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Abstract: As the location-based service (LBS) plays an increasingly important role in real life, the
topic of positioning attracts more and more attention. Under different environments and principles,
researchers have proposed a series of positioning schemes and implemented many positioning
systems. With widely deployed networks and massive devices, wireless fidelity (Wi-Fi) technology
is promising in the field of indoor positioning. In this paper, we survey the authoritative or latest
positioning schemes for Wi-Fi-assisted indoor positioning. To this end, we describe the problem and
corresponding applications, as well as an overview of the alternative methods. Then, we classify
and analyze Wi-Fi-assisted indoor positioning schemes in detail, as well as review related work.
Furthermore, we point out open challenges and forecast promising directions for future work.

Keywords: Wi-Fi; indoor positioning; angle-of-arrival; received signal strength indication; time-of-arrival

1. Introduction

With the development of technology, the location information of people and objects
can be obtained with ease. Location-based service (LBS) changes the way people live and
plays an increasingly important role in various fields, e.g., navigation, logistics, outdoor
games, tracking of key personnel, disaster relief, and advertisement. Researchers and
engineers have developed various positioning schemes to support the LBS.

Wireless positioning can be classified into outdoor and indoor scenarios. While out-
door positioning technologies have been maturely developed and widely adopted in
civilian and military fields [1,2], they are still barely satisfactory in indoor scenarios for
two reasons. First, the complex indoor environment complicates the signal propagation [3].
Second, the occlusive adjoining wall reduces the signal strength of the positioning sys-
tem [4]. Thus, the accuracy of the positioning system suffers in the indoor environment.
Instead, compared with the outdoor scenario, the indoor scenario requires higher position-
ing accuracy for LBS. Moreover, people may usually spend much more time indoors than
outdoors [5], which enlarges the demand for indoor positioning.

The technology of wireless fidelity (Wi-Fi) has been attracting extensive attention from
researchers due to its wide coverage, high popularity, and low power consumption. As
Wi-Fi protocol standards are continually upgraded, corresponding networks and devices
are rapidly iterating. The latest Wi-Fi 7 newly releases 6 GHz frequency band with a
greater channel bandwidth. An increasing number of Wi-Fi devices are equipped with fine
timing measurement (FTM) [6] and channel state information (CSI) measurement. These
are beneficial for improving positioning accuracy. Therefore, Wi-Fi is a promising solution
to indoor positioning.

To the best of our knowledge, this paper is a brand-new survey to comprehensively
review state-of-the-art work of Wi-Fi-assisted indoor positioning in recent years. The
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review [7] also provides a systematic summary of Wi-Fi-assisted indoor positioning. How-
ever, compared to this, our review has distinct classification standards for Wi-Fi-assisted
indoor positioning, and the references involved in our review are more comprehensive
and updated.

The main contributions of this paper are summarized as follows:

• Basic description and analysis of indoor positioning. This paper describes the indoor
positioning problem and its applications. We state the key issues in anti-interference
and practical deployment. We also outline mainstream alternative methods and
compare their advantages and disadvantages.

• Classification and review of related work. According to the positioning principle, we
divide Wi-Fi-assisted indoor positioning schemes into three categories. We state the
principles of these categories and point out their merits and demerits. We also review
representative work of corresponding simple and hybrid schemes.

• Prospects. We point out the open challenges of Wi-Fi-assisted indoor positioning, the
multi-path effect, device deployment optimization, and data privacy. To these ends,
we prospect promising directions in future work.

The rest of this paper is organized as follows: Section 2 describes the indoor positioning
problem and its applications, and overviews the alternative methods. Section 3 classifies
and analyzes Wi-Fi-assisted indoor positioning schemes, as well as review representative
work. Section 4 points out the open challenges and forecasts the promising directions in
future work. Section 5 concludes the whole paper.

2. Scenarios and General Advances
2.1. Application Scenarios

With the development of wireless technology, it is applied to various fields and plays
an important role in people’s lives. Indoor positioning is one of the important applications
of the wireless technology. It is defined as a process to obtain the position coordinates of
people and objects in an indoor environment, e.g., hospitals, shopping malls, cinemas, flats,
underground garages, and factories.

A diagram of indoor positioning is illustrated in Figure 1. The base stations and
positioning targets measure various parameters of the signal transmitted between them
for positioning, e.g., angle and time-of-flight (ToF). Which parameter(s) to be measured,
how to measure them, and how to utilize them vary over positioning schemes. In terms
of the positioning principle, indoor positioning can be divided into angle-of-arrival (AoA)
based [4], received signal strength indication (RSSI) based [8], and time-based schemes [9,10].
In terms of whether the positioning target carries the device for signal transmission, it can
be divided into active and passive schemes.

Positioning target 

1

BS1 BS2 BS3 BS4

BS5
BS6 BS7

Positioning target 

2

Figure 1. Indoor positioning [11].

Indoor positioning has a wide range of application scenarios. (i) In hospitals, indoor
positioning can monitor the location of patients and medical staff in real-time. When
patients experience an emergency, the hospital can quickly locate them and notice nearby
medical staff to help them. (ii) In shopping malls, indoor positioning can aid customers
in locating the store or purchasing products. (iii) In prisons, indoor positioning can help
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correctional officers track the whereabouts of prisoners in real time. (iv) In warehouses or
factories, indoor positioning can assist in the management of valuable items and equipment,
preventing them from being lost or stolen. (v) In underground garages, indoor positioning
can help solve the problem of finding parking spaces, vehicle locations, and exits from the
underground garage. (vi) In disaster relief, indoor positioning can help people escape the
disaster area and assist in real-time rescue missions.

Location information may contain various sensitive information, such as users’ reli-
gious beliefs, lifestyle habits, and interpersonal relationships. The leakage of that informa-
tion may expose users to unwanted advertisements and spam, may cause social reputation
or economic losses to users, and may even subject them to extortion [12]. In addition,
governments worldwide have established increasingly strict regulations to protect data
privacy. Therefore, user privacy should be treated with caution by the designer of the
positioning system. In Section 4, we elaborate on the challenge and promising research
directions of Wi-Fi-assisted indoor positioning in data privacy.

2.2. Key Issues

In indoor positioning, the main objective is to achieve the accuracy of the LBS in
a certain practical scenario. To this end, hardware cost, deployment difficulty, distance
limitation, and device power consumption should also be taken into account. Anyway,
the key issues of indoor positioning are mainly in two aspects, i.e., anti-interference and
practical deployment.

2.2.1. Anti-Interference

The key issue in anti-interference is to relieve the impact of the complex indoor
environment on signal transmission. The direct path is defined as the straight transmitter-
to-receiver path for signal propagation. Indoor obstacles may weaken the direct-path signal
and meanwhile produce refraction and reflection. As to a superposition of the signals
from these paths, it is difficult to determine the direct path, also known as the multi-path
effect [4,13]. Other types of radio frequency (RF) signals may also make indoor positioning
instability and inaccuracy.

2.2.2. Practical Deployment

The key issues in the practical deployment of indoor positioning mainly lie in three aspects:
First, different buildings have various indoor structures and layouts. Thus, it is neces-

sary to do an on-site survey when designing the deployment plan of the positioning system.
The completeness of the on-site survey may affect the performance of the positioning
system. However, the survey may incur an amount of effort and time costs. Second, the
indoor environment may change frequently. The indoor positioning system needs to be
able to adapt to changes in the environment. Alternatively, the system needs to be able
to be redeployed at a low cost while maintaining its positioning performance. Third, the
deployment of a positioning system needs to consider achieving a balance between cost
and accuracy. High-accuracy positioning often has additional requirements for the device,
increasing the device cost. In addition, in some scenarios (e.g., shopping malls), users may
not prepare special devices for positioning. Excessive device requirements may make them
unable to use the positioning system. Keeping low cost while providing high positioning
accuracy is one research direction of this field.

