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Abstract: Multiple Input and Multiple Output (MIMO) is a promising technology to enable spatial
multiplexing and improve throughput in wireless communication networks. To obtain the full
benefits of MIMO systems, the Channel State Information (CSI) should be acquired correctly at
the transmitter side for optimal beamforming design. The analytical centre-cutting plane method
(ACCPM) has shown to be an appealing way to obtain the CSI at the transmitter side. This paper
adopts ACCPM to learn down-link CSI in both single-user and multi-user scenarios. In particular,
during the learning phase, it uses the null space beamforming vector of the estimated CSI to reduce
the power usage, which approaches zero when the learned CSI approaches the optimal solution.
Simulation results show our proposed method converges and outperforms previous studies. The
effectiveness of the proposed method was corroborated by applying it to the scattering channel and
winner II channel models.
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1. Introduction

In Multiple Input and Multiple Output (MIMO) wireless communication systems,
with proper transmitter precoding and receiver signal processing, high diversity and
multiplexing gains can be achieved to meet the increasing demands of high data rates and
low latency applications [1]. To realize the full benefits of MIMO, accurate channel state
information (CSI) at the transmitter is essential for various techniques including precoding,
bit-loading, adaptive modulation, channel-aware scheduling, and beamforming [2–7]. In
particular, the degree of CSI accuracy can significantly affect the performance of most
MIMO-enabled wireless systems [8–11]. Therefore, accurate CSI at the transmitter (CSIT) is
the key to modern wireless communications.

The era of 5G and 6G, where the CSI is not required to improve the performance of
these systems in some cases [12], but is required in others, is a notable point of research
in massive MIMO [13]. Additionally, MIMO systems which are less complex compared
to massive MIMO. The massive MIMO consists of a huge number of antennas that must
be supported by a large number of analog-to-digital converters and a large number of
radio frequency chains that make the massive MIMO more complex as compared to MIMO.
Because of this complexity, the MIMO system is still considered as an attractive system
for many applications and the problem of CSI estimation in this system is still valid and
important to improve the system performance [14–16]. In addition, in a MIMO system,
a transmitter with perfect knowledge of the underlying channel state information (CSI)
can achieve a higher channel capacity compared to the transmission without CSI. This is
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an attractive way to increase the reliability of traditional communication systems. This
way is also very promising with non-standalone (NSA) 5G because the transition towards
Standalone (SA) 5G deployment will take some time given the state of 5G and later 6G
technology. This led to continuing to enhance the existing technology. Specifically, 5G
NSA involves laying the 5G radio-access networks (RAN) over an existing 4G long-term
evaluation (LTE) network.

In downlink beamforming, the benefits offered by MIMO rely on the degree of
availability of CSIT [17–22]. Unfortunately, the acquired CSI is often far from perfect
in practice [23–28]. The CSI estimation error is mainly caused by outdated or limited
feedback. In addition, the transmitter cannot acquire the downlink CSI in fast fading
circumstances or when there is limited cooperation among the end-users [29].

In MIMO systems, the CSI is estimated at the receiver and fed back to the transmitter
for optimal precoding design. The feedback accuracy depends on the degree of CSI
quantization and the condition of the feedback channel. In the case of limited feedback,
it has been shown that the Analytic Centre Cutting Plane Method (ACCPM) provides
better CSI estimation accuracy with fewer feedback values [30–32]. More specifically,
the authors in [31] use the ACCPM method to learn the CSI and perform beamforming
for Multiple Input and Single Output (MISO) systems by maximizing the signal-to-noise
power ratio at the receiver side. The authors in [31] also use one-bit feedback to learn the
CSI and beamforming vector by using an ACCPM-based convex optimization technique.
Additionally, paper [30] proposes a new channel learning method in multi-user energy
beamforming that requires only one feedback bit from each energy receiver, indicating the
increase or decrease in the harvested energy in the present interval as compared to the
previous interval. Finally, the authors in [32] use multi-bit feedback to estimate the CSI to
speed up the learning process, where the multi-bits are obtained using energy quantization
of two successive energy levels. The differences between the previous studies and this
study can be summarized in the following Table 1.

Table 1. A comparison between previous studies and the present study.

