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Abstract: The objective of this article is to develop a methodology for selecting the appropriate
number of clusters to group and identify human postures using neural networks with unsupervised
self-organizing maps. Although unsupervised clustering algorithms have proven effective in recog-
nizing human postures, many works are limited to testing which data are correctly or incorrectly
recognized. They often neglect the task of selecting the appropriate number of groups (where the
number of clusters corresponds to the number of output neurons, i.e., the number of postures) using
clustering quality assessments. The use of quality scores to determine the number of clusters frees the
expert to make subjective decisions about the number of postures, enabling the use of unsupervised
learning. Due to high dimensionality and data variability, expert decisions (referred to as data
labeling) can be difficult and time-consuming. In our case, there is no manual labeling step. We
introduce a new clustering quality score: the discriminant score (DS). We describe the process of
selecting the most suitable number of postures using human activity records captured by RGB-D
cameras. Comparative studies on the usefulness of popular clustering quality scores—such as the
silhouette coefficient, Dunn index, Calinski–Harabasz index, Davies–Bouldin index, and DS—for
posture classification tasks are presented, along with graphical illustrations of the results produced
by DS. The findings show that DS offers good quality in posture recognition, effectively following
postural transitions and similarities.

Keywords: clustering quality; self-organizing maps (SOM); human posture classification

1. Introduction

Recognizing human posture is crucial in a variety of application areas. Maintaining
proper posture is important for injury prevention and good performance during sports and
fitness [1]. In the field of ergonomics, the design and assessment of interventions aimed
at reducing the risk of occupational injuries and enhancing productivity can be achieved
based on posture information [2]. Posture recognition also has significant applications in
surveillance and security sectors [3], such as in biometric authentication and access control
systems. In robotics, human posture recognition is relevant for planning the actions of
assistive robots [4]. Advancements in computer vision and machine learning technologies
facilitate the automatic recognition of human posture utilizing images, depth data, accel-
eration, rotation, and orientation data of the human body [5,6]. Several machine learning
methods have been utilized in human posture recognition, such as support vector machines
(SVMs) [7–9], probabilistic models [10,11], decision trees [12], and K-nearest neighbor
(KNN) [13]. However, traditional methods struggle with managing data complexity and
extracting semantic information. Deep learning networks, unlike traditional machine learn-
ing algorithms, are capable of abstracting complex patterns in data by leveraging low-level
feature information embedded within the data [14]. However, deep learning typically
demands substantial data and computational resources for good performance.

While classic clustering algorithms have their limitations, they remain proficient in
human posture recognition [15]. These algorithms categorize data points into clusters
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based on shared characteristics (a data point corresponds to a specific posture captured
at a particular time frame). The K-means clustering algorithm is widely used for parti-
tioning data based on mean values. Alternatively, self-organizing maps (SOMs) employ
neural networks with adaptive weights for data clustering [16,17]. During training, SOMs
modify their weights to reduce the distance between the vector of weights and the input
data vector. Trained SOMs efficiently group similar data points together; hence, they are
suitable for analyzing and categorizing diverse postures in human posture recognition
tasks. Recognizing actions by a sequence of postures does not require distinguishing
postures between successive recording frames. In classic interpretation, posture is asso-
ciated with kinematic configuration (e.g., the elbow joint directed ‘inwards’, the elbow
joint ‘outwards’, maintaining an acute or open angle in the knee joint, holding the trunk
upright or inclined, etc.). This does not mean that the angular positions are fixed; they
vary within a range that maintains a certain posture. This can be observed with humanoid
robots imitating human movements, as described in [18–21]. Over-segmenting postures
by choosing an excessive number of clusters complicates recognition. Moreover, activities
executed by diverse individuals or under varying conditions might be characterized by
minutely different postural data. Excessive clustering might lead to these being grouped
separately, resulting in varying postural sequences for identical activities. This makes
the method overly sensitive to contextual changes. On the other hand, having too few
clusters could neglect essential postures that are crucial to specific activities. In cluster-
ing analysis, determining the appropriate number of clusters is an important factor that
remains significantly challenging, often requiring repeated application of the clustering
algorithm with modified parameters [22]. The number of clusters impacts the clustering
performance [23–25]. Methods that select this number without assessing the clustering
quality are inadequate. Moreover, the spatial contexts of human activities, whether indoors
or outdoors, introduce additional complexities. Additionally, relying solely on a single
distance metric (e.g., the Euclidean distance) for cluster quality assessments may not be
the most effective approach [26]. Therefore, efficient methods for selecting the appropriate
number of clusters are necessary. This article introduces a new clustering quality score
and applies it to the task of classifying human postures. Other commonly known scores
are introduced for the first time in posture classification, considering the state of the art.
Describing these known scores alongside the new one allows for appropriate comparisons
and analyses. It allows for illustrating the properties of the new score in relation to the
characteristics of the known scores.

2. State of the Art

Human activity recognition plays a pivotal role in human–robot interaction (HRI)
systems [3,27]. It involves discerning sequences of postures, which can be identified with
varying degrees of precision. Yet, for effective recognition of human activities based on
posture, it is crucial to pinpoint distinct key postures. Despite advancements, current
recognition techniques have yet to reach optimal performance and often struggle with
insufficient quality. When utilizing SOMs, it is important to ensure that the algorithm
produces meaningful and coherent clusters.