2.3. Alternative Methods

In terms of radio access technology (RAT), we can classify the mainstream indoor
positioning methods as non-Wi-Fi and Wi-Fi. The characteristics of these indoor positioning
methods are described below.
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2.3.1. Non-Wi-Fi

Non-Wi-Fi methods include ZigBee [14,15], Bluetooth [16], ultra-wide band (UWB) [17],
radio frequency identification (RFID) [18,19], ultrasonic [20], and infrared [21]. They differ
in advantages of accuracy, power consumption, device cost, etc. Methods such as UWB [17],
ultrasonic [20], and infrared [21] demonstrate high levels of precision. Regarding power
consumption, Zigbee [14,15], RFID [18,19], Bluetooth [16], and UWB [17] methods exhibit
low power consumption, with their power usage increasing sequentially. As for device cost,
Zigbee [14,15], Bluetooth [16], and RFID [18,19] methods leverage cost-effective node devices
or tag devices for localization.

Although these methods have various advantages, they also possess limitations,
which are primarily related to two aspects: short effective distance and high device cost.
Zigbee [14,15], Bluetooth [16], and RFID [18,19] methods suffer from limited effective range,
whereas UWB [17], ultrasonic [20], and infrared [21] methods are associated with higher
device costs. As a result of these drawbacks, these methods are unsuitable for establishing a
universal indoor positioning system that is widely accessible and does not need specialized
hardware support.

2.3.2. Wi-Fi

Wi-Fi-assisted indoor positioning utilizes the signal transmission between the access
point (AP) and the positioning target for positioning [22].

It has the following advantages. First, Wi-Fi-assisted indoor positioning has a longer
effective distance than other alternatives, since the coverage of an AP indoors can reach up
to 100 m away. Secondly, Wi-Fi is of lower device cost and more feasible for deployment.
Third, the power consumption of Wi-Fi-assisted indoor positioning is relatively low, i.e.,
within 5 w for power and 100 mW for transmitting power for a general AP, which ensures
the conservation of energy and barely interferes with other devices.

Note that there are also challenges of Wi-Fi-assisted indoor positioning, e.g., sus-
ceptibility to environments and low accuracy, which motivates extensive state-of-the-art
work. In the rest of this paper, we concentrate on reviewing and analyzing Wi-Fi-assisted
indoor positioning.

To sum up, advantages and disadvantages of these positioning methods assisted by
various RATs are comprehensively summarized in Table 1.

Table 1. Advantages and disadvantages of positioning methods.

Positioning Methods Advantages Disadvantages

ZigBee [14,15] Low power consumption, low cost for a
single node.

Short signal transmission distance, signal
susceptible to interference.

Bluetooth [16] Low power consumption, small device
size, low cost for single Bluetooth beacon.

Poor signal stability, short
effective distance.

UWB [17] High accuracy, interference resistance,
low power consumption. High device cost.

RFID [18,19] Low power consumption, small size, and
low cost of electronic tag.

High system complexity, hard to
integrate electronic tag with mobile

devices, short effective distance.

Ultrasonic [20] High accuracy. Signal susceptible to interference, high
device cost.

Infrared [21] High accuracy. Signal susceptible to interference, high
device cost.

Wi-Fi [22]
Long effective distance, low device cost,

easy deployment, low
power consumption.

Signal susceptible to interference,
low accuracy.
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3. Wi-Fi-Assisted Schemes on Different Principles

A typical Wi-Fi-assisted indoor positioning scheme is generally based on principles
like AoA, RSSI, or time. Additionally, hybrid schemes combining multiple principles are
also prevalent.

3.1. AoA

Wi-Fi-assisted schemes based on AoA were applied to indoor positioning for a long
time. Many schemes with different focuses were proposed. In this part, we first describe
the principle of AoA estimation and AoA-based indoor positioning. Then, we divide
the representative work of AoA-based schemes into single-AP schemes and multi-AP
schemes, and subdivide the multi-AP schemes based on various optimization directions of
AoA estimation.

3.1.1. Principle

The angle of signals received by the antenna array on the AP is referred to as AoA [4].
The indoor positioning based on AoA generally requires at least two APs. It uses the AoA
of the signal and APs’ position to perform geometric positioning of the target. The signal’s
AoA can be estimated by phase difference in the received signal from different antennas on
the AP.

The principle of AoA estimation is illustrated in Figure 2. There is a device as a
positioning target and a two-antenna AP in the figure. The AP has antenna x1 and x2. Let d
denote the distance from x1 to the device, λ denote the wavelength of the signal, x denote
the distance between two antennas. It is obvious that x sin θ is the distance difference of
signal propagation between two antennas. The distance difference can be calculated by the
phase difference of received signals on the two antennas. Assuming the phase difference is
denoted by α, then we have αλ/2π = x sin θ. We can express θ as

θ = arcsin(αλ/2πx). (1)

From Equation (1), we obtained the AoA of the signal. Specifically, when x = λ/2,
θ = arcsin(α/π).

x1 x2

device

d

x

�
xsin�

Figure 2. AoA estimation [4].

The diagram of AoA-based indoor positioning is illustrated in Figure 3:
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Angle2

Angle1

AP1 AP2

Positioning target

Figure 3. AoA-based indoor positioning [4].

Its advantages include its suitability for short-distance positioning, along with a
simple positioning principle and no need for time synchronization. However, it comes with
several disadvantages, which can be categorized as follows. First, it has a high requirement
on the estimation accuracy of the signal incident angle. Even a minor error in this estimation
may cause a significant position estimation error. Therefore, as the distance between the
positioning target and the AP increases, the decrease in positioning accuracy becomes
apparent. Second, the positioning accuracy is limited by the size of the AP antenna array,
so there might be a relatively high hardware cost to achieve a good positioning accuracy.
Finally, due to the complex indoor environment, the multi-path effect may be severe, which
may seriously harm the accuracy of AoA-based indoor positioning.

3.1.2. Single-AP Schemes

The CUPID proposed by Sen et al., the spatial aliasing Wi-Fi localization (AWL)
proposed by Chen et al., the TagFi proposed by Soltanaghaei et al. and the SAP-AoA
proposed by Wang and Luan could use a single AP for localization [23–26].

The CUPID utilized the angle and distance of the direct path between the target and
the AP for positioning. The angle was obtained by analyzing human mobility, while the
distance was calculated by the energy of the direct path.

The AWL utilized the AoA of the signal from the positioning target to different antenna
arrays on a single AP for positioning. It achieved decimeter-level positioning accuracy. The
key to improving accuracy was using channel hopping to generate spatial aliasing and
create virtual antennas.

The TagFi was a label positioning system that consisted of a single Wi-Fi device
(e.g., laptop), a Wi-Fi transmitter, and labels. It applied a multiple signal classification
(MUSIC) [27] based super-resolution algorithm to separate the label reflection from multi-
path signals. On this basis, it estimated AoA and angle-of-departure (AoD) of the label
reflection to determine the triangle with the Wi-Fi transmitter, the Wi-Fi device, and the
label as vertices. Thereby, it obtained the label position.

The SAP-AoA located the target by using the distance between the two antennas on
the AP and signals’ AoA received by them. They also explored the scheme of using FTM
values in conjunction with SAP-AoA to achieve higher positioning accuracy.

3.1.3. Multi-AP Schemes

The positioning accuracy of AoA-based schemes was improved generally by optimiz-
ing AoA estimation. There were three main optimization directions of AoA estimation in
the schemes we surveyed.

Some schemes focused on improving angle estimation accuracy by dealing with the
multi-path effect. Xiong et al. proposed Arraytrack [4]. It estimated the angle of the direct
path for positioning. For the multi-path effect, it combined the spatial smoothing algorithm
and the MUSIC algorithm to reduce its impact. Zhang et al. proposed iLocScan [28], which
was the first to utilize the multi-path effect to assist in estimating the AoA and locating
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Wi-Fi devices. Yang and Gong proposed DeTrack [29], a real-time tracking system. It
combined compressed sensing and expectation-maximization algorithms to mitigate the
multi-path effect, achieving decimeter level accuracy.

