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Abstract: Due to the environmental protection of electric buses, they are gradually replacing tra-
ditional fuel buses. Several previous studies have found that accidents related to electric vehicles
are linked to Unintended Acceleration (UA), which is mostly caused by the driver pressing the
wrong pedal. Therefore, this study proposed a Model for Detecting Pedal Misapplication in Electric
Buses (MDPMEB). In this work, natural driving experiments for urban electric buses and pedal
misapplication simulation experiments were carried out in a closed field; furthermore, a phase
space reconstruction method was introduced, based on chaos theory, to map sequence data to a
high-dimensional space in order to produce normal braking and pedal misapplication image datasets.
Based on these findings, a modified Swin Transformer network was built. To prevent the model
from overfitting when considering small sample data and to improve the generalization ability of
the model, it was pre-trained using a publicly available dataset; moreover, the weights of the prior
knowledge model were loaded into the model for training. The proposed model was also compared
to machine learning and Convolutional Neural Networks (CNN) algorithms. This study showed
that this model was able to detect normal braking and pedal misapplication behavior accurately and
quickly, and the accuracy rate on the test dataset is 97.58%, which is 9.17% and 4.5% higher than the
machine learning algorithm and CNN algorithm, respectively.

Keywords: traffic safety; electric buses; pedal misapplication; phase space reconstruction; deep
neural networks

1. Introduction

Reducing carbon emissions has gradually become a global agenda item in recent
decades due to the increasing problems of energy shortages and environmental degradation
caused by global climate change and its irreversible effects [1]. Moreover, emissions
from motor vehicles are one of the major sources of environmental pollution, making
electric vehicles even more encouraging as an alternative solution to conventional fuel
vehicles [2,3]. As 70% of the world’s population is expected to live in urban areas by
2050, the development of sustainable urban public transport has become necessary to
manage population growth and the significant changes in urbanization [4]. Moreover,
countries worldwide are providing strong policy support to decarbonize transport and are
considering all-electric buses as an opportunity to improve environmental conditions [5].

According to the National Highway Traffic Safety Administration (NHTSA), 16,000 ve-
hicle accidents in the U.S. each year involve pedal errors while driving, and in Japan, that
number is about 6000 [6]. Major accidents involving rear-end collisions, pedestrian injuries,
etc. are commonplace, with approximately 12.6% of accidents caused by driver misapplica-
tion of the accelerator [7]. Although human hands and feet have similar mechanoreceptor
mechanisms, the thresholds of perception for vibrotactile stimuli vary for different body
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parts. The sensation from the accelerator pedal and brake pedal to the driver’s feet is not as
intuitive and sensitive as that from the steering wheel to the palm [8].

Electric buses have no clutch or shift mechanism, and the driver’s handling habits may
be different compared with those of traditional fuel vehicles. Referring to a study, when
driving a fuel vehicle, before he/she begins the driving cycle, the driver puts the vehicle
into forward gear, then gently places his/her right foot on the brake pedal (to prevent the
vehicle from “creeping”), and slowly releases the brake to start the vehicle. When driving
an electric vehicle, when the driver releases the accelerator pedal, the vehicle stops moving
forward. Therefore, during frequent starts and stops, the driver may refrain from putting
the right foot on the brake pedal and release the accelerator pedal to be ready to start at
any time [9]. In an emergency, the driver will step on the “brakes” more to stop the vehicle;
however, the vehicle will be traveling faster (the driver is actually pressing the accelerator
pedal). The driver uses the “brake” more, which causes the vehicle to be in a state of rapid
acceleration. Often, the driver is unable to judge the situation in the seconds leading up to
the crash.

Compared to traditional fuel buses, electric buses exhibit strong starting power and
good acceleration performance. In addition, electric buses have higher body mass and can
carry more passengers, resulting in more demanding safety requirements. Currently, most
electric bus drivers are switching from driving to fuel vehicles [10]. After powering on, the
motor of the electric bus can reach its maximum output torque whereas the traditional fuel
vehicle engine has a low starting speed and a small output torque is observed; this torque
gradually increases as the engine speed.

Therefore, if an electric bus driver fails to correctly control the pedal during the starting
process or presses the wrong pedal due to an emergency, the loss of electric vehicle control
will be spontaneous [11]. Research on identifying pedal misuse by electric bus drivers can
provide a reference for the design of assisted safe driving systems to avoid “loss of control
accidents” caused by drivers mistakenly stepping on the pedals.

Past research has indicated that improper driver braking behavior and brake system
failures are among the primary causes of electric bus crashes; however, it has been obvious
that most crashes occur due to the driver’s pedal misapplication [11]. Reference [12]
defined the pedal misapplication occurrence as “when the driver is supposed to press a
particular pedal (i.e., brake or acceleration) but mistakenly presses the wrong pedal (pedal
misapplication) or fails to press any pedal at all (pedal miss)”. In daily driving, drivers
typically use the accelerator pedal more often than the brake pedal. Hence, it is even more
dangerous for the driver to misuse the accelerator pedal instead of applying the brake [13].
Therefore, the pedal misapplication that this work considers mainly involves the fact that
“the driver should have depressed the brake pedal, but wrongly depressed the accelerator pedal (which
may include the driver lifted the accelerator pedal, and then depressed the accelerator pedal again; or
directly depressed the accelerator pedal with force, etc.)”.

