs) for the
reconstruction of trajectories from sensor data. Logistics is a natural application domain to verify the
quality of the handling of goods. This is a mass application and the economics of logistics impose
that the IMUs to be used must be low-cost and use basic computational devices. The approach in this
paper converts a strategy from the literature, used in the multi-target following problem, to reach
a consensus in a network of IMUs. This paper presents results on how to achieve the consensus in
trajectory reconstruction, along with covariance intersection data fusion of the information obtained
by all the nodes in the network.
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1. Introduction

Logistics is a booming service industry, including the flow of goods between origin and
consumption points (see, for instance, [1]). With the diversity of goods being transported
between any two points around the world, one of the quality indicators used by logistics
operators is the way goods are manipulated during their transportation. Poor handling may
result in damages and/or liability costs to insurance and/or logistics operators. Being able
to analyze the movement of the goods upon delivery, i.e., having a traceability property, is
recognized as strategic [2].

In engineering terms, this amounts to analyzing the trajectories the goods are subject
to during transportation, i.e., the trajectories resulting from the way they are manipulated
during transportation.

The trajectory reconstruction problem is well known in, for example, the aerospace
industry. Using information from an IMU attached to the body of the spacecraft, its
trajectory can be reconstructed using the velocity and acceleration data and assuming a
good model of the spacecraft. Essentially, this amounts to an optimization problem, where
the reconstructed trajectory must be such that the generated data is close to the observed
data. The literature on this problem is vast, see, for instance, [3] on using multiple models
and Unscented Kalman Filtering (UKF), [4] on using Extended Kalman Filtering (EKF)
techniques and inertial measurements data, [5] on using image data, and [6] on using
Gaussian regression techniques and GPS data.

The application to this logistics problem introduces additional constraints; namely,
the sensing must be really cheap (i.e., the quality of the accelerometers and rate-gyros
is nowhere close to that used in the aerospace industry), and the rigidity of the goods is
only loosely verified. For example, goods such as food and domestic appliances are often
transported in cardboard boxes and, hence, rigidity is valid under the assumption that the
handling forces are relatively small or highly localized to avoid damages. Moreover, the
placement of the sensors will, in general, be made by unskilled/carefree operators, which
may lead to devices malfunctioning and, hence, redundancy, as with using multiple (similar)
devices, is likely to increase the amount of valid information for trajectory reconstruction.
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The vision of this paper is to implement this redundancy in that of a network of
low-cost IMUs that can be glued and forgotten in typical packages (made out of cardboard,
wood, plastic, metal, etc.) preserving, as much as possible, the rigidity property. These
IMUs can either be placed: (i) forming a regular, pre-defined pattern, with the packages
specifying precise areas of where to “glue” the devices, or (ii) distributed through the pack-
age arbitrarily. Placing the devices must not require any special expertise. The first scenario
is possible in packages of standardized dimensions and limits the need for calibration
procedures. In the second scenario, some calibration procedures may be necessary prior
to the start of the transportation. For the sake of simplicity, this paper assumes that the
whole IMUs in the network are placed at the same point. This does not imply any lack
of generality; in a real scenario, with all the IMUs placed in different (and rigid) loca-
tions, the reconstructed trajectories would differ among them by constant homogeneous
transformations.

Having multiple IMUs gathering data and combining it to reconstruct the trajectory
may, in principle, improve the robustness of the solution due to the following reasons:
(i) the amount of data increases, possibly containing richer information, and (ii) redundancy
helps deal with sensor fails. Combining a posteriori the solutions found, from the data
collected from each single IMU, e.g., using covariance intersection or some other averaging
method, is a possibility and does not require the exchange of information among the nodes.

The alternative, followed in this paper, is to have a network of nodes, with each
including: (i) sensory information from a local IMU, and (ii) communication with other
distributed nodes (of a similar architecture) to exchange information and combine it locally
to improve the reconstruction (this paper refers to a network of IMUs as these devices are
the key component of the nodes). The main research question addressed is then whether
or not using networks of IMUs improves trajectory reconstruction quality over a single
IMU. A secondary research question is related to the framework defining the admissible
protocols to exchange information among the IMU network.

The novel approach presented here follows from a multi-target tracking problem
first presented in [7], re-interpreted as a consensus generation in a network of IMUs. The
motivation to use this formulation comes from the proven optimality of the framework
in [7] in the context of the multi-tracking problem.

This paper is organized as follows. Section 2 illustrates a single, simulated IMU,
establishing a baseline performance for comparison with the consensus approach. Section 3
presents a quick view of the work in [7], which serves as a basis for this work, focusing on
the consensus features and clarifying the re-interpretation of the key terms. Moreover, the
feasibility problem, i.e., the existence of a strategy for the exchange of information, such
that all the nodes in the network can provide estimates of the reconstruction, is discussed
using the Linear Matrix Inequalities (LMI) framework. Section 4 illustrates the evolution of
the performance indicators of the simulated nodes recovered from the network framework
when the communications among them are inhibited. Section 5 presents simulation results
with simple networks with two and three nodes. Section 6 discusses the improvement of the
network consensus over the reconstruction by the independent nodes. Section 7 presents
the results of the fusion of the trajectories reconstructed by each node using covariance
intersection. Finally, Section 8 concludes this paper with a discussion on the feasibility of
the approach and points to future research.