Reference Number Achievements

[30]

The paper uses a precoding matrix to estimate the CSI for a single user
with a single cutting plane and multiple precoding matrices; this increases

the estimation time, but it is not important in the paper since the paper
estimates the CSI assuming the time of channel varying is large enough,

because the goal is to increase the power delivered from the
transmitter to the user.

[31]

This paper estimates the CSI for a single user only with a single cutting
plane. The paper compares the received power at the receiver side with the

estimated power at the transmitter side. Thus, it requires a dedicated
channel to send the estimated power from the transmitter to the receiver
which is cost-effective and also increases the estimation error and hence

the uncertainty in the estimated CSI.

[32]
This paper estimates the CSI using a single beamforming vector with
multiple cutting planes and multiple feedback bits which leads to the

increase in estimation error and hence CSI uncertainty.

This article

This paper estimates the CSI for single and multiple users using null space
for single users and common null space for multiple users. It uses a single
beamforming vector for multiple users and the QPSK modulation is used
in this work. Additionally, the paper uses multiple beamforming vectors to
estimate the CSI with multiple cutting planes that reduces the estimation
time which is very important in CSI estimation where the time-varying of

the channel is small.
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The main contributions of this paper can be summarized as follows:

1. A novel method for MIMO CSI estimation in single and multiple users is proposed
through the use of null space during the learning phase, so the power consumption is
significantly reduced during the estimation period.

2. A new mathematical concept is used to determine the common null space of multiple
users for their CSI estimation. Thus, the number of feedback bits in multiple user
systems is only one, as compared with other research, where the number of bits is
equal to the number of users.

3. Multiple orthogonal beamforming vectors are applied to reduce the CSI estimation
time. This will reduce the number of feedback bits and hence reduce the error in
estimation that leads to lower CSI uncertainty.

4. The methods and algorithms are not verified by only using a randomly generated
channel matrix; two standard channel matrices were used—the scatterer channel for a
single user and the winner channel for multiple users. The convergence for these two
channels was approved.

5. Numerical results show that the proposed method outperforms all existing research.

The rest of this paper is organized as follows. Section 2 introduces the channel models
briefly and describes in detail the models used in terms of numerical results.Section 3
explain how the ACCPM method work. Section 4 describes the system multiuser MIMO
model suggested for this work and finds the solution for one user case with a single
beamforming vector. Section 5 presents the proposed multi-beamforming methods where
algorithms were introduced to the orthogonal and non-orthogonal beamforming vectors.
Section 6 presents the multiple-user case where two methods described the single and
multiple beamforming vectors. Section 7 goes through the numerical results that approve
the convergence and verification of the proposed methods. Finally, Section 8 provides the
conclusions of the paper and describes future work to enhance the proposed method.

Throughout the paper, lightface letters represent scalars and boldface letters represent
vectors (lower case) and matrices (upper case). Logdet(X) means the logarithmic determi-
nant of matrix X. ||X|| represents the second norm of variable X. Cx×y denotes the X× y
complex matrix. H and Ĥ represents the actual and estimated covariance channel matrices,
respectively. The notation H � 0 indicates that the matrix H is positive semi-definite. I
represents the identity matrix (a matrix where all of the elements are zeros, except the
diagonal values which are ones). The notation 〈x, y〉 indicates the inner product between
the two vectors x and y. Finally, proju(w) is the projection of vector w orthogonal into
space spanned by the vector u

2. Channel Models

In any wireless communication system, the channel plays a key role in determining
communication performance. In a MIMO system with m transmitting antennas and n
receiving antennas, the channel can be characterized by the following matrix:

H =


h11(t, τ) h12(t, τ) h13(t, τ) . . . h1m(t, τ)
h21(t, τ) h22(t, τ) h23(t, τ) . . . h2m(t, τ)
h31(t, τ) h32(t, τ) h33(t, τ) . . . h3m(t, τ)

. . . . . . . . . . . .
hn1(t, τ) hn2(t, τ) hn3(t, τ) . . . hnm(t, τ)

. (1)

where hij(t, τ) is a complex value function representing the channel impulse response
between transmitting antenna i and receiving antenna j.