Research conducted over the past 20 years has identified several factors that contribute
to driver pedal misapplication [13]. These studies have demonstrated the effect of pedal
construction design [14], age and gender [15–17], shoe contact area with the pedal, sin-
gle/dual foot operation mode, foot position [18,19], and driver cognitive function [20,21]
on pedal misapplication. Currently, studies on pedal misapplication rely mainly on ques-
tionnaire surveys [22], analysis of vehicle driving data [23], driver physiological data [15],
video-based foot motion trajectory [19], and combinations of vehicle driving data and foot
posture data [12,13,19,20]. However, the last three types of data are relatively difficult
to acquire during naturalistic driving as they require body posture sensors and medical
physiometer devices, which are not usually found in vehicles. Therefore, the objective of
this study is to develop a detection method for driver pedal misapplication in electric buses
based solely on vehicle driving data, as it only requires a data acquisition device connected
to the On-Board Diagnostic (OBD).

Benefiting from significant advancements in computer computing power and the
development in the deep learning domain, Convolution Neural Networks (CNNs) are in-
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creasingly used in driver behavior recognition tasks. These tasks include braking intention
recognition [24], pedal misapplication detection [23,25], driver distraction detection [26–28],
fatigue detection [29], and so on. However, there is a limited number of studies that have
used deep learning to detect pedal misapplication by electric bus drivers, moreover, using
the foot camera-based scene data images may encounter problems as they are easily affected
by lighting and angle.

Generally, Machine Learning (ML) models are employed to classify problems involving
input data presented in the form of time series. However, since entering the 21st century,
many more sensors have been deployed in vehicles with the introduction of the information
explosion era. Although ML has achieved good results in several engineering domains,
the classification performance of traditional ML algorithms decreases with increasing data
dimensionality. This behavior results in a “curse of dimensionality” [30]. Compared with
traditional algorithms such as random forest and Support Vector Machine (SVM), CNNs
can extract deeper and more abstract features. CNNs greatly overcome the limitations of
traditional machine learning, such as their limited ability to represent complex functions,
weak learning ability, difficulty in parallel computation, and insufficient generalization
ability in complex classification problems [31]. CNNs have become a trend to solve various
classification and identification problems.

Therefore, the main objective of this work is to develop a CNN-based pedal misappli-
cation detection model, aiming to detect Pedal Misapplication in Electric Buses (PMEB). A
natural driving experiment and a closed-field pedal misapplication experiment for urban
electric buses were carried out first, and the collected vehicle driving data were processed to
manually select the temporal data of the driver’s normal braking and pedal misapplication
segments. Based on chaos theory, the phase space reconstruction method was deployed to
map the obtained temporal data into high-dimensional color images, producing a driver
normal braking dataset and a pedal misapplication dataset.

To sum up, we developed, in this paper, a Model for Detecting Pedal Misapplication in
Electric Buses (MDPMEB). Moreover, the main works and contributions of this paper are:

(1) A pedal misapplication detection model for electric buses, based on chaos theory
and Swin Transformer structure, was developed. Moreover, the phase space reconstruction
method principle, based on chaos theory, was introduced. The network structure of the
Swin Transformer and the arithmetic process of the Shifted Windows Multi-Head Self-
Attention (SW-MSA) method were presented.

(2) The data collection experiment for electric bus driving was carried out using the
CANoe software for data parsing. The time-series data of the bus segments entering a sta-
tion, passing through intersections and pedestrian crossings, and encountering pedestrians
were intercepted.

(3) The experiment of the bus driver’s pedal misapplication in a closed field was
conducted, and the dataset of pedal misapplication was established using the phase space
reconstruction method.

(4) Pre-training and formal training of the model proposed in this paper were achieved,
and finally, the training results were analyzed and compared to the SVM, iForest, ResNet-50,
DenseNet, and EfficientNet V2 models.

Finally, this paper is organized as follows: Section 2 presents previous research related
to pedal misapplication, whereas Section 3 gives a method to identify pedal misapplication
by electric bus drivers. Section 4 presents the results and discussion of this study. The
conclusions and deficiencies of this work are delivered in Section 5.

2. Related Work

Currently, there are few studies regarding pedal misapplication recognition, which
mainly focus on the analysis of pedal misapplication and the design of the system to
prevent pedal misapplication. Therefore, in this section, we mainly summarize and sort
out the above two aspects.
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2.1. Pedal Misapplication Analysis and Detection

Kawai and Nakata recruited 44 subjects (both young and old) from Nagoya University
to perform a two-handed/bipedal response position selection compatibility task. Partic-
ipants used their left or right foot (or hand) to press the left or right button according to
different computer screen prompts to simulate the process of pressing the accelerator or
brake pedal of the vehicle. The experiment found that the driver’s error rate was higher
in the bipedal task, the reaction time of the elderly driver was significantly longer when
the brake pedal was simulated, and the left dorsolateral prefrontal cortex showed a greater
degree of activation [32]. As for Hasegawa et al., they examined the effect of interruptions
on the frequency of pedal misapplication by introducing the concept of the “interruption
effect”. Moreover, they analyzed the mediating effect of age by recruiting young and
older participants to perform a pedal response task accompanied by an interruption task
(touching the digits). The findings demonstrated that the longer the interruption time of
the pedal task is, the more severe the pedal misapplication will be, particularly among
older drivers [16].

Moreover, Baharom et al. studied the driver’s response and the pedal’s misuse during
emergency braking in Malaysia. The researchers prepared a vehicle equipped with a cam-
era, a force pressure sensor, a light cueing device, an audio cueing device, and Arduino
hardware instrumentation to explore the emergency braking response characteristics under
normal driving and emergency braking conditions. The results show that the farther the
driver’s foot is from the target pedal, the greater the error occurrence will be [18]. Further-
more, based on a video camera, a physiograph, a pedal pressure sensor, and an angular
tilt sensor, Wu et al. explored the driver’s motion patterns and the electrophysiological
characteristics during emergency brake pedal switching [13]. In addition, three categories
of pedal response types (direct hit, corrected trajectory, and pedal error) were analyzed
using Functional Principal Component Analysis (FPCA) using the captured video data
from the driving simulation experiments to determine the relationship between the foot
trajectory and the pedal misapplication. Added to that, Kajiwara & Murata carried out
a road driving simulator experiment where the accuracy of the braking response was
evaluated using random forest and plain Bayesian predictors. During this experiment, the
left foot stance was one of the input parameters, and the findings showed that the driver’s
cognitive errors were the main factor contributing to pedal operation errors [20].