Clustering quality evaluation also provides additional insight into the underlying
structure of data, which is especially important [28] in real-world applications. Quality
assessment techniques can be divided into internal and external clustering validity meth-
ods [29]. Internal methods e.g., the silhouette coefficient, Dunn index, Davies–Bouldin
index, and Calinski–Harabasz index, evaluate clustering quality based on the data distri-
bution and inter-cluster relationships. External methods compare the clustering results
with ground-truth data, gauging to what extent the resulting clusters match the external
labels, e.g., accuracy, precision, recall, and entropy [30]. Many recent works offer various
insights into the process of determining the number of clusters in a dataset. Reference [31]
investigated various combinations of stopping rules and clustering algorithms in an effort
to determine the number of clusters in an artificially generated dataset. Their findings
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suggest that the number of clusters is significantly influenced by the clustering algorithm
choice. On the other hand, the clustering algorithm selection is difficult without cluster
validation methods. Alexander et al. [32] proposed a novel approach to determine the
most reliable number of clusters for a couple of unsupervised machine learning algorithms.
This approach utilized a parametric model featuring a rate–distortion curve. The key
problem involved the introduction of the cost parameter, which characterizes the data
dimensionality and homogeneity. While this parameter influences clustering results, it also
adds to the method’s complexity and makes the process more reliant on the data structure.
Ramazan et al. [33] applied 4 indices to estimate the best number of clusters for the K-means
and consensus clustering algorithms, namely, silhouette (SH), Calinski-–Harabasz (CH),
Davies–Bouldin (DB), and consensus (CI). In reference [34], the authors demonstrated that
clustering stability testing can help to estimate the correct number of clusters. An extensive
overview of these methods is provided in reference [35]. However, the effectiveness of these
methods is highly dependent on the distribution of the data and can be a disadvantage
when the data do not form well-separated clusters or represent clusters of unequal density.

In the study presented in [36], self-organizing maps (SOMs) were used to identify
sources of groundwater salinity using hydrochemical data. The clustering quality of this
SOM algorithm was assessed using the silhouette score. The silhouette score was also
employed to establish the superiority of the clustering quality of a structural self-organizing
map (S-SOM) used for synoptic weather typing [37]. The research highlights the versatility
of the silhouette score in processing various types of data. However, for more robust and
reliable decisions, it is evident that additional cluster validity indices (CVIs) are essential.
This was applied in works such as [31], where the silhouette and Dunn indices were used
to validate the SOM and K-means algorithms for classifying employees based on their
disciplinary abilities. Other works applied different CVIs, e.g., Xiao et al. [38] proposed a
hierarchical K-means algorithm that incorporates the Davies–Bouldin index as a metric,
enabling the efficient identification of the number of clusters while minimizing computation
time and costs. Caglar et al. [39] showed the effectiveness of the Calinski–Harabasz index
as a robust cluster validation measure; it surpassed the performance of the Jaccard index
and F-score in the clustering evaluation of cervical cells. Some relevant works on human
posture recognition have also employed the aforementioned CVI for both supervised and
unsupervised learning techniques [40–45]. The clustering validation used in the literature
applies diverse assumptions about factors determining good clustering, e.g., compactness
and separation, which may not align with the structures of the data or the specific problem
at hand. It usually provides a single solution as the appropriate number of clusters, even if
several solutions may be equally valid, depending on the context.

Overall, determining the most suitable number of clusters is an ongoing research
topic. The proposed methods are mostly dependent on the nature of the datasets and
underlying assumptions. As a result, these methods are more likely effective as guidance
frameworks, rather than definitive solutions. A review of the literature suggests that prior
studies have employed a limited number of clustering evaluation validity scores, with
minimal emphasis on domain knowledge or context of the specific problem. Furthermore,
only a handful of these studies have applied these scores to SOM-based NNs.

This work is organized as follows: In Section 3, we discuss the relevance of the
research problem and highlight the challenges and motivation of performing clustering
quality, Section 4 describes the data acquisition process and introduces the learning process
of the SOM neural network, Section 5 introduces the applied clustering validity scores,
and Section 6 details the results. This work describes the impacts of different factors, on
classification performance, including the number of clusters (equivalent to the number of
output neurons) and the type of distance metric. Section 7 concludes the work by discussing
the findings and their relevance for human posture classification. It addresses potential
limitations, proposes future research directions, and summarizes the key contributions of
this work.
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3. Problem Statement

Supervised learning requires human experts to label the training dataset, meaning they
must designate to which group or cluster each data point belongs to. The main challenge
in analyzing postures is the high dimensionality and variability of the data. In the context
of the considered problem, traditional supervised classification would compel experts to
laboriously define (label) the postures. In contrast, clustering techniques eliminate the need
for human labeling, which not only demands expertise but is also time-consuming and de-
mands significant attention [46]. Moreover, human decisions are subjective. Unfortunately,
unsupervised clustering methods utilized for recognizing postures can suffer from insuffi-
cient evaluations of results; therefore, efficient and problem-oriented quality assessments
are essential. This is challenging due to the subjectivity in posture extraction. Additionally,
human expertise alone cannot identify key characteristics of the data. To address these
limitations, a methodology for selecting a suitable number of clusters and a comparative
analysis of the clustering performances are presented in this work. This eliminates the need
for manual labeling while ensuring proper posture classification performance. Unlike prior
studies that utilized a limited number of clustering quality scores, our results are derived
using 5 distinct CVIs, e.g., the discriminant score, silhouette coefficient (or silhouette score,
SC), Dunn index (DI), Davies–Bouldin index (DB), and Calinski–Harabasz index (CH).
Additionally, the classic quantization error (QE) is taken into account.

