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Abstract: The increasing complexity of web applications and systems, driven by ongoing digitaliza-
tion, has made software security testing a necessary and critical activity in the software development
lifecycle. This article compares the performance of open-source tools for conducting static code analy-
sis for security purposes. Eleven different tools were evaluated in this study, scanning 16 vulnerable
web applications. The selected vulnerable web applications were chosen for having the best possible
documentation regarding their security vulnerabilities for obtaining reliable results. In reality, the
static code analysis tools used in this paper can also be applied to other types of applications, such as
embedded systems. Based on the results obtained and the conducted analysis, recommendations for
the use of these types of solutions were proposed, to achieve the best possible results. The analysis
of the tested tools revealed that there is no perfect tool. For example, Semgrep performed better
considering applications developed using JavaScript technology but had worse results regarding
applications developed using PHP technology.
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1. Introduction

The digital transformation continues to accelerate. More and more businesses and reg-
ular users are utilizing various types of software, whether for work or entertainment. Access
to public services is also undergoing digitization processes. For instance, in Poland, the de-
velopment of the mObywatel application enables the storage of identification documents
in mobile applications [1], electronic circulation of medical prescriptions (E-recepta) [2],
and electronic tax filing (e-PIT) [3]. Newer and larger systems are being developed, com-
prising thousands of lines of code, and numerous libraries and technologies. A steadily
growing number of programmers collaborate on a single project, needing to work closely
together to deliver a finished product on time. An increasing number of services are avail-
able over the Internet, and they also have extended functionality. In summary, the impact
of software security also affects the end user, regardless of the device they use, such as the
Internet of things (IoT), sensor-equipped devices, embedded systems, or a mobile phone [4].
The importance of securing such software applications, which frequently involve complex
codebases, cannot be overstated. Vulnerabilities in these applications can lead to serious
security breaches, data leaks, and even physical harm, if the devices controlled by the
software are critical to safety.

Cybercriminals tirelessly devise new ways to exploit vulnerabilities in application
functioning, to cause harm and extract data. Analyzing program code for security purposes
is challenging, time-consuming, and expensive. Thus, there is a necessity to support these
processes. Examples of such solutions include tools for conducting static code analysis for
security (SAST), and dynamic code analysis for security (DAST). Both of these processes
have been discussed in the literature [5,6]. However, it can be observed that authors tend
to focus on only one technology, such as C [7,8] or Java [6]. The literature also includes
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comparisons of solutions for related technologies, such as C and C++ [9]. Additionally,
the authors in [6] used enterprise-type tools that are not available to every user due to
their high cost. According to the current state of the authors’ knowledge, there is a lack of
a broader comparison of open-source tools available to everyone, supporting current trends
in software development. Furthermore, the literature lacks a perspective on solutions that
can perform static code analysis for more than one technology, such as analyzing code
written in both Java and JavaScript. Such solutions can potentially reduce the number
of tools used in the software development process, thereby simplifying the continuous
integration/continuous delivery process and reducing the amount of data processed in the
big data process [10].

The novel contribution of this paper relates to the comparison of the results of open-
source tools supporting various technologies used in software development for conducting
static analysis and detecting potential errors affecting the security of applications, thereby
enhancing the security of organizations and end users. Based on the analysis of the
obtained results, a recommendation was formulated regarding the utilization of such
solutions, which could significantly enhance the quality of applications developed, even
at the code-writing stage. The analysis was carried out based on the list of vulnerabilities
reported by all tools. Vulnerable web applications were scanned using these tools for the
most popular programming languages [11].

The scope of this work encompassed a review of the available literature; an analysis
of methods for scanning code for vulnerabilities; a determination of the pros and cons
of SAST tools; an overview of existing tools, their comparison, research, and analysis of
the obtained results; as well as effectiveness verification. Within the conducted research,
vulnerable web applications were configured and launched, SAST tools were configured
and launched, the extraction, transformation loading (ETL) process [12] was utilized to
consolidate results from the tools, and the acquired data were processed. Given that web
applications are the most popular type of application enabling access to services through
personal computers, this work specifically focused on them. This paper is divided into the
following subsections:

• Background — describes the research basics and presents the problems, processes,
and compromises that occur in static code analysis research;

• Environment—describes the hardware and software used for conducting the research.
This section also provides an overview of the analyzed tools and the utilized vulnerable
web applications;

• Research Methodology—covers the design of the experiment for the research conducted;
• Results—provides a discussion of the results, and highlights the strengths and weak-

nesses of the examined tools for static code analysis;
• Conclusions—summarizes the obtained results.

2. Background

A web service is a component of an information technology system that can be com-
municated with via the Internet. This could be a web application, an API server, and so on.
With the ever-improving global access to fast and affordable internet connections, these
services have become more popular than ever before—they are used for tasks such as
online banking, information searches, doctor appointments, watching movies, listening to
music, and playing computer games. However, not only has their popularity increased,
but their functionality has also expanded. Bank websites offer more and more features,
government websites enable administrative procedures—all through the use of computers
or smartphones.

Nevertheless, despite the many advantages of web services, as their complexity grows,
so does the likelihood of vulnerabilities that could lead to security threats. In the context of
cybersecurity, a vulnerability (or flaw or weakness) is a defect in an information technology
system that weakens its overall security. Exploiting such a flaw, a cybercriminal could
cause harm to the system owner (or its users) or pave the way for further attacks on the
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system. Each vulnerability can also be described as an attack vector—a method or means
that enables the exploitation of a system flaw, thereby jeopardizing security. A set of attack
vectors is termed the attack surface [13]. The utilization of a vulnerability is referred to
as exploitation.

The common weakness enumeration (CWE) is a community-developed list of software
and hardware weakness types [14]. As of today, the CWE database contains 933 entries [15].
Each CWE entry possesses attributes that describe the specific weakness, including an
identification number, name, description, relationships to other entries, consequences,
and examples of exploitation.

The common vulnerability scoring system (CVSS) is a standard for rating the severity
of vulnerabilities [16]. It aims to assign a threat rating to each identified vulnerability (in
the case of a successful exploit). Such a rating allows prioritizing the response efforts of the
reacting team based on the threat severity. The latest version is CVSSv3.1, released in June
2019. The specification is available on the website, and CVSSv4 is currently in the public
consultation phase [17].

The common vulnerabilities and exposures (CVE) database contains entries about
known security vulnerabilities [18]. It differentiates vulnerabilities that can directly lead to
exploitation from exposures that may indirectly lead to exploitation. Each entry is assigned
a unique identifier and includes a description, name, software version, manufacturer,
cross-references to other resources about the entry, and creation date.

Due to the increasing complexity of web systems, software testing for security vul-
nerabilities has become an essential and critical activity in the software development life
cycle (SDLC), especially for web applications [19]. Secure software development life cycle
(SSDLC) is an extension of the SDLC, with additional security measures [20]. It aims to
assist developers in creating software in a way that reduces future security threats. It
includes, among other things, defining and implementing security requirements alongside
the functional requirements of the application being developed, as well as periodically
assessing the security level, for instance, through conducting penetration tests.

Numerous SSDLC models have been proposed and are successfully employed in
contemporary processes [20]. Some of these include the National Institute of Standards
and Technology (NIST) guidelines 800-64 [21], Microsoft’s Security Development Lifecy-
cle (MSSDL) [22], and the Comprehensive Lightweight Application Security Process by
OWASP (OWASP CLASP) [23].

Penetration testing is one of the most popular methods for assessing the security level
of web applications [24]. It constitutes a part of the testing phase within the SSDLC process.
It involves attacking the application to discover the existence or extent of vulnerabilities
within the application’s attack surface. In contemporary cybersecurity solutions, automa-
tion plays a pivotal role. As the complexity of developed solutions continues to grow,
the need for more efficient methods of testing the security of web services arises. In today’s
fast-paced environment, where software updates are released daily, penetration tests must
be conducted swiftly and effectively.

It is impossible to fully automate the entire process of conducting penetration
tests—certain aspects must be carried out by a human. However, many tasks, such as
fuzzing (a technique involving the supply of incorrect, unexpected, or random data),
can be easily automated. Although no automation tool can fully replace the intuition and
abstract thinking of a human tester, it can expedite their work by identifying well-known
and documented vulnerabilities.