Moreover, Bareiss et al. analyzed the crash data from NWVCSS and North Carolina,
manually classified the data into normal braking and pedal misuse, and built a classification
model using the Bidirectional Encoder Representations from Transformers (BERT) natural
language understanding model. Referring to the model of the sequence library, the fine-
tuned model had a classification accuracy of 95.7% [23].

As for Wu et al., they collected data from naturalistic driving experiments while using
video, foot placement, driver characteristics, and driver cognitive function levels, and
estimated the probability of foot placement through the use of a repeated polynomial logit
model. Then, they classified the types of pedal applications using a random forest model
and got an accuracy of about 91.4% [19].

Finally, Hernández et al. analyzed the driver’s Electroencephalogram (EEG) before
activating the pedal brake and classified the EEG signal using the Support Vector Machine
(SVM) and CNNs. The findings showed that the recognition rate of emergency braking
intention was 71.1% and 71.8% for SVM and CNN, respectively [24].

2.2. Anti-Pedal Misapplication System Design

In order to mitigate driver pedal misapplication, Prasanna et al. developed a safety
system called the “Throttle Override Safety System (TOSS system)” designed for electric
vehicles. This system addresses the issue of ‘Design Induced Pilot Error’ by separating the
drive train from the drive shaft when the driver of an electric vehicle becomes overwhelmed
and accelerates the pedal and brakes simultaneously. By interrupting the vehicle’s power
and allowing it to slide freely, the TOSS system reduces the number of crashes caused
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by the wrong pedal being pressed in panic [33]. Similarly, Zheng et al. concluded a
study through investigation and concluded that the driver depresses the accelerator pedal
slowly and progressively during vehicle start-up; however, during emergency braking, the
force applied by the driver on the brake pedal is sharp and rapid [34]. Therefore, Zheng
et al. designed a pedal misapplication remediation system for emergency braking that
considers the pedal pressure per unit area of the accelerator pedal and the time consumed
by depressing the accelerator pedal as the basic points for detection.

Similarly, Le et al. installed a master cylinder behind the accelerator pedal of the
vehicle and collected the oil pressure in the cylinder using a pressure sensor. The researchers
also concluded that, when the driver misuses the accelerator pedal as a brake pedal, the
operation is fast and forceful. Consequently, when the accelerator pedal master cylinder
pressure exceeds a certain threshold, the controller closes the valve of the accelerator pedal
master, preventing any further movement of the pedal [6]. Considered together, pedal
misapplication has been relatively poorly studied in driver behavior, and many scholars
have conducted driving simulator experiments to analyze the factors that lead to pedal
misapplication. Moreover, some scholars have also identified the pedal misapplication
using machine learning models or deep learning algorithms to predict the driver’s pedal
operation patterns as well as the pedal misapplication by capturing the driver’s foot camera.
Other scholars have designed remediation systems after pedal misapplication in software
and hardware system design.

However, there is a lack of studies that focus on detecting pedal misapplication by
electric vehicle drivers, particularly electric bus drivers. Furthermore, medical physiologic
instruments are usually not equipped in vehicles, and the images obtained by scene cameras
can be more sensitive to light intensity and installation location. Therefore, in this study,
based on the natural driving data of pure electric buses, the aim was to produce a pedal
misapplication image dataset and construct a model to detect pedal misapplication in
pure electric bus drivers by relying on the excellent feature representation capability of
the CNNs.

3. Our Proposed MDPMEB Algorithm

This section focuses on a brief introduction to the principles of the overall structure of
the MDPMEB algorithm, which includes the theory of phase space reconstruction and the
main structure of the Swin Transformer.

As described in Section 1, the architecture of the model in this paper is illustrated in
Figure 1. Figure 1 depicts the approach of mapping time series data to a high-dimensional
space, the feature extraction and downsampling modules based on the residual structures,
the use of the Swin Transformer structure for self-attentive mechanisms, and provides
additional insights into the Swin Transformer Block module and the Multi-Layer Perceptron
(MLP) structure. Moreover, the sequence data are mapped to a higher dimensional space,
and the RGB images are fed into the residual structure to generate a feature matrix of a
specified size. The input consists of a deep multi-layer Swin Transformer network structure,
which produces a 7 × 7 × 768 feature map. The results of the driver’s pedal behavior are
predicted using adaptive average pooling and fully connected layers.

3.1. Phase Space Reconstruction Method Based on Chaos Theory

Natural driving data collected through the vehicle’s OBD and CAN bus has greater
convenience and robustness; however, the driving data are recorded in time series format.
Although deep learning has excellent feature extraction capability, the tabulated data
cannot be directly fed into the CNNs. To weigh the above contradictions, the sequence data
were mapped to a higher-dimensional space, and RGB images were generated. Research
generally uses the “Takens delay” method for data phase space reconstruction; this method
consists of calculating two parameters of optimal embedding dimension and time delay
in the time series data to map it to higher dimensional space. After obtaining the above
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two parameters, the sequence data can be reconstructed using the Recurrence Plot (RP)
method, so the problem here is actually how to solve the above two parameters.
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Figure 1. Architecture of MDPMEB. (a): driving data (brake segments, each sample has 9 columns
of tabular type data.); (b): phase space reconstruction module (a mapping method based on time
delay method, the input data are changed into gray level map column by column, and then every
three columns are superimposed with the output dimension of 112 × 112 × 3 images, and each
sample outputs three RGB images, and finally splice them in order.); (c): residual network-based
downsampling module; (d): Swin Transformer skeleton (main structure of Swin Transformer, the
numbers below represent the number of this module.); (e): Swin Transformer Block module (where
W-MSA denotes Windows Multi-Head Self-Attention, SW-MSA denotes Shifted Windows Multi-
Head Self-Attention, and MLP denotes Multi-Layer Perceptron); (f): MLP structure (containing a
series of inactivation and Layer Normalization).

