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Abstract: Smart home monitoring systems via internet of things (IoT) are required for taking care
of elders at home. They provide the flexibility of monitoring elders remotely for their families
and caregivers. Activities of daily living are an efficient way to effectively monitor elderly people
at home and patients at caregiving facilities. The monitoring of such actions depends largely on
IoT-based devices, either wireless or installed at different places. This paper proposes an effective
and robust layered architecture using multisensory devices to recognize the activities of daily living
from anywhere. Multimodality refers to the sensory devices of multiple types working together to
achieve the objective of remote monitoring. Therefore, the proposed multimodal-based approach
includes IoT devices, such as wearable inertial sensors and videos recorded during daily routines,
fused together. The data from these multi-sensors have to be processed through a pre-processing
layer through different stages, such as data filtration, segmentation, landmark detection, and 2D stick
model. In next layer called the features processing, we have extracted, fused, and optimized different
features from multimodal sensors. The final layer, called classification, has been utilized to recognize
the activities of daily living via a deep learning technique known as convolutional neural network.
It is observed from the proposed IoT-based multimodal layered system’s results that an acceptable
mean accuracy rate of 84.14% has been achieved.

Keywords: activities of daily living recognition; deep learning; IoT; multimodal data; patient monitoring;
smart homes

1. Introduction

Smart homes-based monitoring via IoT devices is an important concept to be taken into
consideration [1,2]. Elderly and patient monitoring at IoT-based smart homes or facilities
is a big challenge in this era [3]. Machines are not intelligent enough to take care of such
patients at facilities by themselves [4]. Therefore, continuous improvements are needed
when it comes to dealing with human health monitoring [5,6]. However, the standard
approaches are less efficient and require a multimodal IoT-based methodology to provide
robust monitoring systems [7,8]. Activities of daily living (ADLs) need to be examined for
smart home monitoring systems. ADL monitoring applications are widespread including
fall detection, home surveillance, smart environments, assistive robotics, and ambient
assisted living [9–14]. ADLs are difficult to be recognized as each ADL consists of multiple
small actions performed together to make one long activity [15]. Single type of raw
sensor data are not able to detect the complex sequences of ADL. Different subjects can
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perform a single ADL by performing the small actions in a diverse sequence of actions [16].
Therefore, a robust multimodal IoT-based intelligent system is required to take care of these
limitations [17].

Deep learning models can help machines to infer the natural intuitions of human
body motion. They provide a great opportunity to learn through sufficient examples of
human actions in ADL in order to then identify them [18]. End-to-end deep learning
techniques are effective for high-level features extraction [19]. A deep learning framework
will help facilities to cope with high costs and nursing shortages via ADL recognition [20].
Multiple hyper parameters can be used for each deep learning model to adjust the ADL
recognition [21]. Therefore, we have proposed a unique framework for the ADL recognition
of elderly people at smart homes and facilities using IoT-based multisensory devices. This
study has suggested a systematic method to take multimodal data from many IoT devices
and process them to remove any noise and bias. Next, human silhouette detection and
features processing is performed to highlight the important characteristics of the system.
Finally, these features are optimized and the ADL is classified using a deep learning model.

Two publicly available datasets based on multimodal sensors and videos have been
used to perform the evaluation for our proposed method, namely, Opportunity++ [22] and
Berkeley-MHAD [23]. These datasets contain numerous types of data, including inertial
and vision-based data. The key contributions of this research paper are:

• A novel algorithm has been proposed for 2D stick model extraction in this study for
supporting more efficient ADL recognition in less computational time.

• An algorithm for human body landmarks detection has been proposed to effectively
recognize the daily locomotion activities.

• A genetic algorithm has been optimized using a state-of-the-art fitness formula pro-
posed for video and inertial sensors-based ADL data.

• The proposed layers of the ADL recognition model support the delivery of a robust
IoT-based multimodal system to achieve extraordinary efficiency.

A literature review is presented in Section 2 and a detailed architecture argument
about the proposed IoT-based multimodal system is provided in Section 3. The experiments
performed are described in Section 4 and this study’s conclusive remarks along with some
future directions are offered in Section 5.