2. Baseline IMU

Given an arbitrary trajectory that serves as the ground truth, the corresponding linear
and angular accelerations can be easily obtained if the inertia properties of the body
(assumed rigid) moving over the trajectory are known. Thus, to accurately simulate the
sensors to be glued to the logistics packages, knowledge of the inertia properties of the
package is required beforehand.

In practical terms, full knowledge about the package inertia will seldom be available
(though the mass and the physical dimensions can be easily known a priori as they are the
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parameters that directly influence the transportation cost). Therefore, while the observa-
tions reflect the real properties of the packages, the reconstruction of the trajectories has only
a limited amount of that knowledge available. However, it should be emphasized that the
estimation of the mass/inertia properties can also be completed using IMU data. This is a
well-known problem in the aerospace industry, see, for instance, Ref. [8] on using recursive
least squares, Ref. [9] on using continuous system identification techniques to identify the
dynamics of the Hubble telescope, Ref. [10] on using the LMI framework and formulating
a least squares problem, and Refs. [11,12] on using the least squares formulation combined
with S-estimators for the identification of spacecraft parameters.

The basic approach to estimating the trajectory from the velocities and accelerations
is to use simple integrator models. Given a trajectory expressed in terms of the position
and orientation coordinates, x, y, z, α, β, γ, the corresponding signals from the accelerom-
eters and rate-gyros can be obtained from basic expressions describing the geometry of
the trajectory:

ẍ = ax
ÿ = ay
z̈ = az

(1)

for the translation and

Ṙ =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (2)

for the rotation, with R, the rotation matrix, expressing the orientation at each point in
terms of Euler ZYX angles, which can be written as follows: α̇

β̇
γ̇

 =

 0 −sα cα cβ

sα cβ (cα − cα) cα sα cβ

1 0 −sβ

−1  ωx
ωy
ωz

 (3)

where ax, ay, az, ωx, ωy, ωz are the corresponding sensor outputs, i.e., the linear accelerations
and angular velocities, respectively. Also, sθ , cθ stand for sin(θ) and cos(θ), respectively.
The purpose of these expressions is to yield a simulation tool and, without the lack of
generality, they implicitly assume a unit mass body. To improve realism, noise can be
added to the outputs of these sensors.

2.1. Dead Reckoning Experiments

The purpose of these experiments is as follows: (i) to show the effects of noise when
no compensation strategy is used, and (ii) to serve as the baseline to compare with the
network experiments. Using sensor data obtained from (1) and (3), corresponding to some
reference trajectory, and a dead reckoning model, the goal is to reconstruct the reference
trajectory (this amounts to using an inverse model, as shown in Figure 1).

Figure 1. Dead reckoning trajectory reconstruction. Good estimates can be obtained if the model of
the system is accurate and the effect of noise is minimized.



Sensors 2023, 23, 7838 4 of 16

Sensor uncertainties make the reconstructed trajectory deviate from the real one.
Figure 2 illustrates the effects of such situations for two levels of position noise.
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(a) Position noise N(0, 0.1), Orientation noise N(0, 0.1)
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Figure 2. Dead reckoning test; x-y-z trajectory (orientation trajectory not shown). The ◦ and + marks
stand for the start and end of the trajectories.

From the perspective of a logistics application, the dead reckoning approach above may
still be a valid option if the disturbances are limited and only specific events are relevant to
measure the quality of the handling, e.g., if the existence of strong non-smooth/disturbances
areas is the quality indicator. In such cases, even if the reconstructed trajectory in the
Cartesian 3D space differs significantly from the real one, the presence of the areas of strong
disturbances can still be recognized.

The existence of drifts in the observed variables is another important disturbance factor.
The poor assembly of a sensor and electronics issues are common causes of drifts. In the
accelerometer, drift means that the dynamics of the acceleration are constantly integrating
some value that is not being observed by the accelerometer. In the case of the rate-gyro, this
means that the dynamics of the rotational velocity are constantly integrating some value
that is not being directly observed by the gyro.

Figure 3 illustrates two experiments of the dead reckoning approach under constant
drift conditions. The disturbances considered only affect the linear acceleration. In the first
sample, they are given as follows:

ao f f setk
= ao f f setk−1

+ [0.05 ∗ randn, 0, 0]

where “randn” stands for the usual function returning a random value with an N(0, 1)
distribution. In the second sample, all the coordinates are similarly affected by 0.05 ∗ randn.
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(a) Drift in the x acceleration component
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Figure 3. Dead reckoning experiment; spiral x-y-z trajectory under drift conditions (Wiener process).
The ◦ and + marks stand for the start and end of the trajectories.
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This is an example where the estimated trajectory is too different from the original
one. However, depending on the specific requirements of the logistics application, the drift
disturbances may not be an issue, e.g., as mentioned above if the purpose is the detection
of harsh handling. Clearly, drifts are highly relevant if accurate trajectory reconstruction is
required, which is the focus of the remainder of this paper.