Due to its importance for various applications, the MIMO channel has been extensively
studied and various MIMO channel models have been proposed, most of which are based
on measurements. There are many ways to classify channel models [33–36], and a useful
classification is shown in Figure 1 which includes physical models, analytical models, and
standard models.
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Figure 1. Basic classification of MIMO channel models.

The physical channel model characterizes the multipath bidirectional wireless environ-
ment where the electromagnetic wave propagates between the transmitter and receivers.
The model depends on the direction of departure (DoA), the direction of arrival (DoA), the
signal amplitude, and the delay of the multipath component (MPC). The physical model is
independent of the system bandwidth and antenna configurations, making it suitable for
signal reproduction.

The analytical model represents the channel impulse response or the transfer function
between a pair of transmitter and receiver antennas without considering wave propagation.
The combination of these impulse responses can be represented by the channel gain matrix.
The main advantage of the analytical model is that it is independent of technology and
hardware and can be easily generated and synthesized.

The standard model focuses on the development of new radio systems. Various tech-
niques, such as signal processing and multiple access, are incorporated into such models
to improve the system’s performance. Different organizations propose several reference
models on MIMO channels. The standard model depends on physical and analytical
models. Most of the preliminary results in this paper depend on the randomly generated
channel matrix. To approve the method, we used two types of standard channels—the
scatter channel model for single users and winner II models for multiusers.

2.1. Scattered Channel Model

This model is used for both single and multiusers, but the approach used in this paper
assumes a single user. In the MIMO system, the signal follows a multipath where multiple
copies of the signal propagate between transmitter and receiver at a different propagation
delay and different angle and strength due to the existence of the scattering object (s0 at
the path of the signal). The received rays are added destructively or constructively at the
receiver side which gives rise to the channel fluctuation. In this model, the received rays
depend on the antenna configuration (the number of antennae, the antenna’s spacing, etc.),
the number and location of scattering object(s), the angle of departure, and the angle of
arrival of the signals.
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2.2. Winner II Channel Model

This model used a multiuser MIMO system where multiple base stations and multiple
mobile stations can be assumed with their geometrical location to simulate a spatially
defined mMIMO system.The model is a stochastic base approach for channel modeling,
with a randomly generated bidirectional radio channel model. This model is independent
of the antenna since a different pattern setting and different antenna configuration can be
assumed. The statistical distributions determined from the channel measurement can be
used to determine the channel parameters. The channel investigation can be obtained by
adding the effect of the rays using different parameters such as power, time delay, angle of
arrival, angle of departure, etc.

3. Methodology

ACCPM is used to solve semi-convex or general convex optimization problems [37]
with the aim of finding a possible point in a convex objective set (the set in which the
points at the line between two points in the set must include it), which is the region of the
sub-optimal or optimal solutions to this optimization problem. Suppose we have a point X
of the solution in convex set P, as shown in Figure 2, and we try to use this well-known
localization and cutting plane method. The basic solution (an oracle) is queried by obtaining
a string of working convex sets as P1, P2, . . . , where P3 ⊂ P2 ⊂ P1 ⊂ P.

At every iteration, the algorithm calculates the analytical center of the new working
set defined and generated in the previous iteration. If this center of analysis is a a wailed
solution, the algorithm is terminated, otherwise, the new plane is returned and added
to the system. The algorithm finds a solution to the problem as the number of iterations
increases, while the working set is shrinking.

Figure 2. ACCPM shrinking set.

4. System Model

A broadcast MIMO system with multiusers as shown in Figure 3 is considered in
this work, where an N-antenna transmitter broadcasts confidential signals xk ∈ C1×N

(k = 1 . . . K) to K receivers each equipped with Mk (k=1. . . K) antennas through channel
hk ∈ CN×Mk (k = 1 . . . K) that are assumed to be random and follow a channel model
of quasi-static flat-fading-type to ensure they are constant through the duration of in-
terest. These signals are superimposed at the transmitter with beamforming vectors
wk ∈ CN×1 (k = 1 . . . K) thus, the transmitted signal is wx so that the received signal
at each receiver is:

yk =
K

∑
i=1

hH
i wixi

k∈K

+ nk (2)

where nk ∼ CN (0, ρ2
k) denotes the complex Gaussian noise at the kth receiver. Without

the loss of generality, an assumption that considers the transmitted signal to be random
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with unit variance, and zero means that lead to ‖xk‖2 = 1, applying QPSK modula-
tion.Accordingly, the received power at the kth receiver becomes:

Pk = wH
k hkhH

k wk +
K

∑
i 6=k

wH
i hihH

i wi + ρ2
k

k∈K

(3)

where the second term represents the interference power at the kth receiver.