In a previous study [35], the authors provided the computational procedure for the
“Takens delay” method to obtain the computation. Iterate over all possible values of the
embedding dimension and the time delay; first construct the statistic, then solve for the
optimal delay time and the optimal embedding dimension.

Assuming a certain sequence {xi} i = 1, 2, . . . , N, the reconstructed Rm elements can
be expressed as follows:

Xk(m, N, τ) =
(

xk, xk+τ , . . . , xk+(m−1)τ

)
, k = 1, 2, . . . , p (1)

with
p = N − (m− 1)τ (2)

where m represents the embedding dimension (usually 2 ≤ m ≤ 5), τ is the time delay, N
indicates the length of the sequence data, and p is the number of vectors in the phase space
of the data embedding.
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Moreover, assuming that yi (i = 1, 2, . . . , O, O = N − (m− 1)τ) is a point in
Equation (1), the correlation integral C of the embedded time series is obtained using
the below equation.

C(m, N, r, τ) =
2

O(O− 1) ∑
1≤i≤k≤O

θ(r− ||yi − yk ||∞) (3)

θHeaviside(x) =
{

0, x < 0
1, x ≥ 1

(4)

where r denotes the search radius, it can be taken as any real number in the range of
[σ/2, 2σ], σ represents the variance of sequence data.

For a certain sequence {xi}i = 1, 2, . . . , N, when splitting {xi} into τ non-overlapping
time series, the statistic S of the sequence is determined as follows:

S(m, N, r, τ) =
1
τ

τ

∑
s=1

[Cs(m,
N
τ

, r, τ)− Cm
s (1,

N
τ

, r, τ)] (5)

Therefore, the extreme deviation ∆S of the statistic S is defined as follows:

∆S = max[S(m, N, r, τ)]−min[S(m, N, r, τ)] (6)

Finally, for a particular series, the mean test statistic S(τ), and the mean statistical
extreme deviation ∆S(τ) are represented in the below equations:

S(τ) =
1

nmnq

nm+1

∑
m=2

nq

∑
q=1

S(m, N, r, τ) (7)

∆S(τ) =
1

nm

nm+1

∑
m=2

∆S(m, N, r, τ) (8)

In addition, combining Equations (7) and (8), Sindex is determined as follows:

Sindex = ∆S(τ) +
∣∣S(τ)∣∣ (9)

Referring to the previous studies, the solutions corresponding to the first zero of S(τ)
and the point of the minimal value of ∆S(τ) are solved, and the smaller solution obtained
from the two equations is considered the optimal delay time τd. After solving the solution
corresponding to the global minimum of Sindex, the optimal embedding dimension md is
calculated based on the τd. Referring to the above method, we solve for md and τd by writing
a piece of Python code. After obtaining the md and the τd, the RP method is used to convert
the input one-dimensional time series data into a matrix of the corresponding dimension.

3.2. Swin Transformer Architecture

The Swin Transformer algorithm was proposed by Microsoft and won the International
Conference on Computer Vision (ICCV) 2021 Best Paper [36]. In the paper, the concept of
SW-MSA was proposed. In the convolution operation, the feature graph was divided into
multiple disjoint regions (windows), and the W-MSA operation was carried out to realize
information sharing among different windows, which greatly enhanced the expression
ability of the network. Moreover, the self-attention mechanism was proposed in 2017, and
the information importance of the input matrix was generated by calculating the weights
between each element through a formula [37]. This mechanism is better at capturing the
internal correlation of information, has fewer parameters, and is faster to compute. Thus,
the algorithm maps the input matrix to a new matrix through Input Embedding and gets
the parameter q, k, v through three transformation matrices. Through mutual matching
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calculation and Softmax processing, the weight of the corresponding input matrix position
is obtained. In more detail, the calculation process is described as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (10)

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

) (11)

where WQ, WK, WV represent the parameters trainable transformation matrices and d
indicate the length of the input vector.

Moreover, the framework of the Swin Transformer is shown in Figure 1d, which
consists of several Swin transformer Blocks with different depths and Patch Merging. This
latter is used to downsample the input feature matrix, split the feature matrix, and then
stitch it according to the position elements. Next, the matrix passes through a LayerNorm
block, and finally, it linearly changes through a fully connected layer (which doubles the
depth of the feature matrix while reducing the height and width to half of their original size).
The structure of the Swin transformer Block is shown in Figure 1e, which mainly consists
of W-MSA and SW-MSA. In the MSA method, the input feature matrix is partitioned into
several sub-matrices through a Self-Attention operation window, whereas SW-MSA divides
the feature map into several regions of different sizes and disjoints, then the different sub-
windows are moved and spliced for Self-Attention operation. Finally, the window positions
are restored, and the operation process is represented in Figure 2. Note that, in this figure,
the input matrix is taken 8 × 8 size as an example after assuming that the window size is
4 × 4; thus, the feature matrix is divided into four windows, and after moving regions A,
B, and C, respectively, the masked MSA calculation is performed. Finally, the new 8 × 8
matrix is obtained by performing another split, and the positions of regions A, B, and C
are restored.
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Figure 2. Calculation process of the SW-MSA method. (a): Suppose a window with 8 × 8 pixels is
divided into nine regions; (b): Adjust the position of the shown regions A, B, C respectively, and
then re-divide them to 4 × 4 pixel size; (c): The MSA calculation is performed on the four regions,
respectively, and a new sub-window is obtained, still 4 × 4 in size. (d): Splice the sub-windows to
obtain a window of size 8 × 8; (e): Move the position of regions A, B, C to obtain a new window.