Static code analysis tools analyze the source code of a program, utilizing a white-box
testing approach. There are various approaches to conducting this analysis, such as string
pattern matching, lexical analysis, and abstract syntax tree (AST) analysis [25]. The earlier
a software error is detected, the lower the cost of its resolution [26]. SAST tools can scan
code not only during the software testing phase within the SDLC but also during the writing
of the program code by the developer, providing real-time error feedback. They examine
the entire code, ensuring 100% coverage of the software. Besides detecting vulnerabilities
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in the code, these scanners often analyze the libraries used by the application, highlighting
those with known vulnerabilities. Despite developers’ positive evaluation of using SAST
tools for error reduction, integrating such tools into SDLC processes encounters certain
challenges, such as low analysis performance, the need for multiple tools, and technical
debt (a phenomenon where choosing a seemingly easier and cheaper option in the short
term becomes less cost-effective in the long run [27]) when implemented late [28]. Scanning
extensive lines of code can result in hundreds or even thousands of vulnerability alerts for
a single application. This generates numerous false positives, prolongs investigation time,
and diminishes trust in SAST tool results [28].

Unlike SAST tools, dynamic application security testing (DAST) tools assess the
behavior of running program code through the user interface and APIs. This is a black-
box approach to penetration testing, as they lack access to the source code of the tested
application. DAST tools are language-independent and can identify issues not present in
the application code, such as misconfigured environments, manipulation of cookies (text
snippets stored by a web browser in a computer’s memory—can be transmitted by a web
service or created locally), and errors in integration with third-party services [5]. As DAST
tools do not have access to the source code of the tested application, there is a significant
likelihood that they may overlook certain parts of the scanned application. They will not
pinpoint the location of vulnerabilities in the code; rather, they will indicate the detected
issues, leaving it up to the programmer to identify the line(s) of code responsible for
the error.

Since DAST requires a functioning application, vulnerabilities are detected towards
the end of the SDLC process, increasing the cost of their remediation. Additionally,
a separate environment is needed for conducting tests, further amplifying the financial
investment—the entire infrastructure of the tested service must be provided, typically
encompassing (but not limited to) the client application, API server, and database. Similarly
to SAST tools, they also generate numerous false alarms.

Static and dynamic code analysis for security are not the only types of code analysis.
Additionally, we cab distinguish the following: interactive application security testing
(IAST), a method that combines SAST and DAST. It utilizes monitoring mechanisms to
observe the behavior of the web application server’s code, while simultaneously attacking
the application through its graphical interface or API [5]; runtime application self-protection
(RASP), a solution that involves using tools to monitor the behavior of a web application
during runtime to detect and block attacks. Unlike IAST, RASP does not attempt to identify
vulnerabilities but rather protects against attacks that might exploit those vulnerabilities.

3. Environment

To ensure accurate research results, an appropriate testing environment was prepared.
It consisted of computer hardware and software that enable a thorough analysis process.
In order to facilitate seamless reproduction of the experiment results, open-source software
and licenses allowing their use for research purposes were utilized. Table 1 presents a list
of the hardware and software used to conduct the research.

Table 1. Used hardware and software.

Asset Type Version/Data

AMD Ryzen 5 3600 CPU 6 physical/12 logical cores, 3.6 GHz (4.2 GHz turbo)

Kingston KF3200C16D4/16GX RAM 32 GB, DDR4-3200/PC4-25600

Crucial CT525MX300SSD1 SSD read 530 MB/s, write 510 MB/s

Microsoft Windows Home Host operating system 22 621.1555

Oracle VM VirtualBox Virtualization technology 7.0.8 r156879

Ubuntu Server Virtualized operating system 22.04.2 LTS
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3.1. Tested Vulnerable Web Applications

Table 2 presents the tested web applications. These applications were designed to
include numerous security vulnerabilities. Many of them also come with a list of present
vulnerabilities, which facilitates the analysis of the results from static code analysis tools.

• EasyBuggy—Prepared by Kohei Tamura, EasyBuggy is a deliberately flawed web
application, written to understand error behavior and vulnerabilities [29], using the
Java programming language. A list of implemented vulnerabilities is available on the
project’s website;

• Java Vulnerable Lab—Created by the Cyber Security and Privacy Foundation (CSPF),
the Java Vulnerable Lab is intended for Java programmers and others interested in
learning about vulnerabilities in web applications and how to write secure code [30];

• SasanLabs VulnerableApp—Another application written in Java, VulnerableApp is
a project prepared by and for cybersecurity experts [31]. According to the creators,
it stands out for its ability to be extended by individuals who want to utilize it.
The project is part of the OWASP Foundation’s incubator;

• Security Shepherd—This application was prepared by the OWASP foundation, in Java
language. It serves as a platform for training skills in the field of cybersecurity. It was
designed to enhance awareness of application security [32];

• Broken Crystals—Developed by Bright Security, using JavaScript (and TypeScript),
Broken Crystals is an application that implements a collection of common security
vulnerabilities. The list of vulnerabilities can be found on the project’s website [33];

• Damn Vulnerable Web Services—An application created by Sam Sanoop using JavaScript. It
facilitates learning about vulnerabilities related to Web Services and APIs [34]. The list
of present vulnerabilities can be found on the project’s website;

• OWASP Juice Shop—Described as possibly the most modern and sophisticated in-
secure web application [35], it was developed by the OWASP Foundation for prac-
ticing cybersecurity skills. The list of vulnerabilities can be found on the project’s
website [36];

• OWASP NodeGoat—Developed by the OWASP Foundation, NodeGoat is an ap-
plication designed to provide an environment for learning how the vulnerabilities
described in the OWASP Top 10 relate to web applications developed using Node.js
technology [37];

• Conviso Vulnerable Web Application—Developed by Conviso, this vulnerable web
application, written in PHP, simulates an internet blog created by an inexperienced pro-
grammer who has made many mistakes, making it vulnerable to various attacks [38];

• Damn Vulnerable Web Application—This web application, written in PHP, is intended
to assist cybersecurity professionals in testing their skills and tools in a controlled
environment. It can also help web application developers better understand the
process of securing their applications [39];

• WackoPicko—Created for a scientific article [40], this web application written in PHP
is designed to test vulnerability scanners for web applications. A list of vulnerabilities
can be found on the project’s website [41];

• Xtreme Vulnerable Web Application—This improperly written PHP web application
helps cybersecurity enthusiasts learn about application security [42]. The list of
vulnerabilities can be found on the project’s website;

• Damn Small Vulnerable Web—A small, vulnerable web application written for educa-
tional purposes in less than a hundred lines of Python code. It includes most of the
popular vulnerabilities, along with examples of exploitation [43];

• Damn Vulnerable GraphQL Application—This vulnerable web application, written
in Python, improperly implements GraphQL technology, to teach about its security.
A list of vulnerabilities can be found on the project’s website [44];

• Damn Vulnerable Python Web Application—Inspired by the Damn Vulnerable Web
Application, this vulnerable web application written in Python aims to create a realistic,
vulnerable web application with as many vulnerabilities as possible [45];
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• Tiredful API—This vulnerable web application, created using Python, aims to educate pro-
grammers, testers, and cybersecurity specialists about web application vulnerabilities [46].

Table 2. Used web applications.

Application Technology Version from the Date

EasyBuggy Java 2 December 2021

Java Vulnerable Lab Java 24 January 2019

SasanLabs VulnerableApp Java 14 August 2022

Security Shepherd Java 24 October 2018

Broken Crystals JavaScript 4 May 2023

Damn Vulnerable Web Services JavaScript 12 February 2023

OWASP Juice Shop JavaScript 4 August 2019

OWASP NodeGoat JavaScript 4 August 2019

Conviso Vulnerable Web Application PHP 28 April 2023

Damn Vulnerable Web Application PHP 4 May 2023

WackoPicko PHP 17 November 2021

Xtreme Vulnerable Web Application PHP 12 September 2020

Damn Small Vulnerable Web Python 22 July 2021

Damn Vulnerable GraphQL Application Python 25 April 2023

Damn Vulnerable Python Web Application Python 4 November 2022

Tiredful API Python 7 September 2020

3.2. Selected Code Analysis Tools

Within the scope of this study, 11 code analysis tools were tested. For SAST tools,
both those dedicated to specific technologies (e.g., Java) and those supporting multiple
technologies were chosen. Table 3 presents the tools used for code analysis. Table 4 presents
the support of the selected SAST tools for various technologies. All chosen tools operate
locally on a computer. They are not cloud-based solutions, although some of them can be
incorporated into the continuous integration/continuous delivery (CI/CD) process—a soft-
ware delivery method that introduces automation into application deployment stages.
The employed tools differed in aspects such as their supported technologies, extensibility
capabilities, and the content of generated reports.