2. Literature Review

This section presents a detailed literature review of both simple and multimodal
IoT-based approaches for ADL recognition in smart environments. We have distributed
the literature review into two sections, namely, simple modal systems and IoT-based
multimodal systems.

2.1. Simple Modal Systems

In the literature, many researchers have worked to recognize ADL through different
methodologies. A module encompassing different sensors-based fusion and features
extraction has been proposed in [24]. Accelerometers, magnetometers, and gyroscopes
have been used in different combinations for ADL recognition. This study is more focused
on environment identification, which leads to a low performance in ADL recognition. The
authors of [25] have proposed an IoT-based model for the remote health monitoring of
patients. Different health sensors, such as pulse, temperature, and galvanic skin response
sensors were used. However, the system lacked actual implementation and could not
perform well in the real-time environment. In [26], M. Sridharan et al. have proposed a
model to map the location of activities performed by using already-detected landmarks and
zones inside the home. They have also detected the gait of a person in different zones of
the home. The model achieved 85% accuracy for trajectory prediction. However, due to no
processing in the layers of filtration and features, the system attained a good performance
with low-level information for ADL recognition.
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A methodology consisting of four stages has been suggested in [27]. The four stages
include acquisition, processing, fusion, and classification and have been described in the
paper. The classification stage contained recognition of ADL, the identification of the
environment, and the detection of activities with no motion involved. However, the lower
the number of sensors utilized for classification, the less accurate the proposed methodology
was. The researchers in [28] have proposed a study presenting an activity classification
system analyzed over light gradient boosting, gradient boosting, cat boosting, extreme
gradient boosting, and AdaBoost classifiers. A smartphone-based dataset has been utilized
to test the performance and a few limitations were also present in the study, as in the ADL
performance context.

In [29], an ADL recognition module has been proposed using video cameras. First, the
data from cameras are acquired and pre-processed. Next, objects and humans along with
their interactions are detected via two neural networks. Then, the activities are recognized
through another neural network. Finally, the data are post-processed and transmitted
to the gateway using priority queues, where a smartcare system has been introduced
to use the results and monitor patients. However, a single sensor like camera-based
activity recognition system is not a robust system. The authors explained inertial sensor-
based ambient assisted living in [30]. They have denoised the signal using Chebyshev,
Kalman, and dynamic data reconciliation filters. Next, windows of seven seconds each
have been extracted from the signal. Then, signals are normalized and signal energy,
variance, frequency, and empirical mode decomposition features are mined. Furthermore,
the features are dimensionally reduced using Isomap and the activities are classified using
CNN-biLSTM classifiers. However, while simple activities are recognized in the proposed
method, it is not a robust approach towards complex ADLs present in the daily routine.

2.2. IoT-Based Multimodal Systems

Different multimodal systems have been proposed in approaches proposed by re-
searchers. An audio and depth modalities-based ADL recognition system has been pro-
posed in [31]. CNN has been used to recognize ADLs from depth videos, alhough the
system was not applicable to real-time ADL recognition due to its computationally ex-
pensive nature. In [32], an ADL recognition approach using two deep learning methods
has been suggested. The input has been provided to both CNN and bidirectional long
short-term memory, and CNN layers performed direct mapping. However, using a grid
search method to tune the hyper parameters has been very computationally expensive and
thus this approach is not a feasible solution for real-time ADL recognition.

Due to differences in age, gender, weight, height etc., the authors proposed personal-
ized models in [33]. Personalization makes it possible for machine learning algorithms to
objectively evaluate the performance of proposed systems. It also considered the resem-
blances between the physical and signal forms. However, the accuracy improvements for
physical, signal, and both fused together are not very impressive. Another hybrid approach
using both motion sensors and cameras has been suggested in [34]. A motion–state layer
and an activity layer have been used along with long-short-term-memory and CNN to
recognize ADLs. Motion sensor data improved the classification according to the motion
state while videos are utilized for the specification of ADL. However, due to the grouping
of the motion state layer, the system was not able to produce acceptable results.