As shown in Figure 1c, the previous Patch Embedding layer structure is replaced, and
the downsampling network is built using the ResNet structure. Moreover, Figure 1f shows
the MLP module, which consists of a series of LayerNorm, GELU activation functions, and
Dropout deactivation methods.

3.3. Training Based on a Priori Knowledge

The number of self-made datasets in this study did not reach the level of tens of
thousands; moreover, manual production of datasets is extremely time-consuming.
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To prevent MDPMEB from overfitting during training, which leads to poor model
generalization, inspired by the following two studies, we adopt the idea of migration
learning (for example, learning to recognize fruits can help identify animals faster). In
a study on detecting corn tassels, Liu et al. used the YOLO V5 to detect RGB images
captured from a drone [38]. Similarly, in Liu et al.’s study, the number of annotated corn
tassel datasets was small (742), and to avoid deep learning limitations, Liu et al. used the
VisDrone dataset for pre-training. That is, transfer learning uses the source task as the
basis for the target task. In the pre-training process, the target task and the source task are
required to be interrelated; that is, the source task belongs to the classification task, and the
sample size of the dataset used by the source task must be large enough and the quality
good enough [39].

Since the author did not have any self-made dataset that met the conditions, this study
adopted the cat and dog dataset from Kaggle as the pre-training dataset, which was agreed
to be a good classification dataset. Therefore, the model was pre-trained using a public
dataset of dogs and cats, leveraging prior knowledge-based information as the basis for the
target task. Alternatively, the pre-training involves using the learned rules as part of the
training weights for the target task.

4. Experimental Results and Discussion

This section describes the process of conducting the experiment, data preprocessing
details, dataset production, and training results of the MDPMEB. It also examines the
difference in classification accuracy between the MDPMEB and other classification models.

Finally, we conducted the experiments using Pytorch-GPU 1.17.0 and Python 3.7 envi-
ronment implementations on the Ubuntu 18.04 platform. The experimental setup included an
i9-12900K CPU and a NVIDIA RTX3090 GPU. The proposed approach was compared to other
classical methods and performed both ablation experiments and validation experiments.

4.1. Dataset Sources and Collection

This naturalistic driving data collection experiment lasted for about one week in total
and was conducted in Guangzhou and Zhengzhou cities in China. Concerning the bus
driving data collection experiment realized in Guangzhou City, the study chose route 107,
delimited by stations Zhongshan Eighth Road and Flower City Square. The duration of
a single run was approximately 80 min, and the operating hours were between 6 a.m.
and 9 p.m. Buses on this route run in two shifts (morning and evening), with a total of
two drivers involved. Concerning the bus driving data collection experiment realized
in Zhengzhou City, the study chose route B1, delimited by stations Power Plant Road
and Agricultural Road. The duration of a single run was approximately 60 min, and the
operating hours were between 6 a.m. and 9.30 p.m. Buses on this route run in two shifts
(morning and evening), with a total of two drivers involved.

Eventually, in this study, the bus travel data were selected based on the experiments
in Guangzhou City and Zhengzhou City, with a total of two days and a running time of
about 10 h for the first city and a total of four days and a running time of about 40 h for the
second city.

The data acquisition device (Kvaser MemoratorProfessional 5xHS, Produced by Kvaser
Company, R&D headquarters is located in Sweden; Source from authorized distributors lo-
cated in Shanghai, China) was connected to the OBD excuse and the CAN high-voltage/low-
voltage interface to record several operating data points of the bus and the vehicle sensor
signal data, as shown in Figure 3. The acquisition items include the vehicle ignition system,
the gear system, the pedals, the vehicle speed, the braking system, the radar system, the
battery pack, relevant sensor signals of the motor group, etc. Moreover, the acquisition
frequency of the different modules varies from 10 to 100 Hz.
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In the one-week bus-natural driving data collection experiment, stops caused by
drivers entering a station, passing through an intersection, passing through a pavement, or
other unexpected situations were intercepted into clips. Moreover, they were combined
with pedal operation data as well as traveling video data. However, no pedal misap-
plication by drivers was recorded. Therefore, a simulated driver pedal misapplication
experiment in a closed field must be conducted next for further data collection. To ob-
tain more data on pedal misapplication and to consider the safety of the experiment, a
real-world experiment was conducted in a closed field to simulate common types of pedal
misapplication; moreover, the experimental scheme is shown in Table 1.

Table 1. Closed-field pedal misapplication experiment.

No. Driver’s Operation Remarks Speed (km/h)

1

After releasing the
accelerator pedal,
depress the
accelerator pedal

The driver releases the
accelerator pedal and then
quickly depresses the
accelerator pedal with the
strength and speed of an
emergency brake for more
than 5 s.

10/20/30

2 Pressing the accelerator
pedal directly

The driver quickly depresses
the accelerator pedal with the
force and speed of an
emergency brake for more
than 5 s.

10/20/30

3

Press the accelerator
pedal and brake pedal
at the same time with
the right foot

Press the accelerator pedal at
the same time with the
strength and speed of
emergency braking for more
than 5 s.