2.2. Single IMU

In general, an IMU will include a filtering stage, often formed by an Extended Kalman
Filter. The process and observation models can be easily obtained from (1) and (3). Figure 4
shows a sample of the reconstruction for a biased spiral reference trajectory, with the
position and orientation N(0, 0.1) process noises and N(0, 0.01) and N(0, 0.001) observation
noises for the position and orientation, respectively.
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Figure 4. Single IMU sample for a biased spiral reference trajectory (position trajectory only),
with/without drift disturbance. The blue and red ◦ and + marks stand for the start and end of the
trajectories, respectively. The magenta ◦ stands for the initial unfiltered estimate.

From the results in Figure 4, a single IMU can already provide quality information
about the real trajectory, even in the presence of mild disturbances. Similar to the dead
reckoning option, the basic IMU in this example can already be useful in the logistics
domain. However, the research goal for this paper is aimed at expanding the performance
of the single IMU.

3. Background

This paper adopts the formulation from [7], developed in the context of a multi-target
tracking problem, with the targets and measurements assumed to have a one-to-one relation.
The notation follows the usual form of the continuous-discrete (CD) extended Kalman
framework (see, for instance, [13] for a critical comment and the implementation issues
of this form), with the prediction stage for the ith IMU node given by the following (see
also [14] for a face-off between five different formulations):

xi
k|k−1 = f i

k−1

(
xi

k−1|k−1

)
zi

k = hi
k

(
xi

k|k−1

)
Pi

k|k−1 = Fi
k−1 Pi

k−1|k−1

(
Fi

k−1

)T
+ Qi

k−1,

(4)

where xi stands for the state variables, zi the observations, Pi the covariance matrix, Qi

the observation noise covariance, F the Jacobian of f , and the modified update stage is
as follows:
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Si
k = Hi

k Pi
k|k−1

(
Hi

k

)T
+ Ri

k (5)

Ki
k = Pi

k|k−1

(
Hi

k

)T (
Si

k

)−1
(6)

xi
k|k = xi

k|k−1 + Ki
k z̃i

k (7)

Pi
k|k = Pi

k|k−1 − Ki
k

(
1− βi

0

)
Si

k

(
Ki

k

)T
+ Ki

k Pi
k

(
Ki

k

)T
(8)

where H is the Jacobian of h, Ri is the process noise covariance matrix, and the networking
and consensus are expressed through the measurement uncertainties:

Pi
k =

Mk

∑
j=1

βi
j z̃i

j,k

(
z̃i

j,k

)T
− z̃i

k

(
z̃i

k

)T
, (9)

using the Mk measurements, z̃i
j,k (received by the ith IMU from the jth IMU, i.e., the ith

IMU is connected to Mk, which are the other IMUs), and with the weighted innovations, is
as follows:

z̃i
k = ∑Mk

j=1 βi
j

(
zi

j,k − ẑi
k

)
z̃i

j,k = zi
k − ẑi

j,k,
(10)

where βi
j is the weight expressing the relevance of the measurement from node j to the

estimate of the measurement by node i, βi
0 is the weight expressing the relevance of the

poor measurements (βi
0 → 1 amounts to reducing the norm of Pi

k|k, forcing the covariance

to decrease even if poor measurements are being fed into the system), ẑi
k is the estimate of

the measurement of the ith node at instant k, that is, ẑi
k = hi

k

(
xi

k|k−1

)
, and zi

j,k is the actual
measurement of node j at instant k reaching the ith IMU.

The topology of the network is assumed fixed. In [7], the βi
j parameters were in-

terpreted in terms of a marginal probability of association between node j and target i.
The βi

0 is used to quantify the misdetection of a target (1/0 for misdetected/detected).
However, for the purpose of this paper, this interpretation is not useful as the association
between the nodes and measurements can be known a priori. Instead, these parameters
can be seen as follows: (i) the communications protocol (as in consensus problems), and
(ii) scaling weights for the measurements. Also, as in the original problem, the number of
measurements, Mk, can vary along time (or measurement scans) k.

The formulation from [7] is, essentially, an EKF with a modified update of the covari-
ance matrix (through the β0 factor that scales the innovation residual covariance in (5),
and a weighted combination of the innovations from the whole network weighted by the
βi

j. Also, (8) dumps the term explicit in the noise Ki
k Ri

k
(
Ki

k
)T , and the symmetric term(

Ki
k Hi

k
)T

+ Ki
k Hi

k affecting Pi
k|k−1 in the CD formulation of the EKF.

This innovates relative to the CD-EFK procedure in that the covariance of each unit
now has feedback from the innovations produced by the network. Moreover, the tuning
“knob” Ri

k in the CD-EKF formulation is now replaced with the βi
j and βi

0 parameters. These
can also be seen as the mediator/protocol/scaling factors between the nodes.