The NN was trained to recognize sequences of postures that are typical for selected
human activities. During the testing phase, data from both the chosen activity and an-
other related activity (featuring similar postures) were employed. The primary objective
was to determine the suitable number of postures that best described the activities and
allowed capturing posture transitions effectively. The clustering quality score allows for the
study of the relationship between postures, shedding light on both feasible and infeasible
posture transitions.

4. Data Gathering and the Posture Recognition Method

Two ZED RGB-D vision sensors were used to collect human 3D-skeleton data, consist-
ing of body point coordinates. Two activities considered in this work are part of our larger
dataset, which consists of over 20 human activities recorded in 2 different laboratories, con-
sidering cultural aspects and different scenarios. The laboratories are located in a European
country and Japan. The presented research focuses solely on the methodology, excluding
data processing, training, and testing of the applied neural network. These problems
were comprehensively covered in our previous publication [47,48], which also included an
assessment of clustering results, a computational efficiency evaluation, a comparison to
other classification methods, and a parameter selection process. Data used in the presented
research were collected from 4 healthy participants who executed each activity 3 times,
resulting in 12 records for an activity. Considering the so-called training activity (TA),
10 recordings were used for training and 2 for testing. For the non-training activity (UA),
2 recordings were used for testing. Data were recorded at a rate of 15 fps, with a resolution
of 3840× 1080. The training dataset was composed of 25,048 sample frames; 19 human
body points were chosen for posture representation. The training activity (TA), from which
10 recordings were used for training the NN, consisted of picking up an object from the
floor, walking, and placing the object on the table. The second activity used for testing
consisted of walking, grabbing the cart, and pulling the cart. The activities were recorded
in the sagittal plane (camera 1) and at a viewing angle of 50◦ degrees (camera 2). Further
details on the setup are presented in [47].

SOMs, also known as Kohonen Maps, are effective tools for analyzing complex unla-
beled data. The SOM-NN learns by establishing a configuration of neurons, where each
neuron symbolizes a cluster (group of data points). Each neuron has a weight vector of the
same dimensionality as the input data. Firstly, the random weights (e.g., using uniform
or Gaussian distribution) are assigned to the neurons. These weights are then updated
during the learning process to match the input data by finding the ‘winning neuron’, i.e.,
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the neuron with weights that are closest to the input data vector in terms of considered
distance. This process is iterated over all input data vectors, leading to distinct clusters that
represent postures with similar features.

5. Applied Scores

As already mentioned, when applying the SOMs, it is imperative to use scores that help
in selecting the most suitable number of postures for a given problem [49]. In this research,
the most popular scores, namely the silhouette coefficient, Dunn index, Calinski–Harabasz
index, Davies–Bouldin index, and quantization error were used together with the novel
discriminant score. The silhouette coefficient takes into account the pairwise intra-cluster
and inter-cluster distances for cluster quality assessments. The Dunn index identifies
groups of clusters that exhibit both compactness and low variance among their members.
The Calinski–Harabasz index is characterized by the ratio of inter-cluster dispersion to
intra-cluster dispersion for all clusters. The Davies–Bouldin index expresses the similarity
between clusters. The discriminant score allows for evaluating the separability of classes.
Table 1 introduces the basic notation used for the clustering score definition.

Table 1. Basic notation.

Notation Description
N total number of samples
M total number of clusters
fj j-th data point,

j = 1,. . . , N
cm m-th cluster,

m = 1,. . . , M
Km number of data points

assigned to cluster cm
fcm

k data point assigned to cm,
k = 1, . . . , Km

ccm centroid of cluster cm
cc centroid of all clusters

wm the weights vector of the m-th
output neuron

dMe(x, y) the distance between x and y
obtained with Me = {Cos, Euc}

metrics, x = {fj, cm}
y = {wm, cn}

dMe
min(x, y) minimum distance between x and y
| • | absolute value of •
|| • || Euclidean distance

The silhouette coefficient:
The silhouette coefficient [50] is a good tool for evaluating the performance of cluster-

ing algorithms especially in high-dimensional datasets where direct visualization of results
is limited. A graphical representation of the coefficient allows visualizing how well data
points fit into their assigned clusters. Let us denote by āc,

m(k) the average distance between
the data point fcm

k and all other data points fcm
kk assigned to the same cluster (kk 6= k):

ācm
m (k) =

1
Km − 1

Km

∑
kk=1

dMe(fcm
k , fcm

kk ), kk 6= k (1)

The minimum of the average distances between data point fcm
k and the data points

assigned to each other cluster is denoted by b̄cm
min(k) and obtained as follows:

b̄cm
min(k) = min

m1

( 1
Km1

Km1

∑
k1=1

dMe(fcm
k , fcm1

k1 )
)

(2)
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where m1 = 1, . . . , M and m1 6= m. the silhouette coefficient for data point fcm
k assigned to

cluster cm is expressed by:

SCcm(k) =
ācm

m (k)− b̄cm
min(k)

max(ācm
m (k), b̄cm

min(k))
(3)

The silhouette coefficient ranges between −1 and 1. A score of 1 indicates good
classification, meaning a data point is closer to members of its own cluster than to those in
other clusters. Near 0 is still a good classification, although distances between a data point
and members of its own cluster and a neighboring cluster are close, implying the potential
of cluster overlapping. A negative score signifies miss-classification, with the data point
being closer to the other clusters.