Figure 3. Multi-user MIMO system.

First, the case of a single receiver (K = 1) is assumed which results in omitting the
second term and reduces (3) to:

Pt = w(t)HhhHw(t) + ρ2 (4)

The value of Pt is measured at the receiver at each time interval and compared with the
previous value. Then, the receiver sends an AKK or NACK according to the comparison
result that is represented by a one-bit feedback βt = 1 or −1 at the transmitter according to
the following comparison result

i f w(t)HhhHw(t) + ρ2 ≥ w(t−1)HhhHw(t−1) + ρ2 ⇒ βt = 1 (5)

i f w(t)HhhHw(t) + ρ2 < w(t−1)HhhHw(t−1) + ρ2 ⇒ βt = −1 (6)

With the βt values, the transmitter estimates the covariance matrix of the channel
H = hhH using ACCPM. Accordingly, the analytic center that contains the query point can
be determined using the following convex optimization problem

(P-1):Ĥt = arg max.
0�Ĥt�I

logdet
(
I− Ĥt)+

t

∑
i=2

βi
(

wi −wi−1
)H

Ĥt
(

wi −wi−1
)

s.t Ĥt � 0

(7)

Note that P-1 is a convex optimization problem and can be solved using the interior
point method or other convex optimization tools such as CVX [38]. Additionally, the
constraint in (7) is to ensure that the resultant covariance channel matrix is positive semi-
definite which is the inherent characteristic of the matrix.
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The initial beamforming vector is generated randomly from the complex Gaussian
distribution with zero mean and unit variance. The beamforming vector must be updated
after each iteration using the following equation:(

wt −wt−1
)H

Ĥt
(

wt −wt−1
)
= 0 (8)

To satisfy the above equation, it is clear that wt −wt−1 must belong to the null space
of Ĥt. That is, let vt denote a vector of the null space of Ĥ, then the beamforming vector
is updated:

wt+1 = wt + vt (9)

The above method is summarized in the following algorithm. This algorithm was
implemented using MATLAB 2021 with a Razer Blade laptop (Razer, Inc., Irvine, CA, USA)
with 8 GB RAM and a Core i7 processor (Intel Corporation, Santa Clara, CA, USA). It can
implemented by any PC that can run MATLAB 2014, such as a PC with 4 GB RAM and a
Core 2 Duo processor.

According to Algorithm 1, the simulation is terminated when the difference between
the estimated covariance channel matrix and the actual covariance channel matrix is small
enough or the number of time intervals exceeds the predefined value.

Algorithm 1 CSI estimation for single user single beamforming vector
Initialization: Set the maximum allowed error between the estimated and actual CSI
(ε = 0.001)
Generate CSI randomly.
set maximum # o f iterations and counter (C = 0).
Generate initial beam f orming vector randomly.
Set β0 = 1.
Evaluate Ĥ using (7).
Update beamforming vector using (9).
Repeat

1. C = C + 1.
2. Determine the new βC. using (5) and (6)
3. Evaluate Ĥ using (7).
4. find the null space vector of Ĥ.
5. Update beamforming vector using (9).

Until ‖Ĥ−H‖2 ≤ ε or C = Maximumteration

To speed up the covariance channel matrix estimation, the receiver also compares
the estimated power with the actual power at the same time interval and sends back an
additional ACK and NACK signal to the transmitter. This signal is interpreted by the
transmitter as a one-bit binary value γt according to the following inequality:

i f w(t)HhthtHw(t) + ρ2 ≥ w(t)H ĥtĥtHw(t) + ρ2 ⇒ γt = 1
i f w(t)HhthtHw(t) + ρ2 < w(t)H ĥtĥtHw(t) + ρ2 ⇒ γt = −1

(10)

Combining (7) and (10), the new estimation convex optimization problem is formu-
lated as:

(P-2): Ĥt = arg max.
0�Ĥt�I

logdet
(
I− Ĥt)+

t

∑
i=2

βi
(

wi −wi−1
)H

Ĥt
(

wi −wi−1
)
+

t

∑
i=2

γi((wi)H(Ĥt − Ĥt−1)(wi))

s.t Ĥt � 0

(11)
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where the beamforming vector w of the above problem still must be updated according
to (9).