Some schemes focused on improving angle estimation accuracy by extending the
antenna array. Kumar et al. proposed Ubicarse [30]. It applied a new formulation of the
synthetic aperture radar to emulate large antenna arrays on commercial mobile devices.
With the help of emulated antenna arrays, the mobile device could obtain the direction
of neighboring APs relative to the device for positioning. Gu et al. proposed TyrLoc [31].
It was an accurate multi-technology switching localization system that estimated the
AoA of Wi-Fi, Bluetooth low energy (BLE), and long-range radio (LoRa) device signals for
positioning. For improving the accuracy of the AoA estimation, it applied the RF switch to
manage antenna switching, creating a large virtual antenna array on PlutoSDR.

Some schemes innovated AoA estimation methods. Karanam et al. achieved high-
accuracy AoA estimation by measuring the amplitude of the received signal [32]. Tai et al.
proposed unequal AoA tracking (UAT) [33]. It mathematically quantified the reliabil-
ity of the AoA estimation on each AP and selected those reliable APs for localization.
Tong et al. proposed MapFi [34]. It estimated AoA through CSI to obtain the position of
APs and the angle of antenna arrays in the positioning system, reducing the labor cost of
on-site surveys. Zhang et al. proposed localization framework WiCo [35]. The reliability of
AoA estimations from different devices was actually unequal. WiCo utilized a normal-
ized distribution confidence and full reference confidence to quantify this inequality, and
resolved it by assigning varying weights to different APs through a re-weighting strategy.

The representative work of Wi-Fi-assisted schemes based on AoA is summarized in
Table 2. If there are no special instructions, the accuracy is expressed by median error. It
represents the threshold at which the linear distance between half of the estimated positions
and the true position remains below.

Table 2. Representative work of Wi-Fi-assisted schemes based on AoA.

Positioning Schemes Active/Passive Device Requirements Accuracy

CUPID [23] Active ≥1 AP 5 m (1 AP)

AWL [24] Active 1 AP 0.38 m (6 antennas)

TagFi [25] Passive ≥1 AP, 1 Wi-Fi receiver 0.2 m

SAP-AoA [26] Active 1 AP 0.85 m

Arraytrack [4] Active ≥3 APs with 6 or 8 antennas 0.57 m (3 APs)

iLocScan [28] Active
7 universal software radio
peripheral (USRP) 2 units

with 8 antennas
1.9 m (linear antenna array)

DeTrack [29] Active 3 APs 0.9 m (80%)

Ubicarse [30] Active ≥3 APs 0.39 m (3D device positioning)

TyrLoc [31] Active ≥2 PlutoSDR with 8 antennas 0.63 m (Wi-Fi)

UAT [33] Active ≥3 APs 1.3 m

MapFi [34] Active ≥3APs —

WiCo [35] Active 3 APs 0.73 m

3.2. RSSI

Wi-Fi-assisted schemes based on RSSI can be divided into fingerprint-based schemes
and model-based schemes [8], among which fingerprint-based schemes are very popular.
In this part, we describe their principles and state their representative works separately.
We first introduce the early and latest work of fingerprint-based schemes and then describe
special schemes including schemes mixed with other technologies, CSI-fingerprint-based
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schemes, and schemes on fingerprint positioning performance evaluation. Afterwards,
we point out the two main optimization directions as well as their corresponding studies.
Finally, we outline model-based schemes.

3.2.1. Principle

Fingerprint-based indoor positioning [36] first collects fingerprints exploiting the
correlation between RSSI and the physical location in the offline stage to construct a
fingerprint database. Then, it compares the real-time measurement value with the signal
strength data stored within the fingerprint database to estimate the location of the target in
the online stage. It is noteworthy that, among all categories of positioning schemes, except
fingerprint-based schemes, others are all based on ranging.

The diagram of fingerprint-based indoor positioning is illustrated in Figure 4:

AP1

AP2

Positioning target

Figure 4. RSSI: fingerprint-based indoor positioning [36].

Model-based indoor positioning [37] establishes a mathematical model that can predict
the distance from the positioning target to the AP according to the signal strength. The
distance is used to estimate the position of the positioning target by using trilateration or
other methods. Those positioning schemes typically need at least three APs.

The diagram of model-based indoor positioning is illustrated in Figure 5. The loga-
rithmic distance path loss (LDPL) model is expressed as

PL(d) = PL(d0) + 10n log (d/d0) + X, (2)

where PL(d) denotes the signal strength at distance d from the AP, d0 denotes the reference
distance, and X denotes a noise, e.g., the Gauss distribution. In addition to the LDPL model,
there are also other models such as the free space path loss model and the linear distance
path loss model [38].

d

AP Positioning target

Figure 5. RSSI: model-based indoor positioning [38].

The advantages of RSSI-based indoor positioning are no need for time synchroniza-
tion, low hardware requirements, and no additional modification to the AP. In addition,
fingerprint-based indoor positioning offers the advantage of theoretical immunity to the
multi-path effect, while model-based indoor positioning has the advantages of simple
principle, easy implementation, and deployment.
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As for the disadvantages, fingerprint-based indoor positioning needs to collect finger-
prints at multiple locations in advance, resulting in significant costs. This makes it difficult
for fingerprint databases to adapt to environmental changes. Once there are significant
environment changes, the fingerprint database may become outdated. It requires collecting
fingerprints again. In addition, the movement of the positioning target may cause a Doppler
frequency shift, which makes the feature-location relationship unstable. It may result in a
significant decrease in the positioning accuracy of fingerprint-based indoor positioning.

The main drawback of model-based indoor positioning is low positioning accuracy.
On one hand, the RSSI that can be obtained from commodity hardware is very coarse.
On the other hand, the RSSI is greatly affected by the surrounding environment and the
changes in the transmit power due to the device itself. The above two reasons result in
inaccurate RSSI measurement, thereby reducing the positioning accuracy.

3.2.2. Fingerprint-Based Schemes

Among fingerprint-based schemes, the earliest one was the RADAR [11] proposed by
Bahl et al., which had meter-level accuracy. Afterwards, Youssef et al. proposed Horus [39],
which was enhanced on the basis of RADAR. It utilized probability technology to estimate
the position by a maximum likelihood-based method. Seifeldin et al. proposed a passive
positioning system called Nuzzer [40], which consisted of APs and monitoring points
(MPs). MPs monitored the strength of the signal sent by APs. Nuzzer constructed the
fingerprint database in the offline stage and then used the algorithm based on Bayesian
inference to estimate the most likely user location given the signal strength measured by
MPs and the constructed fingerprint database.

After 2020, Chen et al. proposed a Wi-Fi passive positioning system FiDo [41]. Users
differ in location fingerprints. The system eliminated this difference by locating many
different users with labeled data from a few users. Shi et al. developed a precise non-causal
positioning system [42]. It utilized building information to prevent illogical phenomena
(e.g., sudden jumps) in position estimation. Yang et al. proposed a pyramid-structured
fingerprint database fingerprinting pyramid map (FPM) [43]. Users could select fingerprint
data with varying levels and densities for positioning, depending on their preferences for
accuracy or efficiency in positioning. Tahat et al. investigated the impact of dual frequency
information on the performance of fingerprint-based schemes based on different machine
learning algorithms [44]. Zhao et al. proposed a lightweight Wi-Fi positioning privacy
algorithm called the location preservation algorithm with plausible dummies (LPPD) [12].
It utilized generated reasonable virtual locations to protect the true location of users.

Some fingerprint-based indoor positioning schemes were mixed with other technolo-
gies. Yang et al. proposed a factor-maps based positioning system based on UWB and
Wi-Fi [45]. Ranging information was provided by UWB, while fingerprint information
was provided by Wi-Fi. Wu et al. designed an indoor positioning system consisting of
Wi-Fi, geomagnetism, and pedestrian dead-reckoning (PDR) [46]. It first constructed the
fingerprint database and the corner reference trajectory-geomagnetic database through
PDR trajectories. Then, it applied a Kalman filter-based method to fuse this information
for localization. Wu et al. proposed CWIWD-IPS [47], which applied a deep learning
framework to fuse crowd-sensed inertial data and Wi-Fi fingerprint samples. Specifically, it
first built inertial and Wi-Fi fingerprint databases, then exploited them to train the ResNet-
based inertial neural network and the BiLSTM-based Wi-Fi fingerprint neural network. The
results from two neural networks were fused by a Kalman filter for localization. Wang et al.
proposed a hierarchical positioning scheme that integrated Wi-Fi, magnetic matching (MM),
and PDR [48]. The scheme applied an adaptive extended Kalman filter to fuse PDR and
positioning results from Wi-Fi and MM.