Table 3. Tested security code analysis tools.

Name Version

Bearer CLI 1.5.1

Floe phpcs-security-audit 2.0.1

Graudit 3.5

InsiderSec Insider CLI 3.0.0

OWASP FindSecBugs 1.12.0

Progpilot 1.0.2

PyCQA Bandit 1.7.5

Semgrep 1.20.0

ShiftLeft Inc. Scan 2.1.2

SourceCode.AI Aura 2.1

Zup Horusec 2.8.0
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Table 4. Support of SAST tools for individual technologies.

Tool Python Java JavaScript PHP

Bearer CLI No No Yes No

Floe phpcs-security-audit No No No Yes

Graudit Yes Yes Yes Yes

InsiderSec Insider CLI No Yes Yes No

OWASP FindSecBugs No Yes No No

Progpilot No No No Yes

PyCQA Bandit Yes No No No

Semgrep Yes Yes Yes Yes

ShiftLeft Inc. Scan Yes Yes No Yes

SourceCode.AI Aura Yes No No No

Zup Horusec Yes Yes Yes Yes

• Bearer CLI—This is a SAST tool. Currently, it supports JavaScript, TypeScript, and Ruby
languages. It does not support adding new rules (one would need to download the
source code, add rules, and compile the program), but it allows disabling existing
ones and excluding a specific file (entirely or partially) from the scanning process.
The report can be generated in three formats: JSON, YAML, and SARIF. Each entry
in the report includes the file path, line number of the code, and a description of the
detected vulnerability (along with the CWE identifier(s)) [47];

• phpcs-security-audit—Prepared by Floe, phpcs-security-audit is a set of rules for the
PHP_CodeSniffer tool. It extends its capabilities for detecting vulnerabilities and
weaknesses in PHP code, turning it into a SAST tool. The scan report is displayed
in the system shell console window. It includes file paths, line numbers of the code,
and descriptions of detected vulnerabilities, though without any links to, for example,
the CWE database [48];

• Graudit—Developed by a single programmer, Eldar Marcussen, Graudit is a SAST tool
that searches for potential vulnerabilities in application source code, using another tool,
GNU grep, for text filtering. It supports multiple programming languages (including
all those tested within this work—a complete list can be found on the project’s website).
It is essentially a Bash script. Adding rules involves entering specific rules into files
provided with the tool. Similarly, you can “disable” certain rules by removing them.
The tool’s output is text displayed in the system shell console. It contains only file
paths, the line numbers of the code, and highlighted code snippets that triggered the
rule [49];

• Insider CLI—This is a SAST tool prepared by InsiderSec. It supports Java, Kotlin,
Swift, C#, and JavaScript languages. It does not allow extending the set of rules,
but specific files or folders can be excluded from scanning. The report, available in
HTML or JSON format, includes a list of detected vulnerabilities. Each vulnerability
is accompanied by a CVSS score, file path, line number of the code, description,
and removal recommendation [50];

• Find Security Bugs—This is a plugin for the SpotBugs tool, supporting web applica-
tions written in the Java language. Similarly to phpcs-security-audit, it extends its
capabilities to identifying security vulnerabilities, effectively turning it into a SAST
tool. The report is generated in HTML or XML format. Each entry in the report
includes the file path, identifier of the detected vulnerability (which, when entered
on the tool’s website, provides a detailed description of the vulnerability), and line
number of the code [51];
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• Progpilot—This is a SAST tool for scanning code written in the PHP language for
security vulnerabilities. It allows adding custom rules, disabling existing ones, and ex-
cluding files and folders from scanning. The JSON format report contains a list of
vulnerabilities, each having various attributes, such as the file path, line number of
the code, type, and a link to CWE [52];

• Bandit—This SAST tool, developed by PyCQA, is designed for scanning code written
in the Python language for security vulnerabilities. It allows adding custom rules,
disabling existing ones, and excluding files and folders from scanning. The report
can be generated in various formats such as JSON, CSV, or HTML. For each detected
vulnerability, details are included, such as the file path, line number of the code,
vulnerability type and description, along with the CWE identifier [53];

• Semgrep—Semgrep, a versatile SAST tool supporting multiple programming lan-
guages, allows you to add custom rules, disable existing ones, and exclude specific
files and folders from scanning. Reports can be generated in various formats, such as
JSON or SARIF. For each vulnerability, details are provided, including the file path,
line number of the code, vulnerability type and description, along with references to
resources such as the CWE and OWASP Top 10 [54];

• Scan—The SAST tool developed by ShiftLeft supports multiple programming lan-
guages (full list available on the project’s website). It is not a standalone solution;
Scan is a combined set of static analysis tools. The scan report is a combination of
reports from the tools used by Scan. It does not allow for rule disabling or excluding
specific files or folders. The report is distributed across multiple files in formats such
as HTML, JSON, and SARIF. Each entry in the report contains information about the
vulnerability’s location and type [55];

• Aura—The SAST tool developed by SourceCode. AI is used for scanning code written
in the Python programming language. The tool does not allow adding custom rules,
nor can individual rules be blocked. The report can be generated in text, JSON,
or SQLite database file formats. Each detected vulnerability is associated with a file
path, line number, and vulnerability type [56];

• Horusec—A SAST tool for scanning code written in multiple programming languages.
It uses its own scanners, as well as other open-source ones (a full list is available in the
documentation). It allows adding custom rules and excluding specific files and folders
from the scan. The report can be saved in text, JSON, or SonarQube formats. Each
entry in the report contains a description of the detected vulnerability (not always
with a CWE identifier) and its location [57].

4. Research Methodology

Table 5 presents a structured summary of experiments conducted in this paper. Each
row represents a distinct software application and each column corresponds to a specific
SAST tool. The letter “Y” indicates that the experiment was conducted using the given tool
and application. A total of 95 experiments were conducted as part of the research.

Table 5. Matrix of conducted experiments.
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EasyBuggy N N N Y Y Y Y N N Y Y

Java Vulnerable Lab N N N Y Y Y Y N N Y Y
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Table 5. Cont.
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Security Shepherd N N N Y Y Y Y N N Y Y

Vulnerable App N N N Y Y Y Y N N Y Y

Broken Crystals N N Y N Y Y Y N N N Y
Damn Vulnerable
Web Services

N N Y N Y Y Y N N N Y

Juice Shop N N Y N Y Y Y N N N Y

NodeGoat N N Y N Y Y Y N N N Y
Conviso Vulnerable
Web Application

N N N N Y Y N Y Y Y Y

Damn Vulnerable
Web Application

N N N N Y Y N Y Y Y Y

WackoPicko N N N N Y Y N Y Y Y Y
Xtreme Vulnerable
Web Application

N N N N Y Y N Y Y Y Y

Damn Small
Vulnerable Web

Y Y N N Y Y N N N Y Y

Damn Vulnerable
GraphQL
Application

Y Y N N Y Y N N N Y Y

Damn Vulnerable
Python Web
Application

Y Y N N Y Y N N N Y Y

Tiredful API Y Y N N Y Y N N N Y Y

4.1. Data Unification

Each tool presented results in a unique way. To conduct further analysis, it was
necessary to unify the received data. For this purpose, Python scripts were written to
implement the ETL process: they extracted data from reports written in different formats,
modified them to a predefined format, and then output the reformatted data to CSV (comma
separated values) files. A separate CSV file was created for each application. The file
contained data in tabular form, where each row represented a vulnerability detected by
a specific tool. The columns in the file included

• the name of the tool that detected the vulnerability;
• the vulnerability type assigned by the tool;
• vulnerability location—file name;
• beginning of vulnerability in code—line number;
• end of vulnerability in code—line number;
• description of vulnerability provided by the tool;
• evidence of vulnerability provided by the tool;
• additional information provided by the tool.