In [35], Žarić et al. presented a system to monitor the cooking process in home kitchens
and to identify critical conditions related to elderly people. The proposed system utilized
humidity, ultrasound, and temperature sensors as input to a system that is capable of
generating an alert or a warning in case of a dangerous situation. They have also identified
some cases for the analysis of the cooking process. A Moore finite-state machine having
different states to the activities performed has been used to generate outputs using the
proposed decision-making system. Nevertheless, the proposed system is limited to the
kitchen environment and it is designed and tested only for electrical cooking plates. The
authors of [36] described an ADL recognition and fall detection system using an Mbient
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sleeve sensor research kit, Imou smart cameras, proximity sensors, and the Microsoft SQL
Server. They have given four concepts for fall detection including pose detection, data
collection and processing, learning, and performance measurement. The complex activities
have been further divided into atomic actions to detect the indoor localization. Then, the
semantic relationship is inferred, studied, analyzed, and interpreted between accelerometer,
gyroscope, and associated actions. Further, the integrated data are split into training and
testing sets and accuracy has been computed. However, the system could achieve an
accuracy of 81.13% due to the real-time environment and associated costs. The system
focused on limited activities performed by the subjects whereas its performance is not clear
when it comes to several other ADLs.

3. Materials and Methods

This system consists of two types of data, inertial and videos. A multimodality-based
system has been proposed to recognize the complex forms of ADLs. It also aids recognition
of ADLs where there are some data missing from one sensor. The inertial data have been
filtered using Butterworth and the video frame sequences have been filtered by subtracting
background from the frames. Furthermore, the landmarks have been detected from the
filtered frame sequences and the filtered inertial data have been divided into windows of
5 s each. Then, the pre-processed data have been given to the features engineering layer
to extract and reduce the huge number of features. Lastly, an ADL recognition layer has
been utilized to classify the ADL from both state-of-the-art datasets. A detailed architecture
diagram for a multimodal IoT-based deep learning framework is shown in Figure 1. The
following subsections further explain each layer of this architecture for ADL recognition.
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Figure 1. The architecture diagram for multimodal IoT-based deep learning framework via ADL
recognition.

3.1. Pre-Processing of Inertial Sensor Signals

Three different types of data have been retrieved from the inertial measurement unit,
such as accelerometer, gyroscope, and magnetometer data. The acceleration data for ADL
have been provided through accelerometer sensors. The gyroscope measures the angular
velocity or the rate of change in sensors’ orientation. Magnetometers give a point of
reference for measuring the strength and direction of magnetic fields, which is important in
order to obtain a precise locomotion. There is noise present in all types of raw data attained
from the sensors including the inertial data. Subsequently, to remove this noise, this study
proposes a filter utilization to get an as low as possible response frequency known as the
Butterworth filter [37]. Figure 2 shows the acceleration signal before and after applying the
Butterworth filter to inertial data.
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Figure 2. Sample signals after filters applied for motion sensor data.

In preprocessing layer for inertial data and to help process in next layer this filtered
data properly without any missing values, we proposed to utilize the data segmentation
technique. After the filtration of raw data, the inertial signals have been segmented using an
overlapping windowing procedure [38]. Figure 3 gives a detailed view of data segmentation
applied over acceleration signal. Each color in the figure represents a data segment from
the signal.
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3.2. Pre-Processing of Videos

To produce accurate results, there is a need to process the input videos. First, the
frames have been converted and the extracted images have been resized [39]. Then, the



Sensors 2023, 23, 7927 6 of 20

background has been subtracted from the frame sequences in order to get human silhouette
for further processing. Figure 4 displays the human silhouette extracted after background
subtraction. Afterwards, the head landmark has been detected using the human body
shape and size [40] and the lowest point of body has been taken as the foot point of the
human, calculated as:

T f
Fo ← T f−1

Fo + ∆T f−1
Fo , (1)

where T f
Fo signifies the foot landmark position in the f frame sequences calculated using

the frames variance. The calculations for human position has been designed as:

T f
HS =

(
T f

Fo ← T f−1
Fo + ∆T f−1

Fo

)
+ T f

E , (2)

where T f
HS provides the human position in a frame f and T f

E denotes the boundary for the
frame. From both the head and foot point, the midpoint torso has been extracted followed
by the neck, knee, hip, elbow, and shoulder points.
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activity in Berkeley-MHAD dataset.