10/20/30

4

Press the accelerator
pedal with the right
foot and the brake
pedal with the left foot

The driver’s left and right
feet pressed down the brake
pedal and accelerator pedal,
respectively, vigorously for
more than 5 s.

10/20/30

The experiment was conducted at a closed test site. A professional driver who has been
driving buses for more than 10 years was recruited to drive a bus without passengers and
complete the experiment under 4 error types and 3 traveling speeds (as shown in Table 1).
In order to reduce the subjective influence of drivers, each experiment was repeated twice.
For each experiment, the driver could terminate the state of pressing the wrong pedal after
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completing the driving behavior of the experimental protocol (Table 1). Then, brake to stop
according to your usual driving habits at the end of this experiment and wait for the next
experiment. In this study, due to the inherent risks of the experiment, each experiment was
only repeated twice at different vehicle speeds, and a total of 24 datasets for different brake
pedal misapplications were collected at the end of the experiment.

After obtaining the natural driving data of the electric bus and the experimental data
of the closed site, the braking segments were manually selected under operating conditions
such as entering a station, passing through an intersection, and turning. The braking
process was defined as the process from braking intention to braking execution to braking
hold [10]. However, in our study, to enable earlier identification of pedal misapplication,
the training dataset consisted of segments captured 2 s before braking and 1 s after braking.
This “braking” is defined as the moment when the driver needs to slow down and starts to
press the brake pedal, and when the brake pedal opening is significantly higher (judged
by plotting the pedal opening change curve). Of course, in the case of driver error, this
“brake” should be the moment when the driver has the braking intention and steps on
the accelerator pedal. Therefore, the definition of “brake” may need to be determined on
a case-by-case basis. Finally, a piece of raw data were extracted, which means that we
obtained a driver braking dataset with a duration of 3 s.

In this study [10], the authors conducted an analysis and found that the most important
parameters for the identification of pedal misapplication behavior were the vehicle speed,
the motor torque, the accelerator pedal opening, and the brake pedal opening. As part of
this study, a total of four index datasets were selected as input. Furthermore, based on
previous accidents caused by drivers mistakenly stepping on the pedal, it was obvious
that some drivers would steer the wheel randomly due to panic. Therefore, steering wheel
data were also considered in this study. During data pre-processing, the bus company may
not complete the calibration of the radar system, resulting in low reliability of the data;
thus, the data collected by the radar system is also excluded from this research. Therefore,
somewhat different from the input selected by Yuan et al., accelerator pedal opening change
rate, brake pedal opening change rate, and steering wheel angle data were also selected as
model inputs in this study.

Moreover, in this study, 1250 groups of normal braking and 24 groups of pedal
misapplication fragments were obtained. The obtained sequence data were mapped to a
higher dimensional space to obtain 1250 × 9 gray-scale images. After superimposing each
group of brake fragment images, 1253 color images from three channels were obtained.

However, one may notice that there is an imbalanced number of positive and negative
samples in the dataset; however, considering the challenges associated with the safety and
cost of repeated closed-site experiments, Generative Adversarial Networks (GANs) may
be an effective tool to remedy this problem [40]. GAN includes a G (Generator) and a D
(Discriminator). The former is responsible for continuously generating samples similar to
the input data, whereas the latter is charged with judging the authenticity of the samples
output by the generator. Both play games with each other, and eventually generate new
data that is very close to the original.

Hence, in this study, we built a GAN network, took 24 sets of negative sample images
as input, set the training rounds to 500, the learning rate to 0.001, and finally generated 136
images having a size of 224 × 224 × 3. The experimental data were divided into training
sets, validation sets, and test sets, as shown in Table 2.

Table 2. Number of samples in each class.

No. Train Validation Test

Normal braking 800 199 254
Pedal misapplication 100 25 35
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4.2. Parameter Settings

This section describes the details of the hyperparameter settings and network structure
of the MDPMEB model. In more detail, we used a variable learning rate, LambdaLR
optimizer, to optimize the loss function; moreover, the learning rate, as a function of the
epoch, is shown below, with an initial learning rate of lr0 = 0.001. The curve of learning
rate with training batches is shown in Figure 4.

lr = ((1 + cos(4π · epochs/50))/2) · lro (12)
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L2 regularization adds a penalty term to the loss function to prevent overfitting. Both
batches and epochs were used to reduce the computational cost; 64 batches and 50 epochs
were deployed. The window size of the W-MSA was set to 7 × 7, and the Embedding
depth was set to 96. Therefore, the input matrix size of each layer of the MDPMEB model is
shown in Table 3.

Table 3. MDPMEB model architecture.

Step Input Output

Conv(6 × 6, s = 4) 224 × 224 × 3 56 × 56 × 96
Module of residual structure (Figure 1c) 56 × 56 × 96 56 × 56 × 96

Swin Transformer
Block

stage 1

[window size 7 × 7,
head 3] × 2 56 × 56 × 96 28 × 28 × 192
concat 2 × 2,
192-dim, LN

stage 2

[window size 7 × 7,
head 6] × 2 28 × 28 × 192 14 × 14 × 384
concat 2 × 2,
384-dim, LN

stage 3
[window size 7 × 7,

head 12] × 12 14 × 14 × 384 7 × 7 × 768
concat 2 × 2, 768dim, LN

stage 4 [window size 7 × 7,
head 24] × 2 7 × 7 × 768 7 × 7 × 768

FC/AAP AdaptiveAveragePooling 7 × 7 × 768 1 × 1 × 768
FC/Softmax LN 768 2

4.3. Evaluation Parameters

In addition to accuracy, we introduced precision, recall, and fps as the evaluation
indexes of the model’s effectiveness, where precision is the proportion of true positive
samples predicted by the model with respect to the total predicted positive samples, and
recall presents the proportion of true positive samples correctly predicted by the model to
the total true positive samples. Finally, the fps indicates the number of frames per second
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when the model is processed, which reflects the real-time performance of the model. Their
expression formulas are shown below:

accuracy =
TP + TN

TP + TN + FP + FN
(13)

precision =
TP

TP + FP
(14)

recall =
TP

TP + FN
(15)

where TP (True Positive) represents the correct positive example, FN (False Negative)
represents the incorrect negative example, FP (False Positive) represents the incorrect
negative example, and TN (True Negative) represents the correct negative example.