Not all tools provided complete information. For example, Graudit did not spec-
ify the vulnerability type. In such cases, the corresponding fields for vulnerabilities re-
mained empty.
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4.2. Used Indicators

To perform appropriate measurements regarding the effectiveness of vulnerability de-
tection in the analyzed applications using selected SAST tools, a methodology and metrics
proposed by the OWASP organization were utilized [58]. However, their recommended tool
was abandoned because it focuses solely on one technology and does not allow checking
various vulnerability variants that may occur in the application code. Therefore, for each
tool, a set of indicators was calculated:

• True Positive (TP)—Indicates the count of vulnerabilities reported by the tool that
actually exist in the corresponding location within the application’s code (also referred
to as correctly reported vulnerabilities);

• False Positive (FP)—Represents the count of vulnerabilities reported by the tool that
do not actually exist in the corresponding location within the application’s code (also
referred to as incorrectly reported vulnerabilities);

• True Negative (TN)—Represents the count of vulnerabilities that were not reported by
the tool and do not exist in the corresponding location within the application’s code
(also referred to as correctly not reported vulnerabilities);

• False Negative (FN)—Represents the count of vulnerabilities that were not reported
by the tool but actually exist in the corresponding location within the application’s
code (also referred to as incorrectly not reported vulnerabilities);

• Positive (P)—Indicates the number of vulnerabilities reported by all tools that exist in
the application. The P indicator is calculated using Equation (1). This is the same for
all tools within a given application.

P = TP + FN (1)

• Negative (N)—Represents the number of vulnerabilities reported by all tools that do
not exist in the application. The N indicator is calculated using Equation (2). It is the
same for all tools within a given application.

N = FP + TN (2)

• TOTAL—This indicator represents the total number of vulnerabilities reported by all
tools. It is the same for all tools within a given application.

• Accuracy (ACC)—Accuracy evaluates the portion of all vulnerabilities reported by
all tools that consist of correctly reported vulnerabilities, as well as correctly unre-
ported vulnerabilities using a specific tool. The ACC indicator is determined using
Formula (3).

ACC = (TP + TN)/TOTAL (3)

• Sensitivity (SEN)—Sensitivity assesses the proportion of correctly reported vulner-
abilities among all reported vulnerabilities. The SEN indicator is calculated using
Formula (4).

SEN = TP/P = TP/(TP + FN) (4)

• Precision (PRE)—Precision evaluates the proportion of correctly reported vulnera-
bilities among all reported vulnerabilities. The PRE indicator is calculated using
Formula (5).

PRE = TP/(TP + FP) (5)

• TP%—The TP% indicator determines what proportion of vulnerabilities reported by
all tools are correctly reported vulnerabilities;

• FP%—The FP% indicator determines what proportion of vulnerabilities reported by
all tools are incorrectly reported vulnerabilities;
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• TN%—The TN% indicator determines what proportion of vulnerabilities reported by
all tools are correctly not reported vulnerabilities;

• FN%—The FN% indicator determines what proportion of vulnerabilities reported by
all tools are incorrectly not reported vulnerabilities.

5. Results

The study conducted in this work examined 11 SAST tools. These tools were used to
scan 16 vulnerable web applications written in four different technologies. The tools and
applications are presented in Section 3.

5.1. Results for Applications Developed Using Java Technology

Table 6 presents a comprehensive analysis of the various static application security
testing (SAST) tools for the EasyBuggy application. These tools were evaluated based on
the indicators presented in Section 4. Among the tools examined, Semgrep performed the
best in terms of true positives (TP), with eight identified vulnerabilities. This indicates that
Semgrep was effective in detecting actual security issues within the EasyBuggy application.
However, it is worth noting that FindSecBugs achieved the highest sensitivity (SEN) at
87.88%. This means it had a higher capability to identify true positives relative to the other
tools, even though the absolute number of TP was lower compared to Semgrep. On the
other hand, Graudit had no true positives (TP) in this context, which raises concerns about
its effectiveness for this specific application. It is important to consider that the absence
of TP could indicate either a lack of vulnerabilities in the code or limitations in the tool’s
scanning capabilities. In terms of false positives (FP), Horusec had the highest count,
with 38. High FP values can lead to wasted resources and time investigating false alarms.

Table 6. The values of SAST tool indicators for the EasyBuggy application.

FindSecBugs Graudit Horusec Insider ShiftLeftScan Semgrep

TP 29 0 2 1 13 8

FN 4 33 31 32 20 25

FP 15 0 38 2 6 3

TN 41 56 18 54 50 53

P 33

N 56

TOTAL 89

ACC [%] 78.65 62.92 22.47 61.80 70.79 68.54
SEN [%] 87.88 0.00 6.06 3.03 39.39 24.24

PRE [%] 65.91 0.00 5.00 33.33 68.42 72.73

TP [%] 32.58 0.00 2.25 1.12 14.61 8.99

FN [%] 4.49 37.08 34.83 35.96 22.47 28.09

FP [%] 16.85 0.00 42.70 2.25 6.74 3.37

TN [%] 46.07 62.92 20.22 60.67 56.18 59.55

Table 7 provides a comprehensive analysis of the various SAST tools applied in
the Java Vulnerable Lab application. The results reveal important insights into each
tool’s performance:

• TP—Among the tools, FindSecBugs achieved the highest count of TP, with 32 vulnera-
bilities detected. This indicates a strong capability to identify actual security issues
within the application;

• FN—Each tool had varying counts of false FN, representing missed vulnerabilities;
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• FP—Horusec had the highest count of False FP with 38, which could lead to resource-
intensive investigations of false alarms;

• TN—The tools also correctly identified true TN, where no vulnerabilities were present;
• ACC%—The overall accuracy of the tools ranged from 22.02% (Graudit) to 94.50%

(FindSecBugs), indicating their effectiveness in correctly classifying vulnerabilities;
• SEN%—FindSecBugs achieved the highest SEN at 96.97%, indicating its strong capa-

bility to identify true positives relative to the other tools;
• PRE%—ShiftLeftScan had the highest PRE, at 87.50%, suggesting that when it reported

a positive result, it was often a true positive;
• TP%—The proportion of actual vulnerabilities detected by each tool varied, with Find-

SecBugs achieving 29.36%;
• FN%—The proportion of missed vulnerabilities ranged from 0.92% (Graudit) to

29.36% (Horusec);
• FP%—The proportion of false alarms varied, with Graudit having a high FP rate

of 64.22%;
• TN%—The proportion of correctly identified non-vulnerable instances varied but was

generally high for all tools.

Table 7. The values of SAST tool indicators for the Java Vulnerable Lab application.

FindSecBugs Graudit Horusec Insider ShiftLeftScan Semgrep

TP 32 18 5 1 21 14

FN 1 15 28 32 12 19

FP 5 70 3 3 3 4

TN 71 6 73 73 73 72

P 33

N 76

TOTAL 109

ACC [%] 94.50 22.02 71.56 67.89 86.24 78.90

SEN [%] 96.97 54.55 15.15 3.03 63.64 42.42

PRE [%] 86.49 20.45 62.50 25.00 87.50 77.78

TP [%] 29.36 16.51 4.59 0.92 19.27 12.84

FN [%] 0.92 13.76 25.69 29.36 11.01 17.43

FP [%] 4.59 64.22 2.75 2.75 2.75 3.67

TN [%] 65.14 5.50 66.97 66.97 66.97 66.06

Table 8 presents a comprehensive analysis of the various SAST tools applied for the
Security Shepherd application. The results provide valuable insights into the performance
of each tool:

• FindSecBugs detected the highest number of TP, with 196 vulnerabilities identified.
This indicates a strong ability to uncover actual security issues within the application;

• Graudit had a considerably lower number of TPs (19), which suggests it may have
missed several vulnerabilities within the application;

• Horusec detected 177 TP, indicating a good capability to identify security issues;
• Insider identified only six TP, signifying limited effectiveness in detecting vulnerabilities;
• ShiftLeftScan found 173 TP, demonstrating a robust ability to identify security problems;
• Semgrep detected 28 TP, indicating some effectiveness in identifying vulnerabilities;
• FP was highest for FindSecBugs with 767, followed by Horusec with 801. These high

FP counts could lead to resource-intensive investigations of false alarms;
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• The tools correctly identified TN where no vulnerabilities were present. The TN count
was highest for Insider (1841), indicating its ability to avoid false alarms;

• The overall ACC of the tools varied, ranging from 59.51% (Horusec) to 90.32% (Insider),
showing differences in their effectiveness in correctly classifying vulnerabilities;

• FindSecBugs achieved the highest SEN at 96.08%, indicating its strong capability to
identify true positives relative to other tools;

• PRE was the highest for Insider at 100.00%, suggesting that when it reported a positive
result, it was almost always a true positive;

• The proportion of actual vulnerabilities detected by each tool varied, with FindSecBugs
achieving 9.58%. However, some tools had much lower proportions of detected
vulnerabilities, such as Graudit with 0.93%;

• The proportion of missed vulnerabilities also varied, with Graudit having the highest
percentage at 9.05%;

• The proportion of FP varied, with FindSecBugs having a high FP rate of 37.51%;
• The proportion of correctly identified non-vulnerable instances (TN) was generally

high for all tools, with Insider achieving the highest TN percentage at 90.02%.