After landmark detection, a 2D stick model [41] has been extracted through joining
skeleton points detected from the mined landmarks as shown in Figure 5. Algorithm 1
describes the pre-processing layer in detail for landmark detection and 2D stick model
development. First, the algorithm detects the head position and foot position in the
human silhouette to be recognized as the landmarks. If the head position is detected, then
other body landmarks are recognized and the mid-point of the recognized landmark is
also detected. Next, the algorithm continues to detect the mid-points for each landmark
detected. Lastly, when all the seven landmarks are detected, the stick model is extracted
through connecting the mid-points.
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Algorithm 1: Landmark detection and 2D stick model creation
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3.3. Features Processing Layer

In the second layer, we proposed to apply features extraction methodologies for both
inertial and video data. Linear prediction cepstral coefficients (LPCCs) [42] have been
applied for the inertial data using the equations:

LPCCo = ln.σ2, (3)
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lpccm = xm +
m−1

∑
n=1

( n
m

)
lpccn xm−n, 1 ≤ m ≤ p, (4)

lpccm =
m−1

∑
n=1

( n
m

)
lpccn xm−n, p ≤ m ≤ e, (5)

where σ2 displays an estimate increase, lpccn and xm denotes the LPCCs, and e conveys the
LPCCs statistics. Figure 6 explicates the LPCCs extracted over jumping jacks activity over
the Berkeley-MHAD dataset.
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When it comes to predicting the ADL, the motion direction flow can significantly
support the recognition of activities. It is a context-based feature that will identify the
human movement patterns and directions [43]. The motion flow for the human body can
be calculated as:

Md f =
f

∑
0

Fv(F)→ Md , (6)

where F denotes the frame sequence extracted from video v, Md f gives the motion flow
direction of the current frame sequence, and Md elucidates the motion flow direction from
the previous frame. Figure 7 describes the motion direction flow for the jumping in place
activity over the Berkeley-MHAD dataset.

After the features extraction stage, the dimensions of the feature vector have been
increased immensely. Therefore, to reduce the feature vector size, we have introduced
the application of the genetic algorithm [44]. It involves a few biological orders-based
techniques including mutation, selection, mating, and crossover of the chromosomes. So,
we have utilized the fitness formula mentioned as:

f itness = xiyi + x f y f +
α

fn
, (7)

where xi denotes the scaling factor selected for inertial-based features, yi gives the average
for all subjects in both datasets for inertial-based features, x f provides the scaling factor
chosen for frame sequences-based features, y f shows the average over all subjects in both
datasets for frame sequences-based features, fn denotes the number of features representing
chromosomes, and α determines the scale factor set to 0.5. The detailed view of the genetic
algorithm is represented in Figure 8.



Sensors 2023, 23, 7927 9 of 20Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 7. Upward motion direction flow in Jumping in Place ADL. 

After the features extraction stage, the dimensions of the feature vector have been 
increased immensely. Therefore, to reduce the feature vector size, we have introduced the 
application of the genetic algorithm [44]. It involves a few biological orders-based tech-
niques including mutation, selection, mating, and crossover of the chromosomes. So, we 
have utilized the fitness formula mentioned as: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑥𝑦 + 𝑥𝑦 + 𝛼𝑓   , (7)

where 𝑥 denotes the scaling factor selected for inertial-based features, 𝑦 gives the aver-
age for all subjects in both datasets for inertial-based features, 𝑥 provides the scaling 
factor chosen for frame sequences-based features, 𝑦 shows the average over all subjects 
in both datasets for frame sequences-based features, 𝑓 denotes the number of features 
representing chromosomes, and 𝛼  determines the scale factor set to 0.5. The detailed 
view of the genetic algorithm is represented in Figure 8. 

Figure 7. Upward motion direction flow in Jumping in Place ADL.