Some schemes used the CSI fingerprint rather than the RSSI fingerprint. Because
the former contains richer and more robust wireless signal information, e.g., amplitude
and phase responses of channels over different frequencies. Regani et al. proposed a
room/zone-level positioning scheme based on Wi-Fi [49]. The scheme was device-free and
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calibration-free. It extracted features that indicated motion and breathing patterns from
CSI to locate a person. Ayyalasomayajula et al. proposed DLoc [50], a wireless localization
algorithm based on deep learning. It trained a neural network using ToF and AoA obtained
from CSI. The neural network learned the relationship between signals and truth locations
to build an environment model for positioning. Guo et al. put forward a federated TL
framework FedPos for CSI fingerprint-based indoor positioning scheme [51]. It aggregated
the non-classification layer parameters of models trained from different environments to
build a versatile encoder. The encoder constructed personalized models for users, solving
problems of privacy leakage and personalized training.

Some work analyzed the performance indicators of fingerprint-based indoor posi-
tioning. Krumm proposed pre-deployment and post-deployment models to estimate the
accuracy of fingerprint-based schemes [52]. The pre-deployment model considered the
possible impact of signal noise, signal quantization, spatial quantization, and calibration
efforts on accuracy. The post-deployment model modeled the deployed positioning system
to predict the accuracy of it. Mendoza Silva et al. described a method for performing a
local-level analysis of the fingerprint-based scheme’s positioning errors [53]. This analysis
investigated the accuracy of the positioning system at specific positions (e.g., corners) in
the area it covered.

To improve the performance of fingerprint-based indoor positioning or reduce the cost
of constructing and maintaining the positioning system, there are two main optimization
directions for fingerprint-based indoor positioning schemes, namely fingerprint database
construction and updating, and fingerprint matching algorithms.

3.2.3. Fingerprint Database Constructing and Updating

For fingerprint database construction, Rizk et al. proposed LiPhi++ [54]. It greatly
reduced data collection costs by utilizing the sensing capabilities of the transportable laser
range scanner (LRS). Li et al. discussed a challenge in Wi-Fi fingerprint-based indoor
positioning [55], which was how to sample a sufficient number of RSSI measurements
in the offline stage. To this end, they proposed Kullback–Leibler divergence (KLD) to
characterize the difference between the real distribution and the sampling distribution.
Quezada-Gaibor et al. proposed a data cleaning algorithm based on the correlation among
all samples in the fingerprint database [56]. The correlation among samples was calculated
by the correlation between the RSSI fingerprint and AP’s identifier. Fingerprints with lower
correlation would be removed to reduce the storage of the database.

Some schemes used the crowd-sourcing strategy for fingerprint database construction.
Yang et al. proposed locating in fingerprint space (LiFS) [36]. In the offline stage, it
utilized mobile phones carried by users to collect RSSI fingerprints and to record user
movement path by measuring walking steps through an accelerometer. Thereby, it inferred
the spatial relationship of RSSI fingerprints and constructed the fingerprint database. Rai et
al. proposed Zee [8]. It collected fingerprints in the same way as LiFS. Specifically, it relied
on indoor map and inertial sensors in the phone to infer the location and construct the
fingerprint database during the offline stage.

Some schemes created virtual fingerprints to reduce database construction costs. The
MonoFi proposed by Fahmy et al. first applied the k-nearest neighbor (KNN) regression
model to generate virtual RSSI fingerprints at non-surveyed points in the space [57]. Then,
it utilized the recurrent neural network (RNN) to learn user positions from temporal
sequences of RSSI measurements generated by the fingerprint. Caso et al. proposed using
the multi-wall multi-floor (MWMF) model in the empirical propagation model to generate
virtual fingerprints during the offline stage [58]. Yong et al. proposed a new fingerprint
database construction technology based on the synthetic minority over-sampling technique
(SMOTE) [59]. It was applied to generate synthetic fingerprints in areas that were difficult
to reach or were not regularly visited. Wei et al. proposed an effective fingerprint crowd-
sourcing scheme [60]. In the offline stage, the system collected RSSI measurement data
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on the known path that users chose before. In the online stage, the system estimated the
position based on Gaussian processes.

Some schemes used the clustering strategy to select fingerprints. Liu et al. proposed a
weighted k-nearest neighbor (WKNN) positioning strategy using the k-means clustering
fingerprint database [61]. The strategy reduced the impact of the RSSI fluctuation and
maintained a balance between positioning accuracy and computational complexity. Sad-
hukhan et al. proposed a new weighted fusion-based efficient clustering strategy (WF-ECS)
to fuse the similar fingerprint measured on the reference point (RP) belonging to the
same cluster [62]. Ramires et al. proposed a clustering model called the strongest AP set
(SAS) [63]. It utilized the concept that the strongest APs indicated the user’s region, cluster-
ing fingerprints based on the fixed size set of APs. The strongest AP set of a fingerprint
refers to the set of a fixed number of APs with the strongest signal strength measured at the
fingerprint’s location. In other words, APs in the set had stronger RSSI values than other
APs at the position of the fingerprint.

For fingerprint database updating, Ren et al. proposed the ACOGAN model [64].
The model utilized a remeasured part of the fingerprints to update the whole fingerprint
database. Tian et al. proposed a new unsupervised domain adaptation model TransLoc
for Wi-Fi fingerprint updating [65]. It transferred location knowledge from the initial
fingerprint database to the current unlabeled fingerprint for low-cost Wi-Fi fingerprints
automatic updating.

3.2.4. Fingerprint Matching Algorithms

In the direction of fingerprint matching algorithms, to address the environment change,
Li et al. proposed the passive positioning system DAFI [66]. It developed a deep learning
model for fingerprint matching by training the model with labeled CSI data from the
original environment and unlabelled CSI data from the changed environment so that the
positioning system could adapt to the changing environment. Song et al. applied deep
domain adaptation (DDA) in transfer learning (TL) to the fingerprint matching algorithm
model, enabling the model to continuously update by the changing RSSI data [67]. This
strategy enhanced the model’s adaptability to the environment change.

Some schemes optimized fingerprint matching algorithms by selecting specific APs.
Saccomano et al. proposed a deep learning-based indoor positioning scheme [68]. It first
utilized signal strength to generate rankings of APs associated with a fingerprint, then
exploited an RNN to learn the relationship between rankings and fingerprint locations for
positioning. Zhou et al. proposed a positioning scheme which utilized AP contributions to
positioning accuracy as the weight of the KNN fingerprint matching algorithm [69]. The
AP contributions were calculated by signal distributions on every RP. Hou et al. proposed
the fingerprint localization system FCLoc [70]. It applied a robustness principle to filter out
the noise in RSSI samples and selected reliable APs for positioning according to the stability
of online RSSI data. Yao et al. proposed an AP optimization integration model consisting of
a Gaussian mixture model (GMM) region classifier and a random forest feature learner [71].
The model identified the best AP in the large-scale and complex environment to improve
positioning accuracy.

3.2.5. Model-Based Schemes

Due to the complexity of indoor signal propagation, it was challenging to apply model-
based indoor positioning schemes indoors. The model-based active positioning system
EZ proposed by Chintalapudi et al. was an early classic scheme [37]. It utilized the LDPL
model to model the physical constraints of wireless propagation and used the genetic
algorithm to solve them.