The Dunn index: The Dunn index [51] aims to maximize the distance between
clusters while minimizing the distance within clusters. Let dMe

max( f f cm) denote the maximum
distance between any 2 data points, k and kk, assigned to the same cluster:

dmax(k, kk) = max
k 6=kk

(
dMe

cm (fcm
k , fcm

kk )
)

(4)

Another value considered in this criterion is the minimum distance between the cluster
centroids:

dcmin = min
m 6=m1

(
dMe

cm (ccm, ccm1)
)

(5)

The Dunn index (DI) is expressed by

DI =
dcmin

dmax(k, kk)
(6)

The DI ranges from 0 to ∞. A higher DI indicates better clustering results, with
well-separated clusters and minimal overlap.

Davies–Bouldin index: This index shows how well-separated and distinct the clusters
are, taking into account the ‘within-class’ similarity and the ‘between-class’ similarity.
The index takes into account the average distance from each data point in cluster cm to
its centroid:

āv(m) =
1

Km

Km

∑
k=1

dMe(fcm
k , ccm) (7)

This average is calculated for each M cluster separately. The next parameter is the
distance between the centroids of clusters:

d(m, m1) = dMe(ccm, ccm1) (8)

where m 6= m1. For each pair of clusters (denoted as clusters m and m1), the sum of the
average distances is divided by the distance between their centroids:

dav(m, m1) =
āv(m) + āv(m1)

d(m, m1)
(9)

For each cluster m, the maximum of dav(m, m1) (m 6= m1) is obtained. Summing these
maxima across all clusters yields the Davies–Bouldin index:

davmax(m) = max
m1

(
dav(m, m1)

)
DBI =

M

∑
m=1

davmax(m)
(10)
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h ranges from 0 to positive infinity. A smaller DBI indicates better clustering per-
formance. Values close to 0 represent well-separated and distinct clusters. A higher DBI
indicates poorer clustering results, where clusters may be overlapping or poorly separated.

Calinski–Harabasz index: The Calinski–Harabasz index [52] shows how well-separated
and dense the clusters are. The clustering quality is characterized by the ratio of inter-cluster
dispersion to intra-cluster dispersion, using the Euclidean distance.

CH =

[
∑M

m=1 Km‖ccm − c‖2
]
/(M− 1)[

∑M
m=1 ∑Km

j=1 ‖f
cm
k − ccm‖2

]
/(N −M)

(11)

where M is the number of clusters, Km is the number of samples in cluster m, cm is the
centroid of cluster m, c is the centroid of the entire dataset, f j is the individual data sample
in cluster m, and N is the total number of samples in the dataset (N > M). A higher CH
index indicates better clustering performance.

Quantization error: The quantization error [53] is another measure used to evaluate
the performance of the NN. It applies the cosine distance between each data point and its
best matching unit (BMU), which creates a measure of dissimilarity between the data point
and the learned representation in the SOM. Minimizing the quantization error helps to
improve the accuracy and quality of clustering. The quantization error of a data point j is
expressed by:

QE(j) = |dMe
min
m

( f j, wm)|2 (12)

where m = 1, . . . , M and Me represent the cosine metric.
Unlike the other scores, the quantization error illustrates how the clustering quality

changes over the training process. The better the concentration of data around BMU, the
lower the error.

Discriminant score: As proposed by us, the discriminant score focuses on intra-
cluster similarity and inter-cluster dissimilarity, enabling the evaluation of the clustering
algorithm’s performance in separating data points into distinct classes. The discriminant
score provides value for each data point (each posture). It is the normalized inverse of
the posture distance from the cluster centroid. This value is divided by the sum of the
minimum distances between this data point and the centroids of all clusters. It indicates
how similar a posture is to the posture representing the cluster centroids, taking into
account the dispersion of clusters (this is included in the denominator). This score can be
obtained using cosine and Euclidean distances, as follows:

dCos(fj, ccm) = 1−
fj · ccm

‖fj‖‖ccm‖
dEuc(fj, ccm) = ||fj − ccm||

(13)

The term dMe(fj, ccm) indicates how close the data vector fj is to the centroid ccm

of each cluster. A smaller dMe(fj, ccm) signifies better similarity. When the data vector
overlaps with the cluster’s centroid, then the distance is equal to 0. To express how ‘strong’
the classification result is and compare it with outcomes from other clusters, we take the
inverse of the distance and divide it by the sum of distances obtained for all data vectors.
This is expressed by

i f dMe(fj, ccm) 6= 0

then aMe(fj, ccm) =
1

|dMe(fj, ccm)|

and DSm(k) =
aMe(fj, ccm)

∑M
m=1 |dMe

min(fj, ccm)|
i f dMe(fj, ccm) = 0 then DSm(k) = 1

(14)
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The score takes values from 0 to 1. A higher value of DSm(k) means higher confidence
in the correctness of the classification result. Hence, perfect similarity is 1 and no similarity
is 0. The DSm(k) measures obtained for all clusters allow us to discern how similar or
distinct the postures are. Moreover, the DSm(k) drawings describe the postural transitions,
which will be presented in more detail in the following section.