3.4. ADL Recognition Layer

CNN [45] takes both data types and gives weights along with bias to different features
and classifies one activity from another. It is considered to be the most effective algorithm
for recognition, retrieval, and classification. Multiple layers-based variants are being used
by the researchers in the literature. It also contains three types of layers, such as input,
hidden, and output layers. Each hidden layer contains multiple combinations of softmax,
convolution, completely connected, and pooling layers. It also consists of activation
functions used for the setting of each node, which was selected as a rectified linear unit
(ReLU) [46]. We set the learning rate to 0.002 and the maximum epoch number was selected
as 100. Figure 9 helps in understanding the CNN model for the ADL recognition layer. The
input layer consisted of an activation shape in the form of (32, 32, 3) with an activation
size of 3072 and no parameters. Next, the first convolution layer consisted of a (28, 28, 8)
activation shape of ReLU along with a 6272 activation size, and 608 parameters with
5 filters. Then, the first pooling layer was utilized containing a (14, 14, 8) activation shape
and 1568 size with 0 parameters. Further, the second convolutional layer has been added
with a (10, 10, 16) activation shape and 1600 size along with 5 filters and 3216 parameters.
Moreover, a second pooling layer consisted of a (5, 5, 16) activation shape and 400 size
with 0 parameters. A flattened layer was further used. Two fully connected layers with
(120, 1) and (84, 1) activation shapes and 120 and 84 size with 48,120 and 10,164 parameters
were introduced next. Finally, a softmax layer of (10, 1) shape and 10 size in activation with
850 parameters has been used.
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4. Dataset Experimental Setup and Results

A brief overview of the datasets utilized, experiments performed on them, and their
results is discussed in this section.

4.1. Datasets Description: Berkeley-MHAD and Opportunity++

An open access, and one of the earliest multimodal datasets, named Berkeley-MHAD [23]
has been used in this system to validate the experimental section. It contains 12 IoT-based
ADLs performed in an indoor environmental setting. Figure 10 presents the sample frame
sequences from the Berkeley-MHAD dataset. Another publicly available dataset called
Opportunity++ [22] is utilized to perform experiments on the proposed ADL model. A total
of 12 subjects performed different IoT-based ADLs, completed in an indoor environment.
Figure 11 shows the sample frame sequences from the Opportunity++ dataset. In order to
obtain a less-biased and less-optimistic estimate of the proposed ADL recognition system,
we have used a 10 fold cross-validation technique to evaluate the system’s accuracy. The
datasets have been shuffled randomly and split into 10 groups. For each group, it is
tested and remaining groups are used to train the proposed ADL recognition model. The
evaluation score is extracted from each set of test groups and the model’s performance has
been determined.

4.2. Experimental Settings and Results

All the calculations and experimentation has been performed on a DELL laptop with
Intel® Core™ i7 4th generation CPU @ 2.4 GHz and 64-bit windows 10 bought from Islam-
abad, Pakistan. The software used was MATLAB (R2017a) for complete experimentation
along with a 24 GB RAM.
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4.2.1. Experiment 1: Confusion Matrices over Opportunity++ and Berkeley-MHAD

This subsection describes the confusion matrices extracted for the ADL recognition ex-
periments performed on the Berkeley-MHAD and Opportunity++ datasets. Tables 1 and 2
provide a detailed explanation of true positives, false positives, true negatives, and false
negatives [47–49] attained over both datasets with the recognition through CNN.

Table 1. Confusion matrix for ADL recognition for proposed approach recognition through CNN
over the Opportunity++.

IoT-Based
ADL OD1 OD2 CD1 CD2 OF CF ODW CDW ODW1 CDW1 ODW2 CDW2 ODW3 CDW3 CT DC TS

OD1 * 8 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
OD2 0 9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
CD1 0 0 9 0 0 0 0 1 0 0 0 0 0 0 0 0 0
CD2 0 0 1 8 0 0 0 0 0 1 0 0 0 0 0 0 0
OF 1 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0
CF 0 0 0 0 0 8 0 0 0 1 0 0 0 0 1 0 0

ODW 0 0 0 0 1 0 8 0 0 0 0 0 0 1 0 0 0
CDW 0 1 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0

ODW1 0 0 0 0 0 0 0 0 8 0 0 1 0 0 0 1 0
CDW1 0 0 0 1 0 0 0 1 0 8 0 0 0 0 0 0 0
ODW2 0 0 0 0 0 0 0 1 0 0 9 0 0 0 0 0 0
CDW2 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 1
ODW3 2 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0
CDW3 0 0 0 0 1 0 0 0 1 0 0 1 0 8 0 0 0
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Table 1. Cont.