After 2020, Yang et al. proposed to fuse the internal state information of the system
measured by the electronic compass and LDPL through an extended Kalman filtering algo-
rithm [72]. They achieved the optimal pose estimation and path tracking of mobile robots.
Hyder et al. proposed using the RSSI smoothing technique of weighted moving average
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and feedback filters to make RSSI measurements more accurate, which improved distance
estimation accuracy of RSSI distance model [73]. Lin et al. proposed the ranging model
GTBPD. It was constructed by training a back propagation neural network through the
transformed RSSI. The ranging model was combined with the linear least-squares algorithm
and the sequential quadratic programming (SQP) algorithm for location determination [74].
Choi proposed a scheme that combined Wi-Fi and sensors for ranging and localization [75].
The Wi-Fi ranging model was constructed by training a convolutional neural network
(CNN) with CSI. Wang et al. proposed a cooperative positioning and mapping algorithm
based on the max-product belief propagation and Kuhn–Munkres algorithm [76]. It solved
the problem of mapping wireless devices to known three-dimensional (3D) installation
points by utilizing the probabilistic graphical model and RSSI among devices.

The representative work of Wi-Fi-assisted schemes based on RSSI is summarized in
Tables 3 and 4.

Table 3. Representative work of Wi-Fi-assisted schemes based on fingerprint.

Positioning Schemes Active/Passive Device Requirement Accuracy

RADAR [11] Active 3 base stations 1.3 m

Horus [39] Active Multiple APs 0.6 m

Nuzzer [40] Passive 3 sending APs, 2 MPs 1.82 m

FiDo [41] Passive 1 AP, 1 Wi-Fi receiver Sub-meter level

Shi et al. [42] Active Multiple APs 0.7 m

FPM [43] Active Multiple APs —

LPPD [12] — — —

Yang et al. [45] Active Multiple APs and UWB anchors 1.8 m/0.9 m

Wu et al. [46] Active Multiple APs 3.34 m/4.5 m

CWIWD-IPS [47] Active — 4.06 m

Wang et al. [48] Active Multiple APs 1.02 m

Regani et al. [49] Passive 1 AP, Multiple Wi-Fi receivers —

DLoc [50] Active Multiple APs 0.8 m/0.94 m

FedPos [51] Active 1 AP, 1PC, Multiple Raspberries 0.42 m

LiPhi++ [54] Active Multiple APs 0.67 m

Quezada-Gaibor et al. [56] Active Multiple APs —

LiFS [36] Active Multiple APs 5.8 m

Zee [8] Active Multiple APs 3 m

MonoFi [57] Active 1 AP 0.8 m

Caso et al. [58] Active Multiple APs —

SMOTE [59] Active Multiple APs —

Wei et al. [60] Active Multiple APs —

Liu et al. [61] Active Multiple APs 1.45 m/8.54 m

WF-ECS [62] Active Multiple APs —

SAS [63] Active Multiple APs —

ACOGAN [64] Active Multiple APs 2.02 m (Field experiment)

TransLoc [65] Active Multiple APs 1.1 m (Office building)/4.0 m (Shopping mall)

DAFI [66] Passive 1 AP, 1 Wi-Fi receiver Sub-meter level

Song et al. [67] Active Multiple APs 2.65 m (11th month)

Saccomanno et al. [68] Active Multiple APs —

Zhou et al. [69] Active Multiple APs 1.86 m

FCLoc [70] Active Multiple APs <1 m

Yao et al. [71] Active Multiple APs 2.8–3.29 m
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Table 4. Representative work of Wi-Fi assisted schemes based on model.

Positioning Schemes Active/Passive Device Requirement Accuracy

EZ [37] Active ≥4 APs 2 m/7 m

Yang et al. [72] Active ≥3 APs <0.05 m

Hyder et al. [73] Active 3 APs <0.5 m

GTBPD-LSQP [74] Active Multiple APs 2.099 m/2.112 m/2.635 m

Choi [75] Active Multiple APs 1.038 m

Wang et al. [76] Active Multiple anchors –

3.3. Time

Time-based indoor positioning schemes can be further divided into time-of-arrival
(ToA) based schemes [9] and time-different-of-arrival (TDoA) based schemes [10]. In
addition, ToF ranging [3] is often employed for measuring the distance between the
positioning target and the AP in ToA-based schemes. It is also utilized in some schemes to
measure the distance between each antenna of the AP and the positioning target. Then, the
measured distance is used in the method similar to the trilateration for positioning.

Precise time measurement needs high synchronization among devices and wide
channel bandwidth, which Wi-Fi lacks. However, the introduction of the FTM protocol
improves the accuracy of the time measurement. In this part, we introduce the principle of
time measurement and time-based indoor positioning. Then, we review the representative
work of time-based schemes. We first outline the early and latest work of time-based
schemes, after that, we describe existing schemes using the FTM protocol.

3.3.1. Principle

ToA-based indoor positioning requires at least three APs and strict time synchroniza-
tion between the positioning target and each AP. It measures the arrival time of the received
signal between different APs and the positioning target. The time is converted into distance,
which is then employed into trilateration to calculate the target’s position.

The time measurement process is illustrated in Figure 6. Specifically, let t denote the
arrival time of the signal between the positioning target and the AP. It is determined by
four time points. They are t1, t2, t3, and t4 in chronological order. Under the premise of
time synchronization between the AP and the positioning target, t can be obtained from
the following expression:

t = (t2 − t1 + t4 − t3)/2, (3)

where t1 and t2 denote the time points that the positioning target sends the signal and the
AP receives it, while t3 and t4 denote the time points that the AP sends the signal and the
positioning target receives it. Through t obtained from Equation (3), the distance between
the AP and the positioning target can be calculated.

Target

AP

t1

t2 t3

t4

Figure 6. Time measurement [77].

The benefit of ToA-based indoor positioning lies in its simpler ranging process and
easier development compared with TDoA-based indoor positioning. However, it has a
drawback where the positioning target needs to achieve ranging with at least three APs
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in each positioning process. Each ranging requires multiple communications between
the AP and the positioning target, which leads to higher energy consumption and greater
vulnerability to interference. Additionally, the positioning target needs to handle sig-
nal transmission and reception, which causes higher hardware cost than TDoA-based
indoor positioning.

The diagram of ToA-based indoor positioning is illustrated in Figure 7:

r2

r1

r3

AP1

AP2

AP3

Positioning target

Figure 7. ToA-based indoor positioning [9].

TDoA-based indoor positioning requires at least three APs. It first measures the time
differences in the arrival of signals from positioning target to multiple APs for distance dif-
ference estimation between each AP and the target. Then, it uses the hyperbolic positioning
method to locate.

The advantage of TDoA-based indoor positioning lies in its reduced time synchro-
nization requirement compared to ToA-based indoor positioning. It only requires strict
synchronization among APs. Furthermore, it can achieve positioning with just one signal
transmission from the target, resulting in lower energy consumption compared to ToA-
based indoor positioning. The disadvantage is that the algorithm is more complex than
ToA-based indoor positioning.

The diagram of TDoA-based indoor positioning is illustrated in Figure 8:

AP1 AP2

AP3

r1

r2

r3

Positioning target

Figure 8. TDoA-based indoor positioning [10].

Finally, time-based indoor positioning suffers from the multi-path effect. In addition,
they all have the drawback that minor time errors may lead to significant distance errors,
given the fact that wireless signals travel at the speed of light. However, the narrow
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channel bandwidth of Wi-Fi is not enough to provide sufficient temporal resolution [10,78].
So it is hard to achieve high positioning accuracy. Fortunately, the Wi-Fi standard is
continually evolving, introducing wider channel bandwidths. The latest Wi-Fi 7 has a
6 GHz frequency band, which supports 160 MHz channel bandwidth. It is expected to
improve time measurement accuracy.

3.3.2. Traditional Schemes

Xiong et al. proposed a TDoA-based indoor positioning scheme ToneTrack [10], which
innovated in time measurement. By utilizing channel hopping in the continuous Wi-Fi
frequency band, it combined the signal information from multiple frequency bands for
more accurate time measurement. Vasisht et al. proposed Chronos based on ToF [78],
which was the first to achieved decimeter level positioning with a single AP. Specifically, it
used ToF to obtain the distance from each antenna on the AP to the positioning target for
localization. To achieve accurate ToF estimation, it synchronized the AP and positioning
target, letting them hop between the multiple frequency bands scattered around 2.4 GHz
and 5 GHz. Rea et al. proposed TWINS [79], which was a ToA-based wireless indoor
navigation system in industrial environments. It applied GMM to separate the direct path
between the AP and the positioning target from the multi-path, measured the distance of
the direct path through ToF, and estimated the position using the least squares method.