6. Evaluation of Clustering Quality
6.1. Approach

Two activities—training (TA) and unseen non-training (UA)—were used to determine
the appropriate number of characteristic postures (the number of clusters). For the consid-
ered TA activity, 4 configurations comprising 3, 4, 5, and 6 output neurons (clusters) were
indicated as possible class numbers by a human expert. However, the expert did not assign
the postures to the clusters.

The discriminant score was applied to NNs trained using both cosine distance and
Euclidean distance as criteria for updating the weights. The remaining applied scores
(CVIs) were computed for NNs trained using only the cosine distance. This is because such
NNs demonstrate greater flexibility with a variable number of outputs. In contrast, the
NN trained using the Euclidean distance tended to consistently identify only 3 clusters for
the various expected clusters; therefore, subsequent clustering quality evaluation using DS
was not needed. When determining the DI, the cosine distance was used for NNs trained
with the cosine distance, and the Euclidean distance was used for NNs trained with the
Euclidean distance. For other criteria with optional distance selections, the cosine distance
was used, according to the literature.

6.2. Results

I. The silhouette coefficient (SC): Regarding the SC, each graph in Figure 1 represents
the silhouette plots for 3, 4, 5, and 6 output configurations.

Figure 1. Silhouette score plots: (a) 3 clusters, (b) 4 clusters, (c) 5 clusters, and (d) 6 clusters.

Each cluster is color-coded in the silhouette plot, with the red line indicating the
average silhouette score. The plot with 3 clusters has the highest average score and minimal
misclassification, particularly in cluster 1. Plots with 4 and 5 clusters show little misclassi-
fication and lower average SCs, while plots with 6 clusters reveal unbalanced data sizes.
Despite all clusters exceeding the average score, clusters 0 and 1 are significantly smaller.

II. The Dunn index: The analysis shows that the configuration with 5 clusters has
the highest DI (Figure 2), which means better clustering quality due to better separation
and compactness. The configuration with 3 clusters also has a high index, indicating good
cluster separation.
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Figure 2. Dunn index for 3, 4, 5, and 6 clusters.

III. Davies–Bouldin index: Upon evaluating the quality of the clustering solutions
with different cluster numbers (3, 4, 5, and 6), the index for the solution with 5 clusters
was the lowest compared to the other configurations (see Figure 3). This suggests that
clustering with 5 clusters leads to better separation and compactness of clusters.

Figure 3. DB index for 3, 4, 5, and 6 clusters.

IV. Calinski–Harabasz index (CH): When evaluating the CH index, the configuration
with 4 clusters is the best compared to the others. It has the highest value in comparison to
the other configurations (see Figure 4). Certainly, a higher CH index value means that the
clusters are dense and well-separated. However, there is no ‘acceptable’ cut-off value, and
we need to choose the solution that provides a peak or at least an abrupt elbow on the line
plot of CH indices.
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Figure 4. The Calinski-Harabasz index for 3, 4, 5, and 6 clusters.

V. Quantization error: Figure 5 illustrates the training and testing QEs of all 4 SOM
configurations. In this figure, each NN shows a significantly low quantization error, with
the lowest observed in the training data. The NN with 6 outputs has the smallest error (0.04
in training, 0.053 in testing). The errors were larger for the NNs with 5, 4, and 3 outputs,
respectively, with errors increasing as the number of output neurons (clusters) decreased.

(a) (b)

Figure 5. Quantization errors for TA: (a) training data, and (b) testing data.

The results confirm that QE minimization leads to stronger grouping of the data.
This means it produces numerous clusters where the data points are closer to the cluster
centroids.

VI. Discriminant score:
A. NN trained using cosine distance: For the architecture with 3 clusters, the follow-

ing postures were indicated: ‘walking’, ‘picking’, and ‘walking with extended hands’, with
a maximum score of 0.97 (see Figure 6a). When testing with a configuration of 3 clusters
using the UA activity, the same 3 groups of postures were also recognized (see Figure 6b),
as shown in Table 2. The postures represented by the highest peaks in the discriminant
score plots exhibit the highest discriminant values and are highlighted with circled peaks
for identifying the winning postures in the activity’s particular frame range.

The NN configuration with 4 clusters successfully identified 4 distinct postures during
testing, namely ‘walking with extended hands’, ‘walking’, ‘placing’, and ‘picking’. For
these postures, the discriminant score was high, reaching 0.9 (Figure 7a).

When testing with UA activity, the NN configuration with 4 clusters only recognized
2 posture classes (‘walking’ and ‘placing’), achieving a maximum discriminant score of 0.68
for ‘placing’ (Figure 7b). The ‘walking with extended hands’ posture was not recognized in
this case, despite having a short instant discriminant score of 0.56.
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The NN configuration with 5 clusters effectively identified the same postures as the
configuration with 4 clusters, but it also included a fifth posture (squatting). However,
this additional posture exhibited a low discriminant score of 0.44 and was visible in only a
limited number of frames, as illustrated in Figure 8a.