Algorithm 1 can be slightly adjusted to estimate Ĥ from P-2.

5. Multiple Beamforming Vectors
5.1. Orthogonal Vectors

Note that Equation (11) generates two cutting plans shown in Figure 4a to reduce
the CSI estimation time, but there is no control on the generated cutting plane. Figure 4a
shows no effect because the generated cutting plane is approximately the same, while
in Figure 4b,c the two generated cutting planes are approximately perpendicular. To
control the generated cutting planes, more than one beamforming vector can be sent by
the transmitter.

Figure 4. Multiplecutting planes through orthogonal beamforming.

These beamforming vectors should be orthogonal to generate orthogonal cutting
planes so that they can be easily separated by the receiver. Vectors are orthogonal if the
dot product between any two vectors is equal to zero. The Gram-Schmidt process [39,40]
can be used to orthogonalize the beamforming vectors, which is a common process in
linear algebra to generate an orthogonal vector set uz, z ∈ (1, · · · , Z) (where Z repre-
sents the number of the orthogonal vector needed) from a non-orthogonal vector set
wz, z ∈ (1, · · · , Z). The Gram-Schmidt process is given as follows:

projuz
(w) =

〈u, v〉
〈u, u〉u,

uz = wz −
Z−1

∑
i=1

projuj
(wz)

(12)

where 〈u, v〉 represents the inner product of two vectors.
On the receiver side, a comparison is performed to extract βt

z, ∀z ∈ (1, · · · , Z) is the
corresponding vector, which is sent to the transmitter as feedback bits.

i f u(t)H
z hhHu(t)

z + ρ2 ≥ u(t−1)H
z hhHu(t−1)

z + ρ2 ⇒ βt
z = 1

i f u(t)H
z hhHu(t)

z + ρ2

z∈(1,··· ,Z)
< u(t−1)H

z hhHu(t−1)
z + ρ2 ⇒ βt

z = −1 (13)

The transmitter utilizes these values to estimate the channel covariance matrix. Ac-
cordingly, the following convex optimization problem is formulated:

(P-3): Ĥt = arg max.
0�Ĥt�I

logdet
(
I− Ĥt)+

Z

∑
z=1

t

∑
i=2

βi
z

(
ui

z − ui−1
z

)H
Ĥt
(

ui
z − ui−1

z

)
s.t Ĥt � 0

(14)
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The beamforming vectors are updated using the null space of the estimated covariance
channel matrix. Since each vector uses different null spaces, the number of vectors used
to estimate the matrix is equal to the number of null spaces, which is determined and
restricted by the number of antennas at the transmitter and receiver sides.

The following algorithm summarizes the procedure to estimate Ĥ using multiple
orthogonal beamforming vectors (Algorithm 2).

Algorithm 2 CSIestimation using orthogonal beamforming vector
Initialization: Set the maximum allowed error between estimated and actual CSI
(ε = 0.001)
Generate CSI randomly.
set maximumiteration and counter (C = 0).
Generate n orhognal beam f orming vector randomly using (12).
Set β0

z = 1.
Evaluate Ĥ using (14).
Update beamforming vector using (9).
Repeat

1. C = C + 1.
2. Determine the new βC

z . using (13)
3. Evaluate Ĥ using (14).
4. Find the null space vectors of Ĥ.
5. Update beamforming vectors using (9).