IoT-Based
ADL OD1 OD2 CD1 CD2 OF CF ODW CDW ODW1 CDW1 ODW2 CDW2 ODW3 CDW3 CT DC TS

CT 0 0 0 0 0 0 0 0 0 0 0 1 0 0 9 0 0
DC 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 8 0
TS 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 8

Mean accuracy = 84.12%

* OD1 = Open Door 1, OD2 = Open Door 2, CD1 = Close Door 1, CD2 = Close Door 2, OF = Open Fridge,
CF = Close Fridge, ODW = Open Dishwasher, CDW = Close Dishwasher, ODW1 = Open Drawer 1, CDW1 = Close
Drawer 1, ODW2 = Open Drawer 2, CDW2 = Close Drawer 2, ODW3 = Open Drawer 3, CDW3 = Close Drawer 3,
CT = Clean Table, DC = Drink from cup, TS = Toggle Switch.

Table 2. Confusion matrix for ADL recognition for proposed approach recognition through CNN
over the Berkeley-MHAD.

IoT-Based
ADL JIP JJ Ben Pun WaT WaO CH TB SiT SD SU TP

JIP * 9 0 0 0 0 1 0 0 0 0 0 0

JJ 0 8 0 0 1 0 0 0 0 1 0 0

Ben 1 0 9 0 0 0 0 0 0 0 0 0

Pun 0 0 1 8 0 0 0 0 1 0 0 0

WaT 0 0 0 0 9 0 0 0 0 0 0 1

WaO 0 1 0 0 0 8 1 0 0 0 0 0

CH 0 0 0 1 0 0 8 0 0 0 1 0

TB 1 0 0 0 0 1 0 8 0 0 0 0

SiT 0 0 0 0 1 0 0 0 9 0 0 0

SD 0 0 1 0 1 0 0 0 0 8 0 0

SU 0 0 0 0 0 0 0 0 0 0 9 1

TP 0 0 0 0 1 0 0 1 0 0 0 8

Mean accuracy = 84.17%

* JIP = Jumping in place, JJ = Jumping jacks, Ben = Bending, Pun = Punching, WaT = Waving-Two hands,
WaO = Waving-One hand, CH = Clapping hands, TB = Throwing a ball, SiT = Sit down then stand up, SD = Sit
down, SU = Stand up, TP = T-pose.

4.2.2. Experiment 2: Confidence Levels over Skeleton Points

We also calculated the confidence levels detected for each part of the body identified in
the landmark detection and 2D stick model generation stages. Table 3 gives a detailed view
of 11 body points identified along with their confidence levels [50–52] in the range [0, 1].
The mean accuracies of 84.12% and 84.17% have been achieved by the proposed IoT-based
multimodal system over Opportunity++ and Berkeley-MHAD datasets, respectively.

Table 3. Confidence levels over Berkeley-MHAD and Opportunity++ for body points detected.

Human Skeleton Points Confidence Level for
Berkeley-MHAD

Confidence Level for
Opportunity++

Head 0.83 0.85
Neck 0.99 0.98

Right Elbow 0.83 0.85
Left Elbow 0.81 0.88
Right Wrist 0.74 0.78
Left Wrist 0.77 0.78

Torso 0.87 0.88
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Table 3. Cont.

Human Skeleton Points Confidence Level for
Berkeley-MHAD

Confidence Level for
Opportunity++

Right knee 0.79 0.84
Left knee 0.65 0.75

Right ankle 0.67 0.66
Left ankle 0.71 0.77

Mean Confidence 0.72 0.75

4.2.3. Experiment 3: Comparison with Other Important Classifiers

In this section, we have further assessed the proposed system based on a comparison
with two well-known classification methods—artificial neural network (ANN) [53,54] and
AdaBoost [55,56] classifiers. Both models were trained using the scikit-learn library. For
ANN, we used an input layer, two hidden layers, and an output layer. Each hidden layer
contains 50 neurons and gradient descent with momentum has been selected as the learning
algorithm. The minimum batch size is 50, momentum is 0.15, number of epochs is 500,
and biases were initialized with 0. Initial weights are selected randomly from a normal
distribution and learning decay is exponential. For Adaboost, we have set the base learners
as decision tree with a maximum depth of 5 levels and the number of base estimators as 50.
Learning rate has been set to 0.001 to avoid unnecessary delays during the testing phase
and estimator weights have been chosen randomly.