Table 8. The values of SAST tool indicators for the Security Shepherd application.

FindSecBugs Graudit Horusec Insider ShiftLeftScan Semgrep

TP 196 19 177 6 173 28

FN 8 185 27 198 31 176

FP 767 336 801 0 149 364

TN 1074 1505 1040 1841 1692 1477

P 204

N 1841

TOTAL 2045

ACC [%] 62.10 74.52 59.51 90.32 91.20 73.59

SEN [%] 96.08 9.31 86.76 2.94 84.80 13.73

PRE [%] 20.35 5.35 18.10 100.00 53.73 7.14

TP [%] 9.58 0.93 8.66 0.29 8.46 1.37

FN [%] 0.39 9.05 1.32 9.68 1.52 8.61

FP [%] 37.51 16.43 39.17 0.00 7.29 17.80

TN [%] 52.52 73.59 50.86 90.02 82.74 72.22

Table 9 provides an analysis of the various SAST tool indicators for the Vulnerable
App application. The results reveal important insights into each tool’s performance:

• FindSecBugs identified 24 TP, indicating its ability to uncover actual security issues
within the application;

• Graudit detected 12 TP, suggesting a moderate capability to find vulnerabilities;
• Horusec found only four TPs, indicating limited effectiveness in identifying security issues;
• Insider identified just one TP, signifying a low capability for detecting vulnerabilities;
• ShiftLeftScan detected 10 TP, showing a moderate ability to identify security problems;
• Semgrep achieved the highest number of TPs, with 25, indicating a strong capability

for uncovering vulnerabilities;
• FP was observed, with the highest count for Graudit (31) and the lowest for Insider (3).

High FP counts can lead to resource-intensive investigations of false alarms;
• The tools correctly identified TNs, where no vulnerabilities were present. TN counts

ranged from 26 (Graudit) to 55 (Insider), indicating the ability to avoid false alarms;
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• The overall ACC of the tools varied, ranging from 39.18% (Graudit) to 76.29% (Sem-
grep), showing differences in their effectiveness in correctly classifying vulnerabilities;

• Semgrep achieved the highest SEN at 62.50%, indicating its strong capability to identify
true positives relative to the other tools;

• PRE was the highest for Semgrep, at 75.76%, suggesting that when it reported a posi-
tive result, it was often a true positive;

• The proportion of actual vulnerabilities detected by each tool varied, with Semgrep
achieving 25.77%. However, some tools had lower proportions of detected vulnerabil-
ities, such as Horusec with 4.12%;

• The proportion of missed vulnerabilities FN varied, with Horusec having the highest
percentage at 37.11%;

• The proportion of FP also varied, with Graudit having a relatively high FP rate
of 31.96%;

• The proportion of correctly identified non-vulnerable instances (TN) was generally
high for all tools, with Insider achieving the highest TN percentage, at 55.67%.

Table 9. The values of SAST tool indicators for the Vulnerable App application.

FindSecBugs Graudit Horusec Insider ShiftLeftScan Semgrep

TP 24 12 4 1 10 25

FN 16 28 36 39 30 15

FP 12 31 12 3 9 8

TN 45 26 45 54 48 49

P 40

N 57

TOTAL 97

ACC [%] 71.13 39.18 50.52 56.70 59.79 76.29

SEN [%] 60.00 30.00 10.00 2.50 25.00 62.50

PRE [%] 66.67 27.91 25.00 25.00 52.63 75.76

TP [%] 24.74 12.37 4.12 1.03 10.31 25.77

FN [%] 16.49 28.87 37.11 40.21 30.93 15.46

FP [%] 12.37 31.96 12.37 3.09 9.28 8.25

TN [%] 46.39 26.80 46.39 55.67 49.48 50.52

Table 10 provides average values for the selected SAST tool indicators for applica-
tions developed using Java technology. The results provide valuable insights into the
performance of each tool:

• FindSecBugs had the highest average ACC, at 76.60%, indicating that it was generally
effective in correctly classifying vulnerabilities for Java applications;

• Graudit had the lowest average ACC at 49.66%, suggesting that it had a lower overall
accuracy compared to the other tools;

• FindSecBugs achieved the highest average SEN, at 85.23%, indicating its strong capa-
bility to identify true positives relative to the other tools;

• Insider had the lowest average SEN, at 2.88%, suggesting that it had difficulty in
identifying actual security issues;

• PRE was the highest for FindSecBugs, at 59.85%, indicating that when it reported
a positive result, it was often a true positive;

• Graudit had the lowest average PRE, at 13.43%, indicating a higher rate of false
positives when it reported security issues;
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• The proportion of TP among all vulnerabilities detected varied among the tools,
with FindSecBugs achieving the highest average, at 24.07%;

• ShiftLeftScan had the lowest average TP percentage, at 13.16%, indicating a lower
capability to identify true positives relative to the other tools;

• The proportion of FN varied among the tools, with Graudit having the highest average
FN percentage, at 22.19%, indicating missed vulnerabilities;

• Insider had the lowest average FN percentage at 2.88%, suggesting that it had a lower
tendency to miss vulnerabilities;

• FP was observed, with FindSecBugs having the highest average FP percentage,
at 17.83%;

• Insider had the lowest average FP percentage, at 2.02%, indicating a lower rate of
false alarms;

• The proportion of TN among all non-vulnerable instances varied among the tools,
with Insider achieving the highest average TN percentage, at 68.34%;

• FindSecBugs had the lowest average TN percentage, at 52.53%, suggesting a higher
rate of false alarms among non-vulnerable instances.

Table 10. Average values of the selected SAST tool indicators for applications developed using
Java technology.

FindSecBugs Graudit Horusec Insider ShiftLeftScan Semgrep

ACC [%] 76.60 49.66 51.01 69.18 77.00 74.33

SEN [%] 85.23 23.46 29.49 2.88 53.21 35.72

PRE [%] 59.85 13.43 27.65 45.83 65.57 58.35

TP [%] 24.07 7.45 4.90 0.84 13.16 12.24

FN [%] 5.57 22.19 24.74 27.80 16.48 17.40

FP [%] 17.83 28.15 24.25 2.02 6.51 8.27

TN [%] 52.53 42.21 46.11 68.34 63.84 62.09

Based on the comprehensive analysis of various SAST tools applied to multiple Java
applications, we can draw the following conclusions:

• FindSecBugs consistently outperformed the other tools in terms of ACC, SEN, and PRE
across different Java applications. Graudit consistently performed the worst, with the
lowest ACC, SEN, and PRE among the tools;

• ACC—FindSecBugs achieved the highest average ACC (76.60%), indicating its overall
effectiveness in correctly classifying vulnerabilities for Java applications. Graudit had
the lowest average ACC (49.66%), indicating its lower overall accuracy compared to
the other tools;

• SEN—FindSecBugs had the highest average SEN (85.23%), demonstrating its
strong capability to identify true positives relative to the other tools. Insider had
the lowest average SEN (2.88%), indicating that it struggled to identify actual
security issues effectively;

• PRE—FindSecBugs achieved the highest average PRE (59.85%), suggesting that when
it reported a positive result, it was often a true positive. Graudit had the lowest
average PRE (13.43%), indicating a higher rate of false positives when it reported
security issues;

• TP and FN—FindSecBugs consistently identified a higher proportion of TP among all
vulnerabilities detected, indicating its strong capability to find actual security issues.
Graudit had the highest average FN percentage (22.19%), suggesting that it frequently
missed vulnerabilities;

• FP and TN—Insider had the lowest average FP percentage (2.02%), indicating a lower
rate of false alarms among non-vulnerable instances. FindSecBugs had the highest
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average FP percentage (17.83%), suggesting a higher rate of false alarms among non-
vulnerable instances.