Until ‖Ĥ−H‖2 ≤ ε or C = Maximumteration

5.2. Non-Orthogonal Vectors

In this scenario, a single user can be considered as multiple receivers, where each
antenna is considered as an independent receiver, and a signal from the transmitter is sent
to each antenna. As a result, each column of the channel covariance matrix gm ∈ CN×1,
m ∈ (1, · · · , M) becomes the channel vector of each receiver. In this case, the transmitter
sends M signals and a comparison is performed at each receiving antenna. The comparison
results γt

m, m ∈ (1, · · · , M) are fed back to the transmitter.

i f w(t)H
m gtgtHw(t)

m + ρ2 ≥ w(t)H
m ĝtĝtHw(t)

m + ρ2 ⇒ γt
m = 1

i f w(t)m HgtgtHw(t) + ρ2 < w(t)H
m ĝtĝ(t)Hw(t)

m + ρ2 ⇒ γt
m = −1

(15)

According to the results from (15), the transmitter uses the following optimization to
estimate G = ggH .

(P-4): Ĝt
m = arg max.

0�Ĝt
m�I

logdet
(
I− Ĝt

m
)
+

M

∑
m=1

t

∑
i=2

γi
m((w

i)H(Ĝt
m − Ĝt−1

m )(wi))

s.t Ĝt
m � 0

(16)

In this case, the beamforming vector is updated by adding the principal eigenvector
of Gt

m which is obtained by using decomposition of Gt
m to the corresponding vector.

The simulation of P-4 can be performed with the assistance of Algorithm 3.
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Algorithm 3 CSI estimation using multiple non-orthogonal vectors
Initialization: Set the maximum allowed error between the estimated and actual CSI
(ε = 0.001)
Generate CSI randomly.
set maximumiteration and counter (C = 0).
Generate M beam f orming vector randomly.
Set initial γ vector to ones.
Eevalute Ĝ using (16).
Update beamforming vectors by adding the previous vector to the corresponding principle in vector.
Repeat

1. C = C + 1.
2. Determine the new γC. using (15).
3. Evaluate Ĝ using (16).
4. Eigendecomposition Ĝ matrices and extract the M principle eigen vectors.
5. Update beamforming vectors by adding the previous vector to the corresponding
principle in the vector.

Until ‖Ĝ−G‖2 ≤ ε or C = Maximumteration

6. Multiple Users

When there are multiple users (i.e., K > 1), the transmitter can either send multiple
beamforming vectors to multiple users or send only one beamforming vector by considering
all users as a single user.

6.1. Multiple Users Multiple Beamforming Vectors

In this case, the received power at each user is determined by (3). At each time instance,
the power comparison is performed as:

βt
k = 1 if w(t)H

k hkhH
k w(t)

k +
K

∑
i 6=k

w(t)H
i hihH

i w(t)
i + ρ2

k

k∈K

≥

w(t−1)H
k hkhH

k w(t−1)
k +

K

∑
i 6=k

w(t−1)H
i hkhH

k w(t−1)
i + ρ2

k

k∈K

βt
k = −1 if w(t)H

k hkhH
k w(t)

k +
K

∑
i 6=k

w(t)H
i hihH

i w(t)
i + ρ2

k

k∈K

<

w(t−1)H
k hkhH

k w(t−1)
k +

K

∑
i 6=k

w(t−1)H
i hkhH

k w(t−1)
i + ρ2

k

k∈K

(17)

The receivers feed back the values of βt
ks to the transmitter for ACCPM-based CSI

estimation, which is performed by solving the following convex optimization problem:

(P-5):Ĥt
k = arg max.

0�Ĥt�I
logdet

(
I− Ĥt

)
+

t

∑
i=2

(
log
(

βi
k

(
wi

k −wi−1
k

)H
Ĥt

k

(
wi

k −wi−1
k

)))
+

K

∑
j 6=k

log
(

βi
j

(
wi

j −wi−1
j )HĤt

k(w
i
j −wi−1

j )
))

s.tĤt
k � 0

k∈(1,··· ,K)

(18)

All users’ CSI is determined separately by solving K convex optimization problems
in (18).
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Then, the K beamforming vectors wk (k = 1, · · · , K) are updated by determining the
K null space vk (k = 1, · · · , K) of CSI Hk (k = 1, · · · , K) using:

wi+1
k = wi

k + vi
k

k∈(1,··· ,K)
(19)

Algorithm 1 with multiple optimization problems is applied to the above problem.