It is evident from the Tables 4 and 5 that our proposed model has achieved higher
precision, recall [57], and F1-score [58] in both selected datasets, which shows that the
multimodal IoT-based ADL recognition system using CNN has outperformed the others.
The following are the equations for precision, recall, and F1-score:

p = TP/(TP + FP), (8)

r = TP/(TP + FN), (9)

F−m = (2 ∗ (r ∗ p))/(r + p), (10)

where p is the precision, r is the recall, and F − m is the F1-score. True positives are
determined from TP, false positives are given by FP, false negatives are displayed by FN,
and true negatives are shown by TN.

Table 4. Comparative analysis with other well-known classifiers in terms of precision and recall over
Berkeley-MHAD dataset.

Locomotor
Activities

Artificial Neural Network AdaBoost CNN
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

JIP 0.78 0.77 0.77 0.80 0.81 0.80 0.90 0.82 0.85
JJ 0.74 0.71 0.72 0.73 0.78 0.75 0.80 0.89 0.84

Ben 0.77 0.74 0.75 0.77 0.78 0.77 0.90 0.82 0.85
Pun 0.70 0.72 0.70 0.73 0.71 0.71 0.80 0.89 0.84
WaT 0.77 0.79 0.77 0.81 0.82 0.81 0.90 0.69 0.78
WaO 0.81 0.80 0.80 0.88 0.87 0.87 0.80 0.80 0.80
CH 0.74 0.80 0.76 0.79 0.75 0.76 0.80 0.89 0.84
TB 0.77 0.77 0.77 0.71 0.75 0.72 0.80 0.89 0.84
SiT 0.79 0.88 0.83 0.85 0.86 0.85 0.90 0.90 0.90
SD 0.76 0.77 0.76 0.79 0.78 0.78 0.80 0.89 0.84
SU 0.81 0.82 0.81 0.74 0.76 0.74 0.90 0.90 0.90
TP 0.82 0.84 0.82 0.88 0.90 0.88 0.80 0.80 0.80

Mean 0.77 0.78 0.77 0.79 0.80 0.78 0.84 0.85 0.84
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Table 5. Comparative analysis with other well-known classifiers in terms of precision and recall over
Opportunity++ dataset.

Locomotor
Activities

Artificial Neural Network AdaBoost CNN
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

OD1 0.82 0.87 0.84 0.77 0.79 0.77 0.80 0.73 0.76
OD2 0.74 0.71 0.72 0.80 0.73 0.76 0.90 0.90 0.90
CD1 0.77 0.79 0.77 0.78 0.80 0.78 0.90 0.82 0.85
CD2 0.73 0.75 0.73 0.77 0.71 0.73 0.80 0.89 0.84
OF 0.69 0.68 0.68 0.78 0.74 0.75 0.90 0.82 0.85
CF 0.85 0.81 0.82 0.74 0.85 0.79 0.80 0.89 0.84

ODW 0.64 0.68 0.65 0.61 0.63 0.61 0.80 0.89 0.84
CDW 0.87 0.81 0.83 0.77 0.76 0.76 0.90 0.75 0.81

ODW1 0.77 0.71 0.73 0.78 0.79 0.78 0.80 0.89 0.84
CDW1 0.72 0.73 0.72 0.80 0.79 0.79 0.80 0.73 0.76
ODW2 0.77 0.79 0.77 0.84 0.82 0.82 0.90 1.00 0.94
CDW2 0.83 0.81 0.81 0.80 0.80 0.80 0.90 0.75 0.81
ODW3 0.74 0.79 0.76 0.87 0.81 0.83 0.80 0.80 0.80
CDW3 0.89 0.88 0.88 0.78 0.80 0.78 0.80 0.80 0.80