4.4. Comparison of Results

We compared this model with other models from two perspectives: first, with tradi-
tional machine learning models using sequence data as input, we chose isolation Forest
(iForest) and One-Class SVM. Secondly, with the CNN models using images as input,
to explore whether the deep learning model can extract more features and improve the
performance of the model after converting sequences to images, as well as to verify whether
the MDPMEB model with improved Swin Transformer has better performance with other
models.

4.4.1. Comparison with the Machine Learning Models

Among the machine learning classification models, iForest requires small data samples
and has a linear time complexity, high accuracy, and ability to handle high-dimensional
data; moreover, the One Class SVM model is a single classification method that contains
only positive samples in the training set. iForest and One-Class SVM models were built,
trained, tested, and compared to the MDPMEB. The accuracy, precision, and recall results
of the different models were recorded as shown in Table 4.

Table 4. Comparison of models on the testing dataset.

Model Accuracy/% Precision/% Recall/% fps

iForest 88.24 94.0 92.52 137.36
One-Class SVM 88.58 95.46 90.95 89.65

Our model 97.58 98.81 98.43 83.78

It should be noted that the input to the machine learning model is canonical sequence
data, while the input of the MDPMEB has an image data type. The proposed model
outperforms the machine learning model in terms of accuracy, precision, and recall. The
accuracy is about 8% higher than iForest and SVM, whereas the recall is about 6% higher
than iForest and SVM, and the precision is about 3% higher than both models. The results
of this study show that the use of CNNs can indeed improve the recognition accuracy of
the model after converting the sequence data to images.

4.4.2. Comparison with Models of Deep Learning

A side-by-side comparison of the mainstream deep learning frameworks is then
conducted, where the classical Long Short-Term Memory (LSTM), the Residual Network
(ResNet-50), and the EfficientNet V2 were selected to be compared with the proposed
model. The accuracy variations of the model in the training process and the validation
process are shown in Figure 5.
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The results show that: (1) during training, the accuracy of all models except LSTM is
around 95% and tends to converge after the 20th iteration; (2) in training and validation,
the accuracy of our model improves more slowly compared with LSTM and EfficientNet
V2; (3) in training and validation, the stability of the proposed model is the best and its
accuracy is the highest (training set: 97.95% and validation set: 95.55%).

After the training was successfully completed, the models were evaluated using the
dataset. Therefore, Table 5 depicts the performance of the models, and Figure 6 shows the
confusion matrix of the different models over this dataset.

Table 5. Performance of different models on the testing dataset.

Model Accuracy/% Precision/% Recall/% fps

LSTM 89.97 93.65 95.55 70.42
ResNet-50 92.73 95.28 96.41 103.12

EfficientNet V2 96.54 98.03 98.03 92.81
DenseNet 95.50 97.63 97.25 91.53
Our model 97.58 98.81 98.43 83.78

The results show that: (1) compared to the classical LSTM and ResNet frameworks,
the proposed model has excellent performance at the level of accuracy and recall, where
the first one is higher than 7.61% and 4.85%, and the second one is higher than 2.88% and
2.01%, respectively; (2) although the difference between the performance of EfficientNet
V2, DenseNet, and the proposed model in the test set is not large, our model still performs
better than them in the overall performance of check-all rate and accuracy; (3) due to
the shallow network depth of LSTM and ResNet and the deeper network layers of the
proposed model, we sacrifice a certain operation speed; thus, our model has a lower frame
rate of 83 fps when computing the performance of fps; (4) The shallow networks, such
as LSTM and ResNet-50, perform poorly in terms of checking the full rate, and they are
less effective in identifying the negative samples. Both EfficientNet V2, DenseNet, and
the proposed model perform better when recognizing positive samples (normal pedal
operation). However, our model also shows a better level of recognition of the negative
samples (pedal misapplication).
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4.5. Ablation Experiment of MDPMEB

The model in this study is based on the ResNet structure and the idea of Swin Trans-
former, and, based on the original Swin transformer network, part of the layer structure of
Swin transformer Block is streamlined, whereas the Patch Embedding layer of the original
network is replaced by the ResNet structure. Due to the difficulty of the experimental
implementation of real vehicle pedal misapplication, the dataset in this work has unbal-
anced positive and negative samples. To avoid overfitting the model on less data and to
improve its generalization ability to better learn the classification task, a public dataset
for pre-training the network layer weights was deployed. SW-MSA is an important idea
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proposed by Swin transformer architecture, and how much this component contributes to
the model is also a question worth discussing.

We tested the contribution of the different components by disabling one of the above
components of MDPMEB, trained without prior knowledge (our model no p-t), down
sampled without ResNet structure (our model no R-s), and without SW-MSA structure (our
model no SW-MSA), respectively, and their performance on the training and validation sets
is shown in Figure 7. Finally, Table 6 provides the evaluation results of the model when
applied to the testing dataset.
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Table 6. Comparison of the evaluation indicators on the testing dataset.