6.2. Multiple Users Single Beamforming Vector

In this scenario, the transmitter sends a single beamforming vector to all users by
finding the common null space of these receivers [41,42]. Let Σk = ∑K

k=1 Mk denote the total
number of antennas across all receivers, the bmatrix Σh ∈ CN×Σk must be found, which
represents the common channel between the transmitter and all receivers. Specifically, the
received signal can be written as:

y = [hH
1 w, hH

2 w, · · · , hH
K w] + ρ (20)

where ρ == ∑K
k=1 nk is the total noise between the transmitter and all receivers. Let

Σh = [hH
1 , hH

2 , · · · , hH
K ]H , then (20) becomes y = ΣhHw + ρ. Then, the comparison per-

formed at the fusion centre is:

i f w(t)HΣhΣhHw(t) + ρ2 ≥ w(t−1)HΣhΣhHw(t−1) + ρ2 ⇒ βt = 1
i f w(t)HΣhΣhHw(t) + ρ2 < w(t−1)HΣhΣhHw(t−1) + ρ2 ⇒ βt = −1

(21)

Then, according to the values of βt, the transmitter determines the channel covariance
matrix ΣH = ΣhΣhH using the following optimization:

(P-6):ΣĤ = arg max.
0�ΣĤ�I

logdet
(
I− ΣĤ

)
+

t

∑
i=2

βi

(
wi −wi−1

)H
ΣĤ
(

wi −wi − 1
)

s.tΣĤ � 0

(22)

Finally, the beamforming vector is updated using the null space of ΣĤ. It is worth
noting that, since the rank of the covariance channel matrix is min(N, ΣM), the covariance
channel matrix has null space only if ΣM < N.

The null space of Ĥ is found by finding the singular value decomposition (SVD) of
Ĥ, i.e.,

Ĥ = ÛΣ[V̂1
i V̂0

i ] (23)

where V̂1
i represents the first M right singular vectors and V̂0

i denotes the M−N orthogonal
basis null space of Ĥ.

The method can be implemented following the procedure in Algorithm 4.
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Algorithm 4 CSI estimation for multi-user single beamforming vector
Initialization: Set the maximum allowed error between the estimated and actual CSI
(ε = 0.001)
Generate CSI randomly.
set maximumiteration and counter (C = 0).
Generate initial beam f orming vector randomly.
Set initial β = 1
Eevalute Ĥ using (22).
Determine the null space o f Ĥ.
Repeat

1. C = C + 1.
2. Determine the new βt

zC . using (21).
3. Evalute Ĥ using (22).
4. Eigendecomposition Ĝ matrices and extract the the null space vector.
5. Update beamforming vectors by adding the previous vector to the corresponding
principle eigen vector.

Until ‖Ĝ−G‖2 ≤ ε or C = Maximumteration

7. Numerical Results

This section provides the simulation results to illustrate the performance of the pro-
posed ACCPM methods. The initial beamforming vectors for all cases are generated
randomly from the complex Gaussian distribution with zero mean and unit covariance.
Each simulation result is averaged over 500 trials.

The actual correlation matrix is determined by X = xxH and the error in the estimated
covariance matrix is ∆X = ||X− X̂||2, where X̂ is the estimated covariance matrix. The
beamforming vector is extracted by eigen-decomposition of the estimated covariance matrix
where the principle Eigenvector is the optimal beamforming vector.

When M = 2, Figure 5 shows the convergence (i.e., channel estimation error versus
estimation time) of our proposed solution under different MIMO configurations. We can see
that, with fixed number of receiving antennas, the channel estimation time increases with
the number of transmitter antennas. This is expected because the complexity of estimating
the channel covariance matrix increases with the number of antennas. Eventually, our
channel estimation solution converges in all cases.
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Figure 5. The convergence of channel covariance matrix estimation for a different number of trans-
mitting antennas.
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When M = 2, Figure 6 demonstrates the transmitted signal power versus the learning
time. In all cases the power drops to zero at the end of the learning period. This is because
we use the null space vector of the estimated channel covariance matrix, which converges to
the actual channel covariance matrix. Similar to Figure 3, we also find that the convergence
time increases with the number of transmitter antennas.
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Figure 6. The convergence of the transmitted signal power for different number of transmit-
ting antennas.