In summary, FindSecBugs was consistently the top-performing SAST tool, excelling
in accuracy, sensitivity, and precision. It consistently achieved the highest proportion
of true positives, while maintaining a reasonable accuracy. On the other hand, Graudit
consistently performed the worst, with lower accuracy, sensitivity, and precision, and a
higher rate of false negatives. The choice of SAST tool should consider the specific needs
of the application and the importance of minimizing false alarms, while maximizing the
detection of true security vulnerabilities.

5.2. Results for Applications Developed Using Javascript Technology

Table 11 presents the results of SAST tool evaluations for the Broken Crystals applica-
tion. The results reveal important insights into each tool’s performance:

• Horusec detected the highest number of TPs, with 15, followed by Graudit with 9
and Semgrep with 6;

• Bearer had the highest number of FNs (25), indicating that it missed a significant
portion of vulnerabilities. Semgrep and Horusec also had a substantial number of
false negatives;

• Horusec reported the most FPs (104), potentially leading to unnecessary investigations,
while Bearer had zero false positives;

• Semgrep achieved the highest accuracy at 85.26%, meaning it made fewer misclassifi-
cations. Horusec had the lowest accuracy, at 25.64%;

• Horusec demonstrated the highest sensitivity, at 55.56%, indicating its effectiveness in
identifying true positives. Bearer had the lowest sensitivity at 7.41%, implying that it
missed many vulnerabilities;

• Semgrep achieved the highest precision at 75.00%, meaning that when it reported
a positive result, it was often accurate. Graudit had no precision because it reported
no TPs.

Table 11. The values of SAST tool indicators for the Broken Crystals application.

Bearer Graudit Horusec Insider Semgrep

TP 2 9 15 2 6

FN 25 18 12 25 21

FP 0 21 104 2 2

TN 129 108 25 127 127

P 27

N 129

TOTAL 156

ACC [%] 83.97 75.00 25.64 82.69 85.26

SEN [%] 7.41 33.33 55.56 7.41 22.22

PRE [%] 100.00 0.00 12.61 50.00 75.00

TP [%] 1.28 5.77 9.62 1.28 3.85

FN [%] 16.03 11.54 7.69 16.03 13.46

FP [%] 0.00 13.46 66.67 1.28 1.28

TN [%] 82.69 69.23 16.03 81.41 81.41

Table 12 presents the results of SAST tool evaluations for the Damn Vulnerable Web
Services application. The results reveal important insights into each tool’s performance:



Sensors 2023, 23, 7978 17 of 33

• Semgrep performed the best in this category, with seven true positives, followed by
Bearer with four and Horusec with three;

• Insider had the highest number of FNs (10), indicating it missed a significant portion of
vulnerabilities. Other tools, such as Horusec and Graudit, also missed vulnerabilities;

• Bearer and Horusec both reported four false positives;
• Semgrep achieved the highest ACC, at 90.70%, indicating that it made fewer misclassi-

fications. Graudit had the lowest accuracy, at 34.88%;
• Semgrep demonstrated the highest sensitivity, at 63.64%, indicating its effectiveness in

identifying true positives. Insider had the lowest sensitivity at 9.09%, implying that it
missed many vulnerabilities;

• Semgrep and Insider achieved the highest precision, at 100.00%. However, Insider
reported a low number of vulnerabilities overall.

Table 12. Values of the SAST tool indicators for the Damn Vulnerable Web Services application.

Bearer Graudit Horusec Insider Semgrep

TP 4 3 3 1 7

FN 7 8 8 10 4

FP 4 20 9 0 0

TN 28 12 23 32 32

P 11

N 32

TOTAL 43

ACC [%] 74.42 34.88 60.47 76.74 90.70

SEN [%] 36.36 27.27 27.27 9.09 63.64

PRE [%] 50.00 00.00 25.00 100.00 100.00

TP [%] 9.30 6.98 6.98 2.33 16.28

FN [%] 16.28 18.60 18.60 23.26 9.30

FP [%] 9.30 46.51 20.93 0.00 0.00

TN [%] 65.12 27.91 53.49 74.42 74.42

Table 13 presents the results of the assessment of SAST tools applied to the Juice Shop
application. The results reveal important insights into each tool’s performance:

• Among the tools, Semgrep stands out with the highest number of TPs (20), indicating
its effectiveness in identifying real vulnerabilities in the Juice Shop application. It was
followed by Graudit, with 12 true positives;

• Insider had the highest number of false negatives (29), indicating that it failed to detect
a significant number of vulnerabilities;

• Graudit reported the most FPs (76), followed by Horusec with 45.
• Bearer achieved the highest accuracy, at 84.21%, indicating that it made fewer misclas-

sifications. Graudit had the lowest accuracy, at 36.84%, suggesting a higher likelihood
of misidentifying vulnerabilities;

• Semgrep demonstrated the highest sensitivity at 62.50%, indicating its effectiveness in
identifying true positives. Insider had the lowest sensitivity, at 9.38%, implying that it
missed many vulnerabilities;

• Semgrep achieved the highest precision, at 60.61%. However, Graudit reported a high
number of false positives, resulting in a low precision of 0.00%.
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Table 13. The values of SAST tool indicators for the Juice Shop application.

Bearer Graudit Horusec Insider Semgrep

TP 8 12 11 3 20

FN 24 20 21 29 12

FP 0 76 45 6 13

TN 120 44 75 114 107

P 32

N 120

TOTAL 152

ACC [%] 84.21 36.84 56.58 76.97 83.55

SEN [%] 25.00 37.50 34.38 9.38 62.50

PRE [%] 100.00 0.00 19.64 33.33 60.61

TP [%] 5.26 7.89 7.24 1.97 13.16

FN [%] 15.79 13.16 13.82 19.08 7.89

FP [%] 0.00 50.00 29.61 3.95 8.55

TN [%] 78.95 28.95 49.34 75.00 70.39

Table 14 presents the results of SAST tool evaluations for the NodeGoat application.
The results reveal important insights into each tool’s performance:

• Semgrep and Bearer both achieved the highest TP count, with seven each;
• Insider and Horusec shared the highest FN count, with nine each;
• Graudit reported the most false positives, with 22;
• Semgrep achieved the highest accuracy, at 93.33%, indicating that it made fewer

misclassifications;
• Semgrep had the highest sensitivity, at 63.64%;
• Semgrep also achieved the highest precision, at 87.50%.

Table 14. The values of SAST tool indicators for the NodeGoat application.

Bearer Graudit Horusec Insider Semgrep

TP 7 3 2 2 7

FN 4 8 9 9 4

FP 3 22 32 7 1

TN 61 42 32 57 63

P 32

N 120

TOTAL 152

ACC [%] 90.67 60.00 45.33 78.67 93.33

SEN [%] 63.64 27.27 18.18 18.18 63.64

PRE [%] 70.00 0.00 5.88 22.22 87.50

TP [%] 9.33 4.00 2.67 2.67 9.33

FN [%] 5.33 10.67 12.00 12.00 5.33

FP [%] 4.00 29.33 42.67 9.33 1.33

TN [%] 81.33 56.00 42.67 76.00 84.00
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Table 15 presents the average values for the selected indicators for SAST tools applied
to applications developed using JavaScript technology. These averages provide an overview
of the overall performance of each SAST tool across multiple applications:

• Bearer—On average, this SAST tool achieved an ACC% of 83.32%, SEN% of 33.10%,
PRE% of 80.00%, TP% of 6.30%, FN% of 13.36%, and FP% of 3.33%. The TN% averaged
at 77.02%;

• Graudit—The average performance of this tool included an accuracy of 51.68%, sensi-
tivity of 31.34%, precision of 0.00%, true positive rate of 6.15%, false negative rate of
13.49%, and false positive rate of 34.83%. The true negative rate averaged at 45.52%;

• Horusec—On average, Horusec achieved an accuracy of 47.00%, sensitivity of 33.85%,
precision of 15.78%, true positive rate of 6.62%, false negative rate of 13.03%, and false
positive rate of 39.97%. The true negative rate averaged at 40.38%;

• Insider—The average performance of this tool resulted in an accuracy of 78.77%,
sensitivity of 11.01%, precision of 51.39%, true positive rate of 2.06%, false negative
rate of 17.59%, and false positive rate of 3.64%. The true negative rate averaged
at 76.71%;

• Semgrep—On average, Semgrep achieved the highest accuracy of 88.21%, a sensitivity
of 53.00%, precision of 80.78%, true positive rate of 10.65%, false negative rate of 9.00%,
and false positive rate of 2.79%. The true negative rate averaged 77.56%.