For the sake of readability, the expression for the covariance update in the CD-EKF
formulation, and a re-writing of (8) to highlight the differences to the CD-EKF covariance
update equation, is presented below.
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Pi
k|k =

(
I − Ki

k Hi
k

)
Pi

k|k−1

(
I − Ki

k Hi
k

)T
+ Ki

k Ri
k

(
Ki

k

)T

= Pi
k|k−1 + Ki

k Si
k

(
Ki

k

)T
− Ki

k Hi
k Pi

k|k−1 − Pi
k|k−1

(
Ki

k Hi
k

)T
(11)

The renewed one, where z̃j,k and z̃i
j,k are N ×Mk matrices is as follows:

Pi
k|k = Pi

k|k−1 − Ki
k Si

k

(
Ki

k

)T
+

+ Ki
k

(
Mk

∑
j=1

βi
j z̃i

j,k

(
z̃i

j,k

)T
)(

Ki
k

)T
− Ki

k z̃i
k

(
z̃i

k

)T (
Ki

k

)T
+ βi

0 Ki
k Si

k

(
Ki

k

)T
(12)

The first two terms on the righthand side of (12) are also present in (11). The third and
fourth terms account for the network exchanges and are the additional “tuning knob”. The
fifth term dampens the second term and provides additional control.

The convergence of (12) can be achieved by the careful selection of βi
0 and βi

j, namely

ensuring that Pi
k|k is a contracting sequence converging to some fixed point (see [15]).

This means:

∃k0 > 0, α > 0, γ > 0 : ∀k > k0,
∥∥∥Pi

k|k − Pi
k|k−1

∥∥∥ ≤ α e−γ (k−k0),

or, alternatively,

∃k0 > 0, α > 0, γ > 0 : ∀k > k0,∥∥∥∥∥−(1− βi
0)K

i
k Si

k

(
Ki

k

)T
+

Mk

∑
j=1

βi
j

(
Ki

k z̃i
j,k

(
z̃i

j,k

)T (
Ki

k

)T
)
− Ki

k z̃i
k

(
z̃i

k

)T (
Ki

k

)T
∥∥∥∥∥ ≤ α e−γ (k−k0),

(13)

or, in a more compact form to highlight the terms involved in the consensus, with

Ai
k = (1− βi

0)K
i
k Si

k
(
Ki

k
)T , Ci

k = Ki
k z̃i

k
(
z̃i

k
)T (Ki

k
)T , and Fi

j,k = Ki
k z̃i

j,k

(
z̃i

j,k

)T(
Ki

k
)T ,

∃k0 > 0, α > 0, γ > 0 : ∀k > k0,∥∥∥∥∥−Ai
k − Ci

k +
Mk

∑
j=1

βi
j Fi

j,k

∥∥∥∥∥ < α e−γ (k−k0).
(14)

At each time step, a new solution must be produced so that the convergence of the
covariance matrix can be controlled. This means: (i) the consensus will be adjusting over
time, as the βi

j will (in general) be changing, and (ii) the tradeoff values for α, γ (that can
be constant over time) have to be selected. However, one must ensure that the α, γ can be
made unique during the whole duration of the trajectory, despite the changes in the βi

j.
This makes:

Zi
k =

1
α

eγ(k−k0)

(
−Ai

k − Ci
k +

Mk

∑
j=1

βi
j Fi

j,k

)
, (15)

the solution of ∥∥∥Zi
k

∥∥∥ < 1, (16)
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which can be obtained using the LMI form (see, for instance, [16], pp. 7–8, on computing
maximum singular values) as  I Zi

k(
Zi

k
)T I

 > 0. (17)

The complete solution for the convergence of (12) requires an additional LMI that
imposes the positive definiteness of Pi

k|k given that Pi
k|k−1 is assumed positive definite is

as follows:

Pi
k|k−1 − Ai

k − Ci
k +

Mk

∑
j=1

βi
j Fi

j,k � 0, (18)

or, more compactly, with Di
k = Pi

k|k−1 − Ai
k − Ci

k,

Di
k +

Mk

∑
j=1

βi
j Fi

j,k � 0. (19)

Therefore, if (17) and (19), with the βi variables, are both feasible at each time step, k,
for some choice of βi

j, then there is a consensus solution to the network from the point of

view of the ith node, which ensures the convergence of Pi
k|k. A solution for the full network

requires the feasibility of the above LMI problems for all the nodes.
The LMI feasibility can be tested by multiple algorithms from general ones, Refs. [17,18]

on ellipsoid algorithms, to specific ones, [19] for large and sparse LMIs or Ref. [20] on
stochastic algorithms. Several software packages to solve LMIs are available, i.e., the
Scilab-based LMITOOL [21], the Matlab-based YALMIP [22], and the Matlab LMI toolbox.

These LMI problems are non-convex (the presence of the affine term in (19) is enough
to make it non-convex) and, hence, finding optimal parameters using standard LMI solvers
is, in general, an issue. Relaxation techniques are commonly used to solve non-convex
problems and obtain either good solutions or pseudo-solutions from which the approxima-
tions to the good ones can be derived (see, for instance, [23–25]). The approach proposed
here uses a basic form of relaxation, consisting in scaling some terms until a solution can
be found.