After 2020, Wang et al. proposed UbiTrack for locating single antenna internet-of-
things (IoT) devices [80]. The UbiTrack system utilized ToF obtained from CSI to measure
the distance between IoT devices. After that, the distance was leveraged by a new prob-
ability positioning algorithm based on the Bayesian estimation to determine the relative
position of each device. Suraweera et al. developed a localization system that included
multiple asynchronous sniffers [81]. Each sniffer listened to signals transmitted by the
positioning target to measure the CSI and multi-path TDoA of it. This information was
applied to two algorithms for localization. One algorithm employed a batch processing
approach to jointly estimate the target path and the sniffers locations. Another algorithm
employed particle filtering to track the target.

3.3.3. FTM-Based Schemes

In 2016, the FTM protocol was introduced in Wi-Fi [6]. It enabled precise round-trip
time (RTT) based ranging between the transmitter and receiver of Wi-Fi. Researchers
proposed many Wi-Fi FTM-based indoor positioning schemes.

Cao et al. proposed a 3D indoor positioning algorithm for smartphones [82]. The dis-
tance measured by Wi-Fi FTM was first leveraged to the weighted centroid (WC) algorithm
to estimate the rough two-dimensional (2D) position. Then, the result of WC was applied in
the standard particle swarm optimization (SPSO) algorithm combined with density-based
spatial clustering of applications with noise (DBSCAN) algorithm to obtain the accurate 3D
position. Chan et al. proposed a scheme that used the neural network to predict the location
of APs that support the FTM protocol [83]. It used a neural network trained with collected
FTM data and a known AP position to identify non-line-of-sight (NLOS) paths of the signal
and locate other APs. Ma et al. quantified the detailed Wi-Fi RTT ranging performance
under various working modes and environments [9]. They proposed a new system bias
elimination process to improve positioning accuracy. Si et al. proposed a weighted indoor
positioning scheme based on Wi-Fi FTM suitable for NLOS environments [84]. It utilized
compensation models to reduce ranging errors caused by clock drift and multi-path effect.

Some Wi-Fi FTM-based schemes were mixed with other technologies. Wang et al.
implemented an indoor positioning scheme that integrated PDR and Wi-Fi FTM ranging
using the extended Kalman filter framework [85]. Sun et al. proposed a new Wi-Fi FTM-
based scheme assisted by geomagnetic positioning (GP) [86]. Chan et al. proposed an
indoor positioning scheme that combined Wi-Fi FTM and PDR [87]. The Wi-Fi FTM data
were exploited to estimate the location of the FTM responder infrastructure and train
ranging models, while PDR inferred user positions and calibrated Wi-Fi FTM data.
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The representative work of time-based indoor positioning is summarized in Table 5.

Table 5. Representative work of Wi-Fi-assisted schemes based on time.

Positioning Schemes Active/Passive Device Requirement Accuracy Principle

ToneTrack [10] Active ≥3 APs 0.9 m TDoA

Chronos [78] Active 1 AP with 3 antennas 0.65 m/0.98 m ToF

TWINS [79] Active ≥3 APs 1.8–3.8 m ToA

UbiTrack [80] Active No AP <2 m (RE = 0.5 m) ToF

Suraweera et al. [81] Active Multiple sniffers 0.5 m/0.2 m TDoA

DBSCAN-assisted SPSO [82] Active Multiple APs 1.147 m (2D)/0.305 m (altitude) ToA/FTM

Chan et al. [83] Active Multiple APs — ToA/FTM

CbT & WCCG [9] Active ≥4 APs 1.2 m (static)/1.3 m (dynamic) ToA/FTM

AW-WFP [84] Active Multiple APs 1.31 m/3.72 m ToA/FTM

Wang et al. [85] Active ≥3 AP 1.5 m ToA/FTM

EMEA-WLS [86] Active Multiple APs 1.82 m ToA/FTM

Chan et al. [87] Active Multiple FTM receivers 0.75 m/0.77 m/0.94 m FTM

3.4. Hybrid Schemes

Hybrid indoor positioning schemes are based on a combination of AoA, time, or RSSI.
They can be divided into passive schemes and active schemes. In addition, some special
schemes use a single AP for positioning, use CSI to obtain AoA and time information,
or combine Wi-Fi and other technologies. We outline these schemes separately. The
representative work of hybrid schemes is summarized in Table 6.

Table 6. Representative work of hybrid indoor positioning schemes.

Positioning Schemes Active/Passive Device Requirement Accuracy Principle

xD-Track [88] Passive
1 AP with 1 sending

antenna and 1 AP with
4 receiving antennas

— ToF/AoA

mD-Track [89] Passive

A pair of transmitter and
receiver using wireless
open access research

platform (WARP) with
8 antennas or AP with

3 antennas

0.36 m (WARP)/0.67 m
(AP) ToF/AoA

MaTrack [13] Passive
1 signal transmitter and
2 APs with 3 receiving

antennas
0.6 m ToA/AoA

Yen et al. [90] Passive Wi-Fi transmitters and
3-antenna arrays 0.089 m/0.354 m RSSI/AoA

UbiLocate [91] Active ≥2 APs 0.75 m/1 m ToF/AoA

NLoc [92] Active ≥3 APs — ToF/AoA

Choi et al. [93] Active ≥3 APs 2.397 m (RSSI)/1.547 m
(FTM) ToA/FTM/RSSI

Sail [94] Active 1 AP with 3 antennas 2.3 m ToF/RSSI

WiSight [95] Active Multiple localizing device
with FSA 0.95 m ToF/AoA
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Table 6. Cont.

Positioning Schemes Active/Passive Device Requirement Accuracy Principle

MonoLoco [96] Active 1 AP 0.5 m ToF/AoA

SpotFi [97] Active ≥3 APs with 3 antennas 0.4 m ToF/AoA

M3 [3] Active 1 AP with 3 antennas 0.71 m ToF/AoA

P2PLocate [98] Active
Back-scatter tag, a

single-antenna device
(receiver)

0.88 m ToF/AoA

Jin et al. [99] Active 2 APs with two external
antennas <0.5 m FTM/AoA

UKFWiTr [100] Passive
1 transmitter with

1 antenna and 1 receiver
with 3 antennas

0.49 m ToF/AoA

AUKF [101] Active Multiple APs Meter level ToA/FTM/RSSI

Choi et al. [102] Active Multiple APs 1.04 m ToA/FTM/RSSI

H-WPS [103] Active ≥4 APs Meter level ToA/FTM/RSSI

3.4.1. Passive Schemes

In passive schemes, Xie et al. successively proposed xD-Track and mD-Track [88,89].
The former fused information from different dimensions (e.g., ToF, AoA, AoD, Doppler
frequency shift, signal attenuation) to locate the position of the human. The latter expanded
the dimensions of information on the basis of the former. Li et al. proposed MaTrack [13],
which utilized ToA to obtain AoA for positioning. Specifically, it applied a dynamic MUSIC
algorithm to detect reflection signals from dynamic human bodies and utilized relative ToA
to identify the shortest path of the reflection signal. The AoA of this path is regarded as the
direction of the human target relative to the AP.

3.4.2. Active Schemes

In active schemes, Pizarro et al. proposed UbiLocate [91]. It used Nelder–Mead-
based search to estimate angles while constructing a fine-grained ToF ranging system with
nanosecond resolution. In addition, it applied an AP selection mechanism to select APs
with good estimation accuracy. Zhang et al. proposed NLoc based on ToF and AoA [92],
whose key innovation was to convert multi-path reflections into virtual direct paths to
enhance the localization performance. Choi et al. proposed an unsupervised learning
framework that automatically optimized the ranging strategy [93]. Specifically, it selected
the RSSI path loss model, FTM protocol, or neural network based on the actual situation
to obtain the distance. Then, it calculated the location of the positioning target using
the trilateration method. Yen et al. proposed a highly accurate 3D indoor positioning
system [90]. The system estimated AoA of signals from Wi-Fi transmitters through RSSI to
locate them.