These average values provide an overall picture of how each SAST tool performed
when applied to JavaScript-based applications. Semgrep stands out, with a high accuracy,
sensitivity, and precision, making it a strong choice for securing JavaScript applications.
However, the selection of the most suitable tool should consider project-specific require-
ments and constraints;

Table 15. Average values of selected SAST tool indicators for applications developed using
JavaScript technology.

Bearer Graudit Horusec Insider Semgrep

ACC [%] 83.32 51.68 47.00 78.77 88.21

SEN [%] 33.10 31.34 33.85 11.01 53.00

PRE [%] 80.00 0.00 15.78 51.39 80.78

TP [%] 6.30 6.15 6.62 2.06 10.65

FN [%] 13.36 13.49 13.03 17.59 9.00

FP [%] 3.33 34.83 39.97 3.64 2.79

TN [%] 77.02 45.52 40.38 76.71 77.56

Based on the comprehensive analysis of various SAST tools applied to multiple
JavaScript applications, we can draw the following conclusions:

• The data highlight substantial variations in the performance of the different SAST
tools when applied to JavaScript technology. Each tool demonstrated varying degrees
of accuracy, sensitivity, precision, and other indicators;

• Semgrep consistently stood out as the most accurate tool, with an average accuracy of
88.21%, making it a strong candidate for JavaScript applications;

• Semgrep and Bearer exhibited higher sensitivities, indicating their effectiveness in
identifying security vulnerabilities;

• Semgrep and Bearer also excelled in precision. Reducing false positives is crucial to
minimize the time spent investigating non-existent vulnerabilities;

• Semgrep consistently maintained a high true positive rate.
• Horusec showed promise in precision but lagged in sensitivity, which might be suitable

for certain scenarios.
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In conclusion, the choice of a SAST tool for JavaScript applications should be made
based on a careful evaluation of the specific requirements and constraints of the project.
While Semgrep consistently exhibited a strong overall performance, other tools may excel in
particular areas or be better suited for specific use cases. A comprehensive security strategy
should involve the selection of the right tools, continuous monitoring, and expert analysis,
to ensure robust protection against vulnerabilities in JavaScript-based applications.

5.3. Results for Applications Developed Using PHP Technology

Table 16 presents the results of the assessment of SAST tools applied to the Con-
viso Vulnerable Web application. The results reveal important insights into each
tool’s performance:

• Horusec stands out with a 100% sensitivity, indicating that it successfully identified all
true positives. However, it is essential to consider the balance between sensitivity and
specificity, as achieving 100% sensitivity might lead to a high number of false positives;

• Graudit and Horusec demonstrated a perfect precision, with 100%, meaning that all
reported vulnerabilities were true positives. Conversely, ShiftLeft Scan and Semgrep
showed 0% precision, implying that they reported only false positives in this context;

• Graudit, Horusec, PHP_CS, and Progpilot exhibited true positive rates ranging from
20% to 44.44%, while ShiftLeft Scan and Semgrep had 0% true positive rates, indicating
that they failed to identify any true positives;

• Semgrep had a notably high false positive rate of 90%, which means it reported many
issues that were not actual vulnerabilities in the application;

• Some tools, such as Horusec and Progpilot, reported true negatives, indicating that
they correctly identified non-vulnerable portions of the application;

• Horusec achieved 100% accuracy, which is commendable. However, it is crucial to
consider accuracy in conjunction with other metrics, as a high accuracy rate may be
achieved by reporting fewer vulnerabilities, potentially missing real issues.

Table 16. The values of the SAST tool indicators for the Conviso Vulnerable Web application.

Graudit Horusec PHP_CS Progpilot ShiftLeft Scan Semgrep

TP 4 9 2 4 2 0

FN 5 0 7 5 7 9

FP 1 0 0 0 0 0

TN 0 1 1 1 1 1

P 9

N 1

TOTAL 10

ACC [%] 40.00 100.00 30.00 50.00 30.00 10.00

SEN [%] 44.44 100.00 22.22 44.44 22.22 0.00

PRE [%] 80.00 100.00 100.00 100.00 100.00 0.00

TP [%] 40.00 90.00 20.00 40.00 20.00 0.00

FN [%] 40.00 90.00 20.00 40.00 20.00 0.00

FP [%] 50.00 0.00 70.00 50.00 70.00 90.00

TN [%] 0.00 10.00 10.00 10.00 10.00 10.00
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Table 17 presents the results of an assessment of SAST tools applied to the Damn Vul-
nerable Web application. The results reveal important insights into each tool’s performance:

• Horusec stands out, with a high sensitivity (90.40%), indicating that it successfully
identified a substantial portion of true positives. Conversely, Progpilot showed a sen-
sitivity of only 12.80%, suggesting it missed many true positives;

• Progpilot demonstrated a 100% precision, implying that all reported vulnerabilities
were true positives. However, ShiftLeft Scan had a relatively low precision, at 55.26%,
indicating a higher likelihood of false positives;

• Horusec had a high true positive rate (25.17%), while Progpilot and Semgrep had
lower rates, implying they missed a significant number of true positives;

• Horusec and PHP_CS had relatively high FP rates, indicating they reported some
issues that were not actual vulnerabilities in the application. Semgrep had the lowest
FP rate among the tools;

• Some tools, such as Graudit, PHP_CS, and ShiftLeft Scan, reported TNs, indicating
that they correctly identified non-vulnerable portions of the application;

• Graudit, Progpilot, and ShiftLeft Scan exhibited reasonably high accuracy rates. How-
ever, it is essential to consider accuracy in conjunction with other metrics, to assess the
overall performance of each tool.

Table 17. The values of the SAST tool indicators for the Damn Vulnerable Web application.

Graudit Horusec PHP_CS Progpilot ShiftLeft Scan Semgrep

TP 4 9 2 4 2 0

FN 5 0 7 5 7 9

FP 1 0 0 0 0 0

TN 0 1 1 1 1 1

P 125

N 324

TOTAL 449

ACC [%] 63.93 35.63 67.04 75.72 73.94 74.61

SEN [%] 42.40 90.40 32.80 12.80 33.60 15.20

PRE [%] 37.06 28.97 39.05 100.00 55.26 70.37

TP [%] 11.80 25.17 9.13 3.35 9.35 4.23

FN [%] 16.04 2.67 18.71 24.28 18.49 23.61

FP [%] 20.04 61.69 14.25 0.00 7.57 1.78

TN [%] 52.12 10.47 57.91 72.16 64.59 70.38

Table 18 presents the results of the assessment of SAST tools applied to the WackoPicko
application. The results reveal important insights into each tool’s performance:

• Horusec stands out with a high sensitivity (93.40%), indicating that it successfully
identified a substantial portion of true positives. Conversely, ShiftLeft Scan and
Semgrep had much lower sensitivities, implying they missed many true positives;

• Progpilot demonstrated the highest precision, at 92.00%, implying that the vulnerabili-
ties it reported were highly likely to be true positives. Other tools, such as Graudit
and Horusec, had a lower precision;

• Horusec and Graudit exhibited reasonably high true positive rates. In contrast, Sem-
grep and ShiftLeft Scan had much lower rates, indicating they missed a significant
number of true positives;
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• Horusec and Progpilot had relatively low false positive rates, indicating that they
reported fewer false alarms. ShiftLeft Scan and Semgrep had slightly higher false
positive rates;

• Most tools reported true negatives, indicating that they correctly identified non-
vulnerable portions of the application;

• Horusec demonstrated the highest accuracy at 68.00%, followed closely by Progpilot
at 71.56%. Semgrep had the lowest accuracy among the tools.

Table 18. The values of the SAST tool indicators for the WackoPicko application.