4. Simulation Experiments

Making βi
0 = 0 and βi

j = 1, if i = j, and 0, otherwise, then z̃i
k = z̃i

j,k for j = i,
recovering a set of isolated nodes:

Ei
k ≡ Pi

k|k−1 − Ki
k Si

k (K
i
k)

T > 0 (20)

and the convergence condition becomes:∥∥∥∥ 1
α

eγ(k−k0)
(
−Ki

k Si
k (K

i
k)

T
)∥∥∥∥ < 1. (21)

Given that all the matrices in (20) are norm-bounded, then the second condition can
always be verified for a large enough α and a small enough γ.

The noise covariance Ri
k bounds the definiteness of (20) (in the best possible scenario

Ri
k = 0; in general, this is not a free parameter as it must be chosen in connection with

the sensors, though it can also act as a tuning knob to some extent). The matrix Si
k is, by

construction, always positive definite and, hence, the quadratic term Ki
k Si

k (K
i
k)

T is also
positive definite. By introducing a scale factor ξ i

k ∈ [−1, 1] in Ki
k, the LMI (21) dominates

that in (20), i.e., the set of solutions Pi
k|k−1 of (21) contains those of (20) (see [26] for detailed

analysis and the results related to LMI dominance).
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Given the following scaled expression:

Pi
k|k−1 −

(
ξ i

k

)2
Ki

k Si
k (K

i
k)

T > 0, (22)

as ξ i
k → ±1, the solution Pi

k|k−1 converges to that of the unscaled expression. Also, ξ i
k → 0,

Pi
k|k → Pi

k|k−1, which is construction positive definite.

Given the low complexity of the scaled expression, its feasibility relative to the ξ i
k

parameter can be obtained from the eigenvalues/eigenvectors of the matrix:

Gi
k ≡ Pi

k|k−1

(
ξ i

k

)−2(
Ki

k Si
k (K

i
k)

T
)−1

. (23)

The positiveness of all the eigenvalues means Gi
k > 0. As the ξ i

k varies, the eigenvalues
of the relaxed matrix are linearly related to those of Gi

k.
Figure 5 shows an example of the evolution of the eigenvalues using ξ i

k = 1.

-5

2

0

5

1 2

10z

15

3D cartesian reference (blue) and estimated (cyan,red,green) trajectories

1

y

0

20

x

25

0
-1

-1
-2 -2

xyz trajectories

0 100 200 300 400 500 600 700 800 900 1000

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

eig(G
k

i
)

Eigenvalues

Figure 5. Trajectories and eigenvalues evolution for 3 independent nodes. The positive definiteness of
the Gi

k matrix is clear. The ◦ and + marks stand for the start and end of the trajectories, respectively.

As expected, the quality of this solution, using the EKF, is clearly superior to that in
the example of dead reckoning.

Whenever the nodes are not independent and the network must reach a consensus,
the feasibility must be checked directly using (17) and (19).

5. Network Consensus Experiments

Figure 6 shows the 3D space trajectories for the two nodes operating independently
and as a network. All the IMUs are assumed to be time-synchronized, i.e., the simulation
loop time is the same for all of them. For the independent nodes test, βi

0 = 0, i = 1, 2,
β1

1 = 1, β1
2 = 0, β2

1 = 0, β2
2 = 1. For the networked nodes test, βi

0 = 0.01, i = 1, 2,
β1

1 = 0.6, β1
2 = 0.4, β2

1 = 0.4, β2
2 = 0.6. Any of the IMU trajectories can be used for

reconstruction purposes.
Figure 7 shows the evolution of the two-norm of the xyz trajectory and of the respective

mean. Clearly, the mean error when the nodes operate cooperatively is lower than when
operating independently.

Figures 8 and 9 show a similar experiment with three nodes. For the independent
nodes test, βi

0 = 0, i = 1, 2, 3, β1
1 = 1, β2

1 = 0, β1
2 = 0, β2

2 = 1, β3
2 = 0, β1

3 = 0, β2
3 = 0, β3

3 = 1.
For the networked nodes test, βi

0 = 0.01, i = 1, 2, 3, β1
1 = 0.7, β1

2 = 0.01, β1
3 = 0.01,

β2
1 = 0.01, β2

2 = 0.7, β2
3 = 0.01, β3

1 = 0.01, β3
2 = 0.01, β3

3 = 0.8. The protocol for the network
experiments, i.e., the set of βi gains, was chosen to have each IMU privileging its own
estimates but still accounting for the other nodes.
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Figure 6. Samples of the two-node network (xyz trajectories). The ◦ and + marks stand for the
trajectory starting and final points, respectively, with the ∗mark the initial unfiltered estimate.
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Figure 7. Two-node error evolution for the samples in Figure 6 (the red/blue curves refer to the
networked nodes; the yellow/green curves in the righthand plot refer to the independent nodes
under no-consensus).

For the three-node network, the mean error of the xyz trajectory of the networked
nodes is also lower than the error for the independent nodes. However, the increase in the
number of IMUs does not immediately result in an increase in performance, i.e., a lower
mean error norm.
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Figure 8. Samples of the three-node network (xyz trajectories). The ◦ and + marks stand for the
trajectory starting and final points, respectively, with the ∗mark the initial unfiltered estimate.
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Figure 9. Three-node network error evolution for the sample in Figure 8 (the red/blue/cyan curves
refer to the networked nodes; the yellow/green/magenta curves in the righthand plot refer to the
independent nodes under no-consensus).