3.4.3. Special Schemes

Some schemes could perform localization with a single AP or device. Mariakakis et al.
proposed single AP-based indoor localization (Sail) [94]. It combined ToF obtained from
CSI with the RSSI to estimate the distance between AP and the positioning target. In
addition, it utilized user movement to simulate the presence of multiple APs to perform
single-AP localization. Li et al. proposed the single-device positioning system WiSight [95].
It applied a low-cost passive Wi-Fi antenna based on the frequency scanning antenna (FSA)
technology, which used a single transceiver chain to measure AoA and ToF for positioning.

Some single-AP schemes utilized the multi-path effect to assist positioning. Chen et al.
proposed M3 [3]. It applied a super-resolution algorithm SAGE+ to jointly estimate channel
parameters of the direct path and reflected paths of the signal for localization. Channel
parameters included AoA, AoD, and ToF. Soltanaghaei et al. proposed the decimeter level
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Wi-Fi localization system MonoLoco [96]. The system applied a multi-path triangulation
method, which utilized information from multi-path reflection to locate the device with a
single receiver. The information from multi-path reflection was AoA and AoD of multi-path,
as well as relative ToF between the direct path and each reflected path.

Some schemes got angle and time information from CSI. Kotaru et al. proposed
SpotFi [97]. It used signals from the positioning target to multiple APs with three antennas,
calculating their ToF and AoA to locate the target. A new 2D MUSIC algorithm was
utilized to obtain ToF and AoA from the CSI. Zhang et al. proposed P2PLocate [98], a
peer-to-peer localization system. The system enabled a single antenna device combined
with a back-scatter tag to locate another single antenna device with decimeter accuracy. It
leveraged CSI to estimate direction and distance of the target device. Jin et al. proposed
an indoor positioning scheme that combined AoA obtained from CSI and FTM [99]. This
scheme required no modification on the positioning target device. Wang et al. proposed
a passive tracking scheme UKFWiTr based on unscented Kalman filter and CSI [100]. It
estimated Doppler frequency shift and ToF through CSI and applied an unscented Kalman
filter to optimize the AoA estimation. This information was exploited for localization.

Some schemes combined Wi-Fi with other technologies. Yu et al. proposed an accurate
3D indoor positioning and trajectory optimization framework [101], which combined
Wi-Fi ranging and built-in sensors for localization. Wi-Fi ranging relied on RSSI and
FTM. Choi et al. proposed a calibration-free positioning system using Wi-Fi ranging and
PDR [102], where Wi-Fi ranging relied on RSSI or FTM. Each parameter in the system was
optimized in real-time, ensuring robust system performance in various situations. Yu et al.
proposed a hybrid positioning system that integrated Wi-Fi FTM, crowd-sourcing RSSI
fingerprints, and micro-electro-mechanical-system (MEMS) sensors [103]. The system
consisted of a Wi-Fi fingerprint database generation framework based on deep learning,
a MEMS sensors-based localization method, and three different multi-source integration
models. The integration model fused the information of light-weight pedestrian aimed
inertial navigation system (PINS), Wi-Fi FTM, and RSSI fingerprints for localization.

4. Open Challenges and Promising Directions

Challenges and directions of Wi-Fi-assisted indoor positioning mainly lie in three
aspects, namely, the multi-path effect, device deployment optimization, and data privacy.

4.1. Multi-Path Effect

In indoor active positioning, the perpetual challenge of addressing the impact of
the multi-path effect on accuracy persists. The term “multi-path effect” refers to the
phenomenon where a transmitted signal, after encountering reflection from objects, arrives
at the receiver via different paths. The ToF and AoA of the signal on various reflected
paths differ. For active positioning, determination of positioning target location depends
on the ToF and AoA of the direct path. If the reflected path and the direct path cannot be
accurately distinguished, positioning accuracy might be harmed. In comparison with the
open outdoors, the indoor environment is complex, with various obstacles such as people,
walls, tables, and chairs. They may cause a significant multi-path effect.

In active schemes, there are three main strategies to deal with the multi-path effect.
The first is to implement measures to mitigate the multi-path effect, e.g., TyrLoc [31],

DeTrack [29] and AW-WFP [84]. TyrLoc employed the MUSIC algorithm, incorporating
spatial smoothing and virtual antennas, to achieve a more precise estimation of the AoA.
DeTrack utilized the expectation maximization method to improve the estimation accuracy
of the AoA and ToF for the direct path. AW-WFP used compensation models to mitigate
the impact of the multi-path effect. However, since they could not distinguish the direct
path, they were not entirely immune to the impact of the multi-path effect.

The second is to eliminate the multi-path effect or employ schemes that remain in-
sensitive to it, e.g., fingerprint-based schemes. The former involves identifying and
exploiting the direct path to eliminate the multi-path effect, as demonstrated by CUPID,
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which harnessed the direct path for precise positioning [23]. Similarly, Chronos utilized the
discrete Fourier transform to distinguish between the direct and reflected paths, effectively
eliminating the multi-path effect [78]. TagFi eliminated the multi-path effect by utilizing
back-scatter modulation and the spatial structure of signals to extract weak wireless re-
flections for positioning [25]. In fingerprint-based schemes, the multi-path effects only
manifest when there is a change in the environment. The environment change leads to
variation in the signal propagation path, resulting in inconsistent fingerprints at the same
location before and after the change. Many schemes had been proposed to address the
challenge posed by the environment change [64–68].

The third is to leverage the multi-path effect for positioning, e.g., M3 [3] and NLoc [92].
The former scheme utilized AoA and AoD from multiple reflected paths, along with the
ToF differences between these reflected paths and the direct path, for positioning. The latter
scheme derived virtual direct paths by establishing a model that related the target location
to the multi-path reflections.

In passive schemes, those based on AoA or ToF did not utilize the direct path for
localization, because the direct path remained independent of the positioning target’s
location. Instead, they utilized information such as the signal’s reflection path from the
positioning target to determine its location. Their primary challenge within the context of
the multi-path effect lies in distinguishing between the reflected signal from the target and
the environmental obstacles, along with their respective propagation paths. The passive
scheme based on ToA and AoA, MaTrack [13], applied a dynamic MUSIC algorithm for
this purpose.

Although there are many strategies to deal with the multi-path effect, these strategies
also have deficiencies that are worth studying and improving.

For the strategy of mitigating the multi-path effect, existing schemes are mature
enough. They improved positioning accuracy by refining algorithms and optimizing
devices for more accurate signal parameters estimation and measurement. The current
algorithms mainly emphasize the enhancement of their accuracy. One potential research
direction is to correct algorithmic outcomes through a specific method, e.g., a machine
learning model. It could decrease the computational burden of the algorithm and lower
device requirements by reducing the accuracy requirements of the algorithm.

For the strategy of eliminating the multi-path effect or employing schemes that remain
insensitive to it, schemes aimed at eliminating the multi-path effect exhibited various limi-
tations in their application scenarios. The CUPID used the movement of people to identify
the direct path [23]. However, its accuracy suffered when people remained stationary. The
algorithm of Chronos premised on the assumption that the direct path was strong enough,
leading it to ignore those extremely weak paths in the signal propagation [78]. Therefore,
when the direct path was too weak, its accuracy suffered. TagFi needed multiple antennas
on both the Wi-Fi transmitter and receiver [25]. It had a smaller localization range because
of its solution to the multi-path effect. Schemes with fewer limitations as well as broader
application scenarios are still worth studying. For fingerprint-based indoor positioning,
existing schemes addressed the environmental change from multiple perspectives. They
included diminishing the role of RSSI in positioning, enabling the positioning system
to automatically adapt to environmental changes, simplifying the process of updating
fingerprints, etc. Recently, many schemes incorporated machine learning to address the
environment change. However, there is currently no dedicated machine learning algo-
rithm specifically designed for this issue. Existing solutions using the general algorithm
encounter challenges of high complexity and high device performance requirements. De-
signing cost-effective and reasonable performance machine learning algorithms special for
the environment change is a promising direction.