When testing with the UA activity, the NN configuration with 5 clusters recognized
2 distinct posture classes, with the highest class achieving a maximum score of 0.65

Upon testing the NN configuration with 6 clusters, 4 posture classes (referred to in
Figure 9) out of the 6 selected clusters were recognized. This is consistent with the results
obtained in the configurations with 4 and 5 clusters. The remaining 2 clusters could not be
readily linked to specific postures and were labeled as unknown. The highest discriminant
score recorded for the recognized postures was 0.82. Upon testing the UA activity, the
neural network successfully recognized 2 postures.

Table 2 displays the highest discriminant scores achieved for the evaluated neural
network architectures utilizing cosine distance during training.

(a)

(b)

Figure 6. Discriminant score plot of the NN trained for 3 outputs, using the cosine distance: (a) TA
activity, (b) UA activity.
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Table 2. Maximum discriminant scores for the TA and UA activities.

Activity Number of Clusters Semantic Meaning Max DS

Training activity (TA)

3
Walking 0.81
Picking 0.97

Walking with extended hands 0.78

4

Walking 0.71
Picking 0.90

Walking with extended hands 0.78
Placing 0.60

5

Walking 0.61
Squatting 0.44
Picking 0.84

Walking with extended hands 0.63
Placing 0.64

6

Walking 0.66
Picking 0.82

Walking with extended hands 0.70
Placing 0.59

Unknown posture 0.32
Unknown posture 0.39

Non-training activity (UA)

3
Walking 0.60
Picking 0.84

Walking with extended hands 0.65

4

Walking 0.59
Picking 0.44

Walking with extended hands 0.56
Placing 0.68

5

Walking 0.54
Squatting 0.43
Picking 0.38

Walking with extended hands 0.42
Placing 0.65

6

Walking 0.48
Picking 0.32

Walking with extended hands 0.41
Placing 0.56

Unknown posture 0.53
Unknown posture 0.42

(a)

Figure 7. Cont.
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(b)

Figure 7. Discriminant score plot of the NN trained for 4 outputs, using the cosine distance: (a) TA
activity, (b) UA activity.

(a)

(b)

Figure 8. Discriminant score plot of the NN trained for 5 outputs, using the cosine distance: (a) TA
activity, (b) UA activity.
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(a)

(b)

Figure 9. Discriminant score plot of the NN trained for 6 outputs, using the cosine distance: (a) TA
activity, (b) UA activity.

B. NN trained using Euclidean distance: When the neural network was trained
using the Euclidean distance, the discriminant score plots consistently identified 3 posture
classes, irrespective of changes in the number of output neurons (or number of clusters).
Figures 10–13 show the discriminant score plots for 3, 4, 5, and 6 outputs. The neurons that
did not win the competition are tagged as ‘unknown’; hence, they do not represent any
posture in the activity. It is worth noting that when using an activity not included in the
training set (UA), the results are more consistent compared to those from the NN based
on the cosine distance metric. For all 4 configurations, the same 2 clusters of postures are
identified.

C. Comparison between Euclidean and cosine distances: Figure 14 illustrates the
posture classification with different boundary characteristics and discriminant scores for
the NN trained using both the cosine distance and Euclidean distance. Regarding the cosine
distance, the postures with semantic meanings ‘walking’ and ‘walking with extended hands’
are both considered to be in the same class, while the 2 other clusters belong to the classes
with semantic meanings ‘picking’, and ‘placing’. This suggests that when using the cosine
distance for classification, the decision is predominantly influenced by the inclination of
the human trunk. During activities like walking or walking with extended hands, the trunk
maintains an upright position.
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(a)

(b)

Figure 10. Discriminant score plot of the NN trained for 3 outputs, using the Euclidean distance: (a) TA
activity, (b) UA activity.

(a)

Figure 11. Cont.
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(b)

Figure 11. Discriminant score plot of the NN trained for 4 outputs, using the Euclidean distance: (a) TA
activity, (b) UA activity.

(a)

(b)

Figure 12. Discriminant score plot of the NN trained for 5 outputs, using the Euclidean distance: (a) TA
activity, (b) UA activity.
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(a)

(b)

Figure 13. Discriminant score plot of the NN trained for 6 outputs, using the Euclidean distance: (a) TA
activity, (b) UA activity.

(a)

Figure 14. Cont.
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(b)

Figure 14. Comparative discriminant score plot for TA clusters: (a) cosine, (b) Euclidean distances.

In contrast, during actions like placing and picking, the trunk leans forward to varying
degrees. The NN trained using the Euclidean distance, however, groups the postures
with the semantic meanings ‘picking’ and ‘placing’ in the same cluster. The remaining
clusters belong to the classes with the semantic meaning ‘walking with extended hands’
and ‘walking’. Therefore for the NN trained using the Euclidean distance, the key factors
used for clustering consist of the hand and trunk positions. During the ‘picking’ and
‘placing’ actions, individuals lean their trunks forward while extending their hands. In
contrast, when walking, they maintain an upright trunk with their hands swinging by their
sides. For the ‘walking with extended hands’, even though the trunk remains upright, the
hands are extended outward. The arrows at the outermost positions mark the boundary
postures between clusters, signaling transitions to the subsequent cluster. The central arrow
points to the “key” posture within the cluster.