The evolution of the feasibility conditions, i.e., (17) and (19), is shown in Figure 10.

0 100 200 300 400 500 600 700 800 900 1000

0
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10
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14

16

18
10

7 det(P
k

i
), 1-blue, 2-red, 3-cyan

Figure 10. Feasibility evolution (α = 1000, γ = 10−5) for the 3-node experiment.

Alternative protocol values, e.g., increasing the contributions of the surrounding
nodes with βi

0 = 0.01, i = 1, 2, 3, β1
1 = 0.5, β1

2 = 0.2, β1
3 = 0.1, β2

1 = 0.2, β2
2 = 0.5, β2

3 = 0.2,
β3

1 = 0.1, β3
2 = 0.2, β3

3 = 0.5, continues to yield a lower error for the consensus version
(see Figure 11). These values were defined empirically, and they ensure LMI feasibility.
Given that the trajectory reconstruction will, in general, be made offline, finding alternative
admissible protocols is not a problem. The alternative workflow to finding a solution to the
LMI feasibility problem is to use an empirical approach, starting with independent nodes
and gradually increasing the contribution of each node to the estimates of the neighbors,
checking the LMI feasibility at each step.

Figures 9b and 11b illustrate the dependence of the mean error norm from the βi

values. Moreover, it provides the ground for an optimization problem on the space of the
feasible βi. It is worth noting that increasing the exchange of information, i.e., increasing
the βi, had the effect of improving the performance.
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Figure 11. Three-node network error evolution for an alternative βi protocol (the red/blue/cyan
curves refer to the networked nodes; the yellow/green/magenta curves in the righthand plot refer to
the independent nodes under no-consensus).

From a practical perspective, if, during an online reconstruction, the LMI problem is
unfeasible, then simply use one of the independent units as a solution.

6. Networking for Improvement over Independent Nodes

As seen before, the feasibility of a network can be tied to an LMI. Also, the experiments
in the previous section empirically show that networks have an advantage over indepen-
dent nodes. The purpose of this section is to demonstrate this advantage, i.e., the difference
between the tracking errors obtained in the networked and independent versions:

ei
k =

∥∥∥einet

k

∥∥∥− ∥∥∥eiind

k

∥∥∥ =
∥∥∥r− xinet

k|k

∥∥∥− ∥∥∥r− xiind

k|k

∥∥∥
=
∥∥∥r− xinet

k|k−1 + Kinet

k z̃inet

k

∥∥∥− ∥∥∥r− xiind

k|k−1 + Kiind

k z̃iind

k

∥∥∥, (24)

where r is the reference trajectory, xinet

k|k is the trajectory reconstructed by a network, and

xiind

k|k is a trajectory reconstructed by one node operating independently, verifying the
averaging relation:

∃N : n > N,
1
n

n

∑
k=1

ei
k < 0. (25)

For a discrete, time-varying, linear system, Lemma 3.1 in [27] states that Piind

k|k is

bounded above and below, i.e., ∃µl , µu > 0 : µl I < Piind

k|k < µu I. Siind

k is a linear operator on

Piind
and, hence, it is also bounded above and below. Kiind

k is also bounded as it depends on

the bounded Piind
and on (Siind

k )−1, which is also upper and lower bounded. Therefore, xiind

k
is bounded and, also, the whole rightmost term in (24) can be written as follows:

Li I < r− xiind

k|k−1 + Kiind

k z̃iind

k < Ls I,

for some Li, Ls > 0, and I is a suitable identity matrix.
Applying a two-norm on both sides of an inequality preserves the inequality, as this

norm is monotone [28], and the righthand term can thus be assumed to be a bounded func-
tion:

Li <
∥∥∥r− xiind

k|k−1 + Kiind

k z̃iind

k

∥∥∥ < Ls. (26)
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The leftmost term in (24) is a function of the βi
j parameters. Without losing generality,

one can represent this term as follows:∥∥∥r− xinet

k|k−1 + Kinet

k z̃inet

k

∥∥∥ ≡ ‖r− g(β) + β f (β)‖, (27)

with f (·), g(·) as the adequate functions. Therefore, (24) can be written as follows:

‖r− g(β) + β f (β)‖ − Ls < ei
k < ‖r− g(β) + β f (β)‖ − Li. (28)

Under the LMI feasibility conditions, f (·) and g(β) are bounded and, hence, by
selecting small enough β constants, the rightand side of (28) approaches:

‖r− g(β)‖ − Li. (29)

The feasibility of the LMI problem ensures the asymptotic convergence of
g(β) ≡ xi

k|k−1 → xi
k|k and, hence, it is clear that, if the networked version converges

to the reference trajectory r, the ei
k are negative.

The consensus approach can also be beneficial in the case of structured unmodeled
disturbances, as in the case of unmodeled drift in the sensors. From Figure 12, the consensus
approach retains the good property of low mean error when compared with the non-
consensus approach.
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Figure 12. A 3-node network with all nodes subject to unmodeled drift (the red/blue/cyan curves
refer to the networked nodes; the yellow/green/magenta curves in the righthand plot refer to the
independent nodes under no-consensus). The ◦ and + marks stand for the initial and final positions,
respectively. The ∗mark indicates the initial unfiltered estimates.