Model Accuracy/% Precision/% Recall/% fps

Our model no p-t 96.89 98.82 97.67 90.91
Our model no R-s 97.23 98.03 98.81 85.36

Our model no SW-MSA 95.35 97.60 97.21 95.09
Our model 97.58 98.81 98.43 83.78

Referring to Figure 7, all models can converge after a certain number of iterations, and
the accuracy is above 95%, with excellent performance in the verification set. However,
after disabling the prior knowledge module, the convergence speed of the model decreases
obviously, and the generalization ability decreases in a small range. Moreover, in the
training stage, after disabling the prior knowledge weight, no significant gap is encountered
in the performance of the optimal accuracy compared to our proposed model, and the
performance decreases by about 0.5%. When the residual module is disabled in the early
stages of model training, the feature extraction ability of the model slightly decreases;
however, this is not very obvious. However, in the verification dataset, the accuracy
rate of the model decreases by 1.0% after disabling the residual module. When the SW-
MSA method is disabled, the average accuracy in model training decreases by about 2%
compared to models with no components disabled. In the validation dataset, as the number
of iterations increases, the accuracy of models with SW-MSA disabled fluctuates greatly,
and the average accuracy decreases by about 4%.

In the testing phase, the a priori knowledge pretraining, residual modules, and SW-
MSA contribute 0.69%, 0.35%, and 2.23%, respectively, without having a significant differ-
ence at the level of the accuracy metrics. However, after disabling the prior knowledge
preload module, residual structure, and SW-MSA components, the frame rate of the model
improved by 2 to 11 frames; however, we still believe that it is meaningful to use these
components to improve the work of the model. These findings indicate that, thanks to
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the powerful data representation capability of Swin Transformer, the use of the prior
knowledge-based preloading module and the residual structure down sampling module is
beneficial for improving the generalization ability of the model and can prevent it from
overfitting on a small dataset.

Unlike previous studies [19,23], this work did not use foot position data and driver
physiological data as model inputs but instead used driving data [34] collected by acqui-
sition modules such as OBD or CAN as inputs. Therefore, the optimal accuracy of our
model was 1.87% and 6.18% higher than the detection models established by Bareiss et al.
and Wu et al., respectively. Meanwhile, our study avoids using cameras or physiologic
instruments in the vehicle. Of course, the authors of this article are not denying that the use
of video sensors and physiological instruments can help better identify driver behavior;
however, in this research, it may not be worth the cost. Compared to a previous study [10],
the braking segment changed from 2 s before and after braking to 2 s before and 1 s after
braking. However, the accuracy of our model only decreased by 1.92%, which means that
the recognition time of pedal misapplication behavior by this model was fully ahead by 1 s.

5. Conclusions and Future Work

In this study, we mainly performed PMEB detection, natural driving data collection
experiments, and pedal misapplication field experiments for pure electric buses. The
driver’s normal braking and pedal misapplication segments of 1253 and 24 groups were
manually screened, and a CNN model, based on phase space reconstruction theory, was
built to map the time series data to a higher dimensional space in order to produce a pure
electric bus driver pedal operation behavior image dataset. This study builds MDPMEB
based on the Swin Transformer network and ResNet principles to realize the detection of
driver pedal operation misapplication.

Moreover, to prevent the model from overfitting on a small dataset, a pre-training is
conducted using the cat-dog public dataset, and the results show that the prior knowledge-
based weight preloading module can improve the generalization ability of the model and
help to enhance the performance of the PMEB detection task. Moreover, the findings show
that combining serialized vehicle driving data with deep convolutional neural networks
can quickly and accurately detect pedal misapplication by electric bus drivers. Therefore,
based on previous research, this study further explores the analysis of pedal misapplication
detection by pure electric bus drivers, which is in line with the current era that promotes
bus electrification around the world, and the model can detect normal/abnormal pedal
operation of electric bus drivers; thus, a theoretical solution for on-board driver monitoring
systems is provided.

There are certain shortcomings in this study. Due to the experimental conditions,
the sample size of the dataset in this work is small, and there is a certain problem with
an unbalanced dataset. To solve this problem, more drivers could be recruited to carry
out pedal misapplication experiments in closed fields. In the closed-field experiment, we
were unable to recruit a larger number of drivers within the limited time frame. Therefore,
only one professional driver participated and completed the experiment. Although each
experiment was conducted twice, it was still challenging to eliminate the influence of
subjective factors associated with the driver. Although we use the GAN network to
optimize the problem of sample imbalance, it does not fundamentally solve this problem.
According to relevant studies, oversampling techniques may be an additional effective
method [41].

Another aspect that cannot be ignored is that some sensors may accumulate errors,
such as accelerometers, gyroscopes, and radars [42,43]. For instance, Liu et al. discovered
that while the Inertial Measurement Unit (IMU) provides independent three-axis accelera-
tion and angular velocity information without relying on external data, it can still lead to
an increase in errors within accelerometers due to prolonged integration operations.

Additionally, Xia et al. designed and developed a data acquisition platform for
autonomous vehicles to process multi-source sensor data [43]. They observed that due to
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the sparsity of radar point cloud data, the obtained sensor data contained certain noises and
outliers. To address this, they employed Kalman filters and Chi-square tests for denoising
processing. Although we did not utilize point cloud data in this study, outliers may also
arise during vehicle operation, such as in speed sensor readings. We did not conduct
noise processing during data analysis, which might have had a detrimental impact on the
research results.

In future work, we plan to carry out a real vehicle experiment in a closed field again
to collect experimental data from different drivers and try to generate small sample data
by oversampling or using an improved loss function to further solve the problem of data
imbalance. Finally, in this study, we did not consider the influence of drivers’ demographic
characteristics (e.g., education level, driving age) on this study. In the future, we can encode
driver characteristics and incorporate them into input parameters.
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