This results in 3 distinct postural combinations based on the positions of the trunk
and hands. These phenomena can be observed in both the stick diagrams and images in
Figure 14. The postures at transition points, the maximum score values, and the key class
postures have all been illustrated.

In general, the NN exhibited a higher discriminant score when tested with the TA
activity than with the UA, which was anticipated. This outcome can be attributed to the
NN’s prior exposure to similar samples from the TA during training. Nevertheless, even
for the TA activity, the discriminant scores remained notably high, indicating the NN’s
proficiency in distinguishing and tracking human postures. The posture transitions between
clusters are illustrated by the steep edges marked by vertical lines across the graphs. At
this point, there is a rapid decrease in the discriminant score of the current winning cluster
and a simultaneous increase in the discriminant score of the next winning cluster.

The NN trained using the cosine distance with 4 outputs surpasses all other config-
urations due to its high discriminant score, adaptability, and consistent class separation.
Thus, if the testing data features are subject to some changes, the network still effectively
recognizes the postures. This adaptability results from the self-organizing map network
concept, which focuses on the general characteristics of the data structure, and not on very
specific data attributes. When choosing the number of clusters based only on the largest
values (see Figures 7–9), 3 clusters should be used. However, looking at the discriminating
score (TA) plots for the 4 clusters, we can see that for all clusters, the temporary peaks of
each trajectory have relatively high values, and each distinguished posture (temporary
peak) lasts for a significant amount of time. This is not the case for 5 clusters. The score
values here are much smaller than in the previous cases, and each DS trajectory is flatter,
which means less variation in clustered postures. This phenomenon deepens for 6 clusters.
Based on these results and avoiding the omission of key postures, it was decided that
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4 clusters should be selected. The above considerations show that when deciding on the
appropriate number of clusters, the range of clusters indicated by the expert should be
examined, and then, based on the trajectory and the value of the score, the appropriate
number of clusters should be selected.

6.3. Discussion

The methodology presented for determining the most appropriate number of clusters
in human posture classification has demonstrated promising results. It offers a balance
between computational efficiency, granularity of postural representation, and distinction,
effectively addressing major challenges in the field. However, evaluating clustering quality
using CVIs can be influenced by factors such as data distribution [24,31,54], unbalanced
cluster representation, and diverse recommendations from different CVIs. They sometimes
suggest different optimal cluster numbers, which adds to the complexity of determining
the best decision based on the data distribution. An arbitrary decision on the number of
clusters, which does not take into account the specificity of the problem, may result in
losing information about data features in the clustering process [55,56]. For general types
of datasets, mitigating the data distribution challenges often requires specific strategies.
One strategy for solving the problem is to more densely sample those fragments of data that
show greater dispersion [57,58]. Another approach is to use multiple clustering processes
with different cluster numbers [59,60]. However, it is worth noting that the presented
work is rather problem-oriented when compared to universal data processing research.
According to existing literature, the decision on the appropriate number of clusters should
be made based on the unique requirements and specifics of the problem [61–63]. The most
important involves the use of domain knowledge, i.e., taking into account the clustering
aim. This means that dedicated approaches should be preferred by avoiding decision-
making based solely on general-purpose scores. For example, understanding that some
types of postures are inherently rarer can help in making informed clustering decisions.
This is an important aspect of the proposed discriminant score as it allows detecting the
relevant postures, which are represented by few data but are indicated by higher score
values.

The results obtained using various scores, namely the discrimination score, silhouette
coefficient, Dunn index, Davies–Bouldin index, and Calinski–Harabasz index, together
with quantization error, show that each score focuses on different aspects of data clustering.

The silhouette coefficient evaluates the degree of similarity of an object to the centroid
of its own cluster in relation to its similarity to centroids of other clusters. Thus, when an
analyzed sequence contains postures that change in broad ranges, this coefficient will tend
to show fewer clusters than other scores. This can make it difficult to distinguish between
activities characterized by quite similar postures because only postures with big differences
will be considered as being different. The Davies–Bouldin index has the opposite feature.
It is based on the idea that good clusters are those that have low within-cluster variation
and high between-cluster separation. In this case, there is a risk that virtually identical
postures, albeit realized by different individuals or in different conditions, will be assigned
to different clusters (due to higher variation in the data); this is not appropriate. It means
that this index is sensitive to noises and outliers in the data. Unfortunately, when recording
human activities in real-life conditions, disturbances are not avoidable.

The Dunn index is the ratio of the minimum distance between clusters to the maximum
cluster diameter. This indicator is higher for clearly ‘discretized’ sets of postures. Since
changes in posture are continuous, such cases are not feasible, can occur for temporarily
obstructed views, etc. This index is denoted as the worst-case indicator. Therefore, when
considering the task of classifying the postures, the Dunn index should be approached
with reserve. The quantization error should be considered as the training process evaluator
rather than the clustering quality score that is applicable to the trained NN. Additionally,
it favors a strong concentration of data around cluster centroids, which is feasible for a
larger number of clusters. Therefore, its utility in deciding the expected number of postures
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is limited. It shows a similar weakness to the Davies–Bouldin index when considering
posture classification.

The Calinski–Harabasz index identifies several clusters that are both compact and
sufficiently distant from each other. It is also known as the variance ratio criterion, and it
measures how similar an object is to its own cluster compared to other clusters. Considering
the posture recognition task, where the goal is to group significantly similar postures with
reasonable (not excessive) separation between groups, this aim is reasonable. The logic
behind this index is similar to the logic used in establishing the discriminant score; however,
the index provides only a single value.