CT 0.75 0.79 0.76 0.71 0.70 0.70 0.90 0.90 0.90
DC 0.88 0.89 0.88 0.80 0.86 0.82 0.80 0.80 0.80
TS 0.77 0.78 0.77 0.79 0.79 0.79 0.80 0.89 0.84

Mean 0.77 0.78 0.77 0.77 0.77 0.76 0.84 0.83 0.83

4.2.4. Experiment 4: Comparison with Other State-Of-The-Art Techniques in Literature

Further, to validate the performance of the proposed IoT-based recognition system, we
have given a comparison in Table 6 with other state-of-the-art methodologies presented in
the literature. It is evident from the table that our proposed system outperformed the others
in terms of accuracy for Opportunity++ [59,60] and Berkeley-MHAD datasets [61–63].

Table 6. Comparative analysis with other state-of-the-art techniques over both datasets.

State-Of-The-Art
Systems

Opportunity++
Accuracy (%)

Berkeley-MHAD
Accuracy (%)

PER System [59] 74.70 -
IoT-based System [60] 74.70 -
D-Mocap System [61] - 84.00

3D Human Skeleton Model [62] - 83.92
MHAD Multiview Motion capture

Method [63] - 84.00

Proposed ADL Recognition System 84.12 84.17

5. Discussion

The proposed ADL recognition system has focused on the usage of IoT-based devices
for collecting data from humans, including elderly people and patients at a certain place.
The data collected can be in the form of videos, their sequences, audio, and locks etc. A
smart home or a private room in a hospital is a person’s private and protected space. These
IoT-based devices give rise to privacy and protection concerns, which can be mitigated by
introducing multiple privacy mechanisms. Some studies proposed to introduce a minimum
ratio of noise into the data in order to protect the privacy of a home [64–67]. A few
articles proposed to provide an infrastructure for such devices that can send personalized
notices and give the choice to obtain a person’s user preferences [68–70]. Overall, an auto
configuration support system has also been proposed in order to make sure that whenever
a new device has been attached to the existing system, it is auto-configured according to
the security protocols and user preferences [71–73]. However, in the selected datasets for
the proposed article, the faces of the individuals have also been blurred to maintain the
privacy of users [74–76].
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ADL recognition has been achieved successfully using the proposed model with
landmark detection and a 2D stick model along with inertial sensor signal processing. We
had to extract different body points in this method to make the 2D stick model. However,
there were few ADL that could not achieve the ideal 2D stick model shape and caused the
accuracy rates to decrease. Figure 12 gives examples of such activities performed during
the ADL recognition stage. The landmark areas pointed out by red dotted circles show
that the body landmarks’ mid-points can be mixed up in specific body postures, therefore
causing the performance of the 2D stick model and the accuracy rate to be compromised.
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Figure 12. Examples of problematic ADL activities over Berkeley-MHAD, where red dotted circles
point out the skeleton extraction problems.

6. Conclusions and Future Work

Our proposed method for IoT-based ADL recognition is an important novel idea for
the elderly home monitoring system. It is a combination of multimodal-based sensors to
compute the ADL recognition efficiently. First, the multimodal data are filtered through
multiple types of filtering techniques. Next, the inertial data are segmented using windows
and vision data have been used to find the landmarks and create the 2D stick model.
Then, we used state-of-the-art techniques like LPCCs and motion direction flow deter-
mination for inertial and video data, respectively. Further, to reduce the dimensionality
issue, we proposed to utilize the genetic algorithm with a novel fitness function. Lastly,
an efficient deep learner known as CNN has been applied over the reduced features to
classify the ADL. Mean accuracies of 84.12% and 84.17% have been achieved over Op-
portunity++ and Berkeley-MHAD datasets. The results have shown that the proposed
ADL recognition technique has outperformed in certain ways, such as confidence lev-
els of body landmarks detection, accuracy rate of the system, and other state-of-the-art
methodologies-based comparisons.

In the future we will focus on the privacy issues and improvement of the 2D stick
model. Another shortcoming worth-mentioning is that the proposed system removed
background from the videos provided by immobile indoor cameras. However, this study
might not work when there are different background settings in the data. Thus, the system
will be implemented over more generalized environmental settings and data.
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