Figure 13 illustrates the performance in the case of a piecewise linear (two trunks)
reference trajectory. As before, the mean error property is verified.
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Figure 13. A 3-node network with all nodes subject to unmodeled drift reconstructing a piece-
wise linear reference trajectory (the red/blue/cyan curves refer to the networked nodes; the yel-
low/green/magenta curves in the righthand plot refer to the independent nodes under no-consensus).
The circ and +marks stand for the start enad end positions, respectively. The ∗mark stands for the
initial unfiltered estimates.
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7. Network Fusion Using Covariance Intersection

The framework above leads to each IMU producing its own estimate, each of which is
better than the independent estimates. A single estimate can be obtained by applying the
covariance intersection procedure [29] (the inverse covariance matrices are combined using
a linear convex law, with a fixed parameter ω). For the two-node case, the procedure can
be applied directly; a parameter ω1 controls the relative importance between the two data
sources being fused. For the three-node case, the expressions used for the two-node case
can be cascaded, i.e., a first stage fuses two nodes and a second stage fuses the result with
the third node. A ω2 parameter controls the importance between nodes one and two, and
node three. In this case, ω1,2 = 0.5, meaning that the data sources in each stage have the
same relative importance.

Figure 14 shows the resulting trajectories for the spiral reference trajectory in the case
of two and three nodes, respectively. In both cases, a median filter with a sliding window
of 20 samples is used to smooth the output of the fusion stage. In this example, the fusion
of the three nodes yields a smaller tracking error trend when filtered.
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Figure 14. Trajectories and tracking errors resulting from fusion using covariance intersection
(ω1,2 = 0.5 in both scenarios). The blue and red curves correspond to the unfiltered and filtered
stages, respectively.

The cascading technique can also be used for networks with a higher number of nodes.
The adequate selection of the ωi parameters of the different covariance intersection stages
controls the relative importance of the nodes in the fusion process.

8. Conclusions

This paper presented a formulation for networks of IMUs, extending a representation
of the multi-target problem discussed in the literature. The feasibility conditions are
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discussed based on the feasibility of the LMIs modeling the network. Moreover, the
network with the consensus version (with the nodes exchanging information among them)
is shown to have an edge over the non-consensus network (i.e., with independent nodes).

The results obtained show the advantage of the network consensus over the single IMU
solutions. The limitations of the use of IMU networks are mainly related to the practical
implementation and not to the theoretical framework. As referred in the introduction, the
rigidity assumption in the relative positioning of the IMUs is likely not to hold permanently.

In this paper, it is implicitly assumed that data is acquired, synchronously, and immedi-
ately processed for reconstruction. However, it should be emphasized that data acquisition
and reconstruction can occur sequentially in time, i.e., data is acquired during traveling,
after which it can be downloaded and fed into the reconstruction stage. Moreover, this
decoupled strategy allows the testing of different parameters for reconstruction. Also,
synchronism in the data acquisition is likely not to hold for the whole duration of a mission
(e.g., due to the mishandling of packages that can damage the devices, intrinsic failures,
electronics interferences, etc.).

Future work involves multiple research directions, namely related to the following: (i)
uncertainties, (ii) missing information, and (iii) data fusion strategies. A natural evolution
is the testing of alternative formulations for the EKF, e.g., the discrete formulation (which,
being computationally simpler, may lead to numerical problems). Also, more complex
protocols need to be tested and stronger connections with the consensus theory need to be
investigated. Essentially, this amounts to replacing the βi

j with adequate functions, being
able to shape the interchange of information among the nodes.

The rigidity criteria that can be used to determine the performance bounds of the
consensus approach will be a key research topic related to the presented framework. The
non-rigid scenarios amount to unstructured uncertainties that need to be accommodated
by the framework.

Also, the strategies to minimize any effects of missing data are to be investigated. This
is mainly related to failures in the devices (or the network).

The advantage of combining covariance intersection and the consensus was illustrated
in the simple example above when data is synchronized. Additional testing including
asynchronous data scenarios, e.g., as in [30,31], is scheduled for future work.
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10. Keim, J.; Açıkmeşe, B.; Shields, J. Spacecraft inertia estimation via constrained least squares. In Proceedings of the IEEE Aerospace
Conference, Big Sky, MT, USA, 4–11 March 2006. [CrossRef]

11. Milhano, T.; Sequeira, J.; Di Sotto, E. Using S-estimators in Parameter Identification. In Proceedings of the 16th Internationl
Conference on Information Fusion (Fusion 2013), Istanbul, Turkey, 9–12 July 2013.

12. Milhano, T.; Sequeira, J.; Di Sotto, E. Spacecraft Parameter Identification Using S-Estimators. In Proceedings of the 9th
International Conference on Guidance, Navigation & Control Systems (GNC 2014), Porto, Portugal, 2–6 June 2014.