The discriminant score provides a value for each data point (each posture). This is the
normalized inverse of the posture distance from the centroid of the cluster. This value is
divided by the sum of the minimum distances between this data point and the centroids
of all clusters. The score shows how similar the posture is to the postures that make the
cluster centroids, taking into account the distribution of clusters (this is included in the
denominator). Unlike other scores, the discriminant score allows following the dynamics
of the classification, as it shows how the similarity of postures to the postures constituting
the cluster centroids change over time. Thus, the score facilitates a fully informed decision
regarding the number of clusters that ensure appropriate differentiation of postures, as
indicated by higher values of the score. Choosing the right number of clusters is not reliant
on a single value, unlike other scores that overlook the finer details of the data structure.

In the given example, the silhouette coefficient suggested 3 clusters, while the Dunn
index and the Davies–Bouldin index favored 5 clusters. The quantization error suggested
6 classes. The discrepancy in these results highlights the challenge of determining the
‘optimal’ number of clusters.

The decision to choose 4 as the most suitable number of clusters was based on the
discriminant score and the Calinski–Harabasz index. Both scores take into account the bal-
ance between clear class separation, data adaptability, and consistent representation of data
features. Furthermore, the discriminant score is particularly relevant because of its ability
to detect posture similarities, express them numerically, and show the transformations in
the form of trajectories.

It must be emphasized that, in the analyzed example, the discriminant score was
relatively high regardless of the number of clusters; this indicated that essential data
features were learned, and generalization was performed well. Since the DS assigned a
value to each posture, based on closeness to the respective cluster centers, choosing the
right number of clusters (4 in this case) was not based on a single value, as was the case with
other scores that lost data structure details. Unlike other indicators, the discriminant score
enables the tracking of classification dynamics. It illustrates how the similarity of a posture
to cluster centroids evolves over time. This allows for a well-informed decision regarding
the optimal number of clusters that ensures appropriate differentiation of postures (through
higher values of the indicator). Hence, selecting the most appropriate number of clusters
based on this score offers resistance to disturbances or variations in posture during activity
performance. This is because the selected number of clusters ensures appropriate separation.
The discriminant score also expresses the generalizability of the SOM, as it is able to
recognize postures taken in previously unseen activities (e.g., the UA activity). Therefore,
a well-chosen number of clusters (with potentially high discriminant scores) enables the
recognition of the same postures (as well as similar postures) in activities that were not
previously considered.

7. Conclusions

Utilizing NN with unsupervised self-organizing mapping to cluster data eliminates
the need for arbitrary and time-consuming labeling of training data. However, the choice
of the number of clusters is crucial here. Our previous study [47] explored the challenges of
manual data labeling by human experts for clustering, as the range of activities expanded.
This further indicated the necessity for the methodology presented in this work, which
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aligns with earlier expert opinions and allows accommodating a broader array of human
postures and cultural considerations. The presented research focuses on the utility of a set
of scores for determining the appropriate number of clusters for the human posture classifi-
cation task. It is rather problem-oriented compared to data-oriented research. Commonly
used scores are broadly applicable and are not adjusted to the particularity of data. Relying
solely on general scores is definitely not sufficient. For instance, using the Dunn index
or the Davies–Bouldin index can reduce the granularity of posture differentiation due to
data distribution sensitivities [24,31,54–56]. The proposed discriminant score provides a
dynamic perspective on posture classification over time, emphasizing the importance of
selecting an adequate number of clusters that preserve the data structure details. This is
in contrast to other scores that yield a singular value. The unsupervised self-organizing
map is effective at recognizing postures across diverse activities, offering the necessary
adaptability for real-world applications.

For practical reasons and to avoid excessive calculations, only examples using small
subsets of data are discussed in this article. This limitation does not reduce the substantive
significance of the work and the validity of the presented analyses. The specificity of
the clustering application, namely the classification of human postures, is of primary
importance. The objective of developing a methodology to select the appropriate number of
clusters for grouping and, thus, identifying postures has been achieved. This methodology
is not sensitive to biases, etc. Therefore, even with a limited dataset, the results are of
significant importance for the posture classification task.

The contribution to the state of the art can be summarized as follows:

- The introduction of a new clustering quality assessment namely, termed the discrimi-
nant score.

- Comparative studies of clustering scores, considering the posture classification task,
with an indication of the advantages and disadvantages of each of them.

The autonomous recognition of human postures is necessary across many domains.
For example, in healthcare [64,65], it is used for monitoring changes in a patient’s posture
and providing automated assistance for correction. In elderly care [66,67], changes in pos-
ture may indicate discomfort or health problems. In robot-assisted human activities [68–70],
it is essential for understanding what a person is doing based on their sequence of postures,
offering assistance when necessary.

Our research is focused on learning by observing human actions [18,19]. In our future
work, we plan to expand our datasets and train the neural networks, taking into account
multiple activities with many postures. The most appropriate number of clusters will be
chosen using the discriminant score. After training and testing using big data, we aim
to establish an autonomous system capable of recognizing activities from a sequence of
postures. The ultimate goal is to create an ‘intelligence’ for robots that will not only be able
to identify human postures but also recognize and anticipate human actions.
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