When N = 6, Figure 7 shows the normalized error in estimating the channel covariance
matrix versus the estimation time for a different number of transmitting antennas. We see
that the convergence time is reduced as the number of receiving antennas is increased,
because the number of estimating sensors to estimate the parameters increased.
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Figure 7. Normalized channel estimation error versus estimation time for different number of
receiving antennas.

Figure 8 explains the proposed two cutting planes as compared with the results in [31].
We can see that our proposed method outperforms that in [31]. This is because as the
number of cutting planes increase, the time interval to estimate the channel decreases, as
explained in Figure 5.
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Figure 8. Normalized error of estimated covariance matrix for the two proposed cutting planes
versus [31] for different MIMO configurations.

When N = 6 and M = 3, Figure 9 compares the performance of our proposed method
with [32]. We can see that the performance of our method improves significantly as the
number of orthogonal vectors increases, dividing the convex set into halves, quarters
and eventually approaching the estimated channel matrix. In particular, our method
outperforms the 10-bit method in [32] with three proposed vectors.
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Figure 9. Performance comparison of our orthogonal cutting plane method versus the multiple-bit
method in [32].

Figure 10 shows the transmitting power versus the channel estimation time for non-
orthogonal vectors. We observe that as the number of vectors increases, the power quickly
comes to a steady state.
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Figure 10. Transmitting power for non-orthogonal vector.

Figure 11 shows the convergence of our method in a multi-user scenario, and it shows
that our method sometimes outperforms the method in [30].
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Figure 11. Error in estimated covariance matrix versus time interval for the multiuser case [30].

For the purpose of verification of the method, the method is tested using one of the
standard channel models: the scattering channel [43] that is used to test the method with
a single user using P-1 with different settings in Table 2, where d represents the spacing
between antenna elements in terms of wavelength λ, and D is the distance between the
transmitter and receiver. The optimization problem (P-1) is solved under different channel
settings and the results are shown in Figure 12, which shows the convergence of our method.
We can also see that the channel estimation time increases with the number of transmitting
antennas because more parameters need to be estimated.
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Table 2. Scattering channel with different settings.

Case No. N M No. of Scatterers d in λ D in λ

1 3 2 4 0.25 100

2 4 2 8 0.35 200

3 6 3 10 0.4 250

4 8 4 13 0.5 300
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Figure 12. Channel covariance matrix estimation with different scattering channels.

Finally, for a multiple user case with a standard channel, the winner channel model
is tested [44] using P-6 where a single base station is assumed to communicate with two
mobile stations and for a different type of MIMO system, as illustrated in Table 3.

Table 3. Winner channel model with different settings.

Case No. N M1 M2

1 4 1 1

2 8 4 2

3 8 2 2

Where N represents the number of transmitting antenna in the base station, M1
represents the number of antenna in mobile station 1 and, M2 is the number of antenna in
mobile station 2. For more details on the configuration of the winner channel, please refer
to [45].

Figure 13 indicates the convergence of our method in P-6 when the winner channel
model is used. Additionally, the results satisfy the previous results where we see that as the
number of transmitting antenna increase, the time interval required to achieve convergence
increases too. This is due to the fact that the channel matrix dimension increases which
leads to an increasing number of the elements needed to be estimated. At the other
side, as the number of receiving antenna increases, the time interval required to achieve
convergence decreases. This is because the sensing element at the receiver side increases,
which is responsible for the estimation even when the dimensions of the matrix needed to
be estimated are larger.
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Figure 13. Channel covariance matrix estimation with different winner channel models.

8. Conclusions

The paper demonstrates different methods of using ACCPM for channel covariance
matrix estimation in various MIMO systems including single user, multiuser, and multi
beamforming vectors. The simulation results show that the proposed methods not only
converge but also outperform existing benchmark methods. In particular, the use of null
space during the learning phase is a better choice to reduce the power consumption. Using
ACCPM, the learning is achieved at the transmitter side and requires little feedback from
the receiver. Additionally, the transmitter starts learning without any information about
the estimated CSI. The effectiveness of the method was corroborated by applying it to
standard channel models. The method can be considered in terms of artificial intelligent
as a simple classification problem or can be solved using prediction methods. This can be
considered for future studies, where it can be improved further by reducing the feedback
time intervals. Additionally, it could be tested for all channel models and the probabilistic
mathematical concepts could be considered for future work.
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