13. Guihal, J.; Auger, F.; Bernard, N.; Schaeffer, E. Efficient Implementation of Continuous-Discrete Extended Kalman Filters for State
and Parameter Estimation of Nonlinear Dynamic Systems. IEEE Trans. Ind. Inform. 2022, 18, 3077–3085. [CrossRef]

14. Salau, N.; Secchi, A.; Trierwieler, J. Five Formulations of Extended Kalman Filter: Which is the best for D-RTO? In Proceedings of
the 17th European Symposium on Computer Aided Process Engineering—ESCAPE17, Bucharest, Romania, 27–30 May 2007;
Plesu, V.; Agachi, P., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2007.

15. Lohmiller, W.; Slotine, J. On Contraction Analysis for Nonlinear Systems—Analyzing stability differentially leads to a new
perspective on nonlinear dynamic systems. Automatica 1998, 34, 683–696. [CrossRef]

16. Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM—Society for
Industrial and Applied Mathematics: Philadelphia, PA, USA, 1994.

17. Vandenberghey, L.; Balakrishnan, V. Algorithms and Software for LMI Problems in Control. In Proceedings of the IEEE
International Symposium on Computer-Aided Control System Design, Dearborn, MI, USA, 15–18 September 1996.

18. Im, K.H.; Baang, D. Optimized ellipsoid algorithm for LMI feasibility problems. Int. J. Control. Autom. Syst. 2014, 12, 915–917.
[CrossRef]

19. Zhang, R.; Lavaei, J. Efficient Algorithm for Large-and-Sparse LMI Feasibility Problems. In Proceedings of the 2018 IEEE
Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018. [CrossRef]

20. Calafiore, G.; Polyak, B. Stochastic Algorithms for Exact and Approximate Feasibility of Robust LMIs. IEEE Trans. Autom. Control
2001, 46, 1755–1759. [CrossRef]

21. Nikoukhah, R.; Delebecque, F.; El Ghaoui, L. LMITOOL: A Package for LMI Optimization in Scilab User’s Guide; Technical Report,
RT-0170, ffinria-00070000; INRIA: Rocquencourt, France, 1995.

22. Löfberg, J. YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In Proceedings of the IEEE International Symposium
on Computer-Aided Control System Design (CACSD), Taipei, China, 2–4 September 2004.

23. Eltved, A. Convex Relaxation Techniques for Nonlinear Optimization. Ph.D. Thesis, Technical University of Denmark, Kongens
Lyngby, Denmark, 2021.

24. Bi, Y. Analysis of Convex Relaxations for Nonconvex Optimization. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2020.
25. Keller, A. Convex underestimating relaxation techniques for nonconvex polynomial programming problems: Computational

overview. J. Mech. Behav. Mater. 2015, 24, 129–143. [CrossRef]
26. Helton, J.; Klep, I.; McCullough, S. Relaxing LMI Domination Matricially. In Proceedings of the 49th IEEE Conference on Decision

and Control (CDC), Atlanta, GA, USA, 15–17 December 2010. [CrossRef]
27. Elizabeth, S.; Jothilakshmi, R. Convergence Analysis of Extended Kalman Filter in a Noisy Environment Through Difference

Equations. Int. J. Pure Appl. Math. 2014, 91, 33–41. [CrossRef]
28. Johnson, C.; Nylen, P. Monotonicity Properties of Norms. Linear Algebra Its Appl. 1991, 148, 43–58. [CrossRef]
29. Julier, S.; Uhlmann, J. Using covariance intersection for SLAM. Robot. Auton. Syst. 2007, 55, 3–20. [CrossRef]
30. Chu, T.; Qi, G.; Li, Y.; Sheng, A. Distributed Asynchronous Fusion Algorithm for Sensor Networks with Packet Losses. Discret.

Dyn. Nat. Soc. 2014, 2014, 957439. [CrossRef]
31. Wu, X.; Song, S. Covariance Intersection-based Fusion Algorithm for Asynchronous Multirate Multisensor System with Cross-

correlation. IET Sci. Meas. Technol. 2017, 11, 878–885. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2514/1.12733
http://dx.doi.org/10.1038/s41467-019-12278-3
http://www.ncbi.nlm.nih.gov/pubmed/31551413
http://dx.doi.org/10.1016/j.actaastro.2022.02.010
http://dx.doi.org/10.1109/TIM.2019.2894048
http://dx.doi.org/10.1109/AERO.2006.1655995
http://dx.doi.org/10.1109/TII.2021.3109095
http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1007/s12555-013-0342-z
http://dx.doi.org/10.1109/CDC.2018.8619019
http://dx.doi.org/10.1109/9.964685
http://dx.doi.org/10.1515/jmbm-2015-0015
http://dx.doi.org/10.1109/CDC.2010.5717737
http://dx.doi.org/10.12732/ijpam.v91i1.4
http://dx.doi.org/10.1016/0024-3795(91)90085-B
http://dx.doi.org/10.1016/j.robot.2006.06.011
http://dx.doi.org/10.1155/2014/957439
http://dx.doi.org/10.1049/iet-smt.2016.0524

	Introduction
	Baseline IMU
	Dead Reckoning Experiments
	Single IMU

	Background
	Simulation Experiments
	Network Consensus Experiments
	Networking for Improvement over Independent Nodes
	Network Fusion Using Covariance Intersection
	Conclusions
	References