For the strategy of leveraging the multi-path effect for positioning, efforts should be
focused on reducing the influence of positioning target movement on positioning accuracy.
The information on the reflected path plays a pivotal role in localization. However, the
movement of the positioning target may lead to the reflected path changing [3]. It reduces
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the accuracy of reflected path information estimation, resulting in a decrease in positioning
accuracy. Ref. [92] discussed the influence of human movement on the accuracy. The
decrease in accuracy during human walking is tolerable. However, as the speed of human
movement increases, the error may increase accordingly. Therefore, it is meaningful to
conduct research to mitigate the influence of movement on accuracy.

For passive schemes based on AoA or time, they leverage the movement of the
positioning target to distinguish it from other stationary obstacles. So the positioning
accuracy may suffer when the positioning target remains stationary or moves at a slow
pace. It is worth studying to decrease the reliance of the positioning accuracy on the
positioning target’s movement.

4.2. Device Deployment Optimization

The second challenge that needs to be addressed is fitting the indoor positioning scheme
to Wi-Fi devices during the actual deployment phase. It mainly reflects in three aspects.

Firstly, indoor positioning schemes based on various principles have distinct funda-
mental requirements for the device, including the number of APs, antenna array size of
the AP, and the sensor specifications for the positioning target device. During deployment,
the number of APs should be adjusted according to the actual situation to achieve a bal-
ance between positioning performance and cost. Xiong et al. investigated the influence
of APs’ number on positioning performance [10]. They advocated that the best solution
was identifying the optimal group of APs, rather than randomly introducing more APs in
the positioning system. The determination of the optimal group of APs was a research
direction that they would explore in the future.

The performance of certain schemes is related to the AP antenna size and the sensor
configuration of each AP. Antennas can be physical antennas or virtual antennas simulated
through specific methods. For example, in AWL, a greater number of antennas on the AP
yields more precise AoA estimations [24]. It could leverage channel hopping to generate
virtual antennas to improve positioning accuracy. Some schemes require the presence of an
inertial measurement unit (IMU) within the positioning target device, e.g., CWIWD-IPS [47]
integrated personnel trajectories generated by PDR and Wi-Fi fingerprint information
for positioning.

Secondly, there are various types of Wi-Fi devices. An actual deployed Wi-Fi system
may include a range of brands of APs and positioning target devices. They may have
various hardware and software configurations, e.g., their own set of standards for repre-
senting the parameters of the signal. Inconsistent standards may impair the estimation and
measurement of parameters, further harming the accuracy. The current indoor positioning
schemes lack research on running on devices with varying configurations. Constructing a
universal positioning system that is able to seamlessly function across all devices remains a
major challenge.

Finally, the deployed scheme may affect the inherent functionality of the Wi-Fi system.
The Wi-Fi technology is mainly developed to provide internet services. The additional
positioning requirements may trigger resource contention with the network services func-
tionality of the Wi-Fi system, e.g., the channel hopping applied in work [10,24,78] and the
MUSIC algorithm applied in work [4,13,31,97]. They hurt the performance of the network
communication function.

At present, researchers proposed a series of indoor positioning schemes,each with
distinct requirements in terms of the number of AP and the AP antenna array size. These
requirements limit the application scenarios for those schemes. The most common home
or small company office environments often exist only one AP with limited antenna array
sizes. Consequently, there is an urgent need for schemes that perform well under single AP
and limited antenna array size conditions to satisfy the positioning needs in these scenarios.

Researchers proposed several schemes to address this issue; however, these schemes
possess certain limitations. AWL applied channel hopping to generate a large antenna
to improve the accuracy of AoA estimations [24], while Chronos also relied on channel
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hopping to obtain accurate ToF estimations [78]. However, channel hopping is a time-
consuming method that may hinder the data communication functions of Wi-Fi. Despite
exploiting the multi-path effect, M3 demonstrated a decline in positioning accuracy when
tracking moving targets [3]. In addition, the simultaneous estimation of channel parameters
across multiple dimensions requires the device with high performance. The MonoFi utilized
the RNN to construct the fingerprint database and perform localization [57]. However,
it was sensitive to the environment change. Designing a single-AP indoor positioning
scheme that matches the performance configuration of mainstream APs remains an open
issue. In addition, the scheme must ensure that it does not interfere with the standard
communication function of Wi-Fi.

For the issue of diversity of Wi-Fi devices, there are two solutions. One is to construct
an indoor positioning scheme that fully utilizes the consistency of each device. The other is
to develop a unified positioning standard that all Wi-Fi devices adhere to expand consis-
tency. For the issue of the impact of positioning systems on Wi-Fi communication functions,
in addition to making efforts in constructing indoor positioning schemes, it is feasible
to introduce positioning standards to the future Wi-Fi version. Furthermore, allocating
dedicated resources for positioning services at the hardware and software levels of APs is
also a good option.

In addition, there are currently not many devices supporting the FTM protocol and CSI
data extraction. With the rapid advancement of Wi-Fi sensing technology and continuous
increase in demand, it is believed that a growing number of Wi-Fi devices may support
the FTM protocol and the CSI data extraction function in the future. They will also have
excellent performance in positioning.

4.3. Data Privacy

The third challenge is the privacy issue of the positioning system. Ensuring the privacy
of data is of great importance. At the personal level, the data from the positioning system
may expose sensitive information about individual users, e.g., habit, health, and home
addresses. At the public level, public security risks may arise from leakage of commercial
secrets or sensitive information, like building structure information.

In addition, some indoor positioning schemes, especially those based on machine
learning, require a large amount of data to support indoor positioning in various environ-
ments. However, there are two main issues in obtaining the data required for positioning.
Firstly, to preserve data privacy and security, data from different sources should not be
shared, e.g., data generated by users utilizing different applications or by users at distinct
locations. Secondly, governments worldwide have implemented a range of regulations to
enforce the protection of user data [104,105]. Those limitations related to data acquisition
make it challenging for schemes that heavily rely on data support to gather enough data to
construct positioning systems. In other words, it is difficult to obtain data without properly
handling privacy issues. However, the processing of data to ensure privacy may inevitably
harm the accuracy of indoor positioning schemes. Therefore, how to achieve accurate
positioning while ensuring data privacy is a challenge.

Much effort has been dedicated to constructing solutions for privacy issues in indoor
positioning. Some work employed cryptography-based schemes to address privacy issues.
Li et al. were the first to propose encrypting the measured RSSI for privacy protection [106].
Similar work includes [107,108]. The latest work, the FedPos framework, also utilized
the homomorphic encryption technology to address privacy issues [51]. However, the
cryptography-based scheme incurs a large amount of computation and communication
overheads. Some work utilized differential privacy-based schemes to address privacy
issues [109,110]. Whereas it injected noise into the data, which might reduce the positioning
accuracy. Recently, many works have introduced FL for privacy protection [51,110–113].
However, FL schemes suffer from the challenge of limited accuracy when applying the
global model to different personalized scenarios. Some schemes attempted to solve this
problem, yet the problem remains worthy of exploration.
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Most research on privacy protection focused on fingerprint-based indoor positioning.
However, privacy issues persist across schemes regardless of their principles [109]. Research
on privacy issues about AoA or time-based indoor positioning still has great potential
for expansion.

To sum up, addressing the privacy issues of Wi-Fi-assisted schemes remains a highly
promising research direction. New schemes should find a balance among positioning
accuracy, privacy protection cost, and privacy protection performance. This consideration
can be approach from aspects such as data collection, data transmission, data encryption,
and data access permissions. In addition, to the best of our knowledge, there is currently
no unified benchmark for evaluating the cost and performance of privacy protection in
Wi-Fi-assisted indoor positioning, which is also a promising research direction.

5. Conclusions

In this paper, we briefly described indoor positioning and its application scenarios.
Then, we stated the key issues and alternative methods. We pointed out the advantages
of Wi-Fi in indoor positioning, dividing Wi-Fi-assisted schemes into three categories. On
this basis, we reviewed the authoritative work and the latest work of corresponding
simple and hybrid schemes. Finally, we pointed out the open challenges as well as the
promising directions of Wi-Fi-assisted indoor positioning in aspects of multi-path effect,
device deployment optimization, and data privacy.
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