Graudit Horusec PHP_CS Progpilot ShiftLeft Scan Semgrep

TP 62 99 62 46 11 7

FN 44 7 44 60 95 99

FP 28 113 58 4 1 2

TN 91 6 61 115 118 117

P 106

N 119

TOTAL 225

ACC [%] 68.00 46.67 54.67 71.56 57.33 55.11

SEN [%] 58.49 93.40 58.49 43.40 10.38 6.60

PRE [%] 68.89 46.70 51.67 92.00 91.67 77.78

TP [%] 27.56 44.00 27.56 20.44 4.89 3.11

FN [%] 19.56 3.11 19.56 26.67 42.22 44.00

FP [%] 12.44 50.22 25.78 1.78 0.44 0.89

TN [%] 40.44 2.67 27.11 51.11 52.44 52.00

Table 19 presents the results of the assessment of SAST tools applied to the Xtreme Vul-
nerable Web application. The results reveal important insights into each tool’s performance:

• Horusec exhibited a high sensitivity (90.20%), indicating its ability to detect a substan-
tial number of true positives. Progpilot also showed good sensitivity (39.22%). On the
other hand, ShiftLeft Scan and Semgrep had lower sensitivity values;

• Progpilot demonstrated the highest precision at 86.96%, indicating that the vulner-
abilities it reported were highly likely to be true positives. Horusec had a notably
lower precision;

• Horusec and Progpilot exhibited reasonable true positive rates. In contrast, Semgrep
and ShiftLeft Scan had lower rates, implying that they missed a significant number of
true positives;

• Horusec and ShiftLeft Scan reported a high number of false positives, while Progpilot
and Semgrep had lower false positive rates;

• Most tools correctly identified true negatives, which are non-vulnerable portions of
the application;

• Graudit and Progpilot demonstrated a high accuracy, with Progpilot being the most
accurate, at 91.15%. Horusec had a notably lower accuracy score.

Table 20 presents the average values of the selected indicators for SAST tools applied
to applications developed using PHP technology. These averages provide an overview of
the overall performance of each SAST tool across multiple applications:
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Table 19. The values of SAST tool indicators for the Xtreme Vulnerable Web application.

Graudit Horusec PHP_CS Progpilot ShiftLeft Scan Semgrep

TP 18 46 17 20 9 8

FN 33 5 34 31 42 43

FP 9 325 302 3 5 6

TN 324 8 31 330 328 327

P 51

N 333

TOTAL 384

ACC [%] 89.06 14.06 12.50 91.15 87.76 87.24

SEN [%] 35.29 90.20 33.33 39.22 17.65 15.69

PRE [%] 66.67 12.40 5.33 86.96 64.29 57.14

TP [%] 4.69 11.98 4.43 5.21 2.34 2.08

FN [%] 8.59 1.30 8.85 8.07 10.94 11.20

FP [%] 2.34 84.64 78.65 0.78 1.30 1.56

TN [%] 84.38 2.08 8.07 85.94 85.42 85.16

• Among the SAST tools, Progpilot stands out with the highest average accuracy, at
72.11%, indicating its ability to correctly classify vulnerabilities and non-vulnerable
code. Graudit and ShiftLeft Scan also exhibited relatively high accuracies, while
Horusec, PHP_CS, and Semgrep had lower average accuracy scores;

• Horusec demonstrated the highest average sensitivity, at 93.50%, suggesting that it
excelled in identifying true positives, although this was balanced by other factors.
Graudit also had a decent sensitivity score. On the other hand, Semgrep had a notably
lower average sensitivity;

• Progpilot stands out with the highest average precision score, at 94.74%, indicating
that the vulnerabilities it reported were highly likely to be true positives. ShiftLeft
Scan and Graudit also showed a good average precision. Semgrep had the lowest
average precision;

• Progpilot and Horusec exhibited reasonable average true positive rates, which indi-
catd their effectiveness in identifying actual vulnerabilities. Semgrep had the lowest
average TP rate;

• Semgrep and ShiftLeft Scan had the highest average false negative rates, suggesting
that they missed a substantial number of vulnerabilities in PHP applications. Horusec
had the lowest average FN rate;

• Horusec reported a high average false positive rate, indicating that it identified vul-
nerabilities that were not actually present. In contrast, Progpilot and Semgrep had the
lowest average FP rates;

• Progpilot achieved the highest average true negative rate, suggesting that it effectively
identified non-vulnerable portions of the code. Semgrep and ShiftLeft Scan also
exhibited good average TN rates.

In conclusion, the choice of SAST tool for PHP applications should consider a balance
between accuracy, sensitivity, and precision. Progpilot excels in precision but may miss
some vulnerabilities. Horusec has high sensitivity but reports more false positives. Graudit
and ShiftLeft Scan offer a good trade-off between these metrics. Semgrep demonstrated
a lower overall performance, particularly in sensitivity and precision. The selection should
align with the specific requirements and constraints of the project, and fine-tuning may be
necessary for comprehensive security testing.
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Table 20. Average values of the selected SAST tool indicators for applications developed using
PHP technology.

Graudit Horusec PHP_CS Progpilot ShiftLeft Scan Semgrep

ACC [%] 65.25 49.09 41.05 72.11 62.26 56.74

SEN [%] 45.16 93.50 36.71 34.96 20.96 9.37

PRE [%] 63.15 47.02 49.01 94.74 77.80 51.32

TP [%] 21.01 42.79 15.28 17.30 9.15 2.36

FN [%] 23.55 1.77 29.28 27.25 34.41 42.20

FP [%] 11.21 49.14 29.67 0.64 2.33 1.06

TN [%] 44.24 6.23 25.77 54.80 53.11 54.38

5.4. Results for Applications Developed Using Python Technology

Table 21 presents the results of the assessment of SAST tools applied to the Damn Small
Vulnerable Web application. The results reveal important insights into each tool’s performance:

• Aura achieved a SEN of 38.89%, indicating its ability to detect TPs, but with some FNs.
The PRE was 100.00%, meaning it reported no FPs. The ACC was 47.62%;

• Graudit showed limited sensitivity (0.00%), with no true positives and limited preci-
sion (0.00%) as it did not report any true positives. The accuracy was 14.29%,

• Horusec demonstrated a high precision (85.71%) but moderate sensitivity (66.67%),
indicating a trade-off between false positives and false negatives. The accuracy
was 61.90%;

• Bandit had a precision of 84.62%, suggesting a low rate of false positives, and a sensi-
tivity of 61.11%. The accuracy was 57.14%;

• ShiftLeft Scan achieved a perfect precision of 100.00%, reporting no false positives.
However, the sensitivity was quite low at 5.56%, resulting in a trade-off between
precision and sensitivity. The accuracy was 19.05%;

• Semgrep exhibited a high precision (90.00%) and a balanced sensitivity (50.00%).
The accuracy was 52.38%.

In summary, the SAST tools exhibited varying performance for the Damn Small
Vulnerable Web application. Aura achieved perfect precision but had a limited sensitivity.
Horusec balanced precision and sensitivity, while Graudit showed limited performance.
Bandit performed well, with high precision and sensitivity. ShiftLeft Scan excelled in
precision but had limited sensitivity. Semgrep achieved a good balance between precision
and sensitivity.

Table 22 presents the results of the assessment of SAST tools applied to the Damn
Vulnerable GraphQL application. The results reveal important insights into each
tool’s performance:

• Aura achieved an ACC of 36.36%. It had a SEN of 33.33% and a precision PRE
of 75.00%;

• Graudit exhibited limited performance, with an accuracy of 18.18%. It reported no
TPs and had a SEN and PRE of 0.00%.

• Horusec achieved an accuracy of 27.27%. It had a SEN of 33.33% and a PRE of 60.00%.
• Bandit also had an accuracy of 27.27%. It had a SEN and PRE of 33.33% and

60.00%, respectively;
• ShiftLeft Scan demonstrated the highest accuracy, at 63.64%. It had a SEN of 55.56%

and a perfect precision of 100.00%;
• Semgrep had an accuracy of 45.45%. It achieved a balanced SEN and PRE of 33.33%

and 100.00%, respectively.



Sensors 2023, 23, 7978 25 of 33

Table 21. The values of the SAST tool indicators for the Damn Small Vulnerable Web application.

Aura Graudit Horusec Bandit ShiftLeft Scan Semgrep

TP 7 0 12 11 1 9

FN 11 18 6 7 17 9

FP 0 0 2 2 0 1

TN 3 3 1 1 3 2

P 18

N 3

TOTAL 21

ACC [%] 47.62 14.29 61.90 57.14 19.05 52.38

SEN [%] 38.89 0.00 66.67 61.11 5.56 50.00

PRE [%] 100.00 0.00 85.71 84.62 100.00 90.00

TP [%] 33.33 0.00 57.14 52.38 4.76 42.86

FN [%] 52.38 85.71 28.57 33.33 80.95 42.86

FP [%] 0.00 0.00 9.52 9.52 0.00 4.76

TN [%] 14.29 14.29 4.76 4.76 14.29 9.52

In summary, the SAST tools exhibited varying levels of performance when analyzing
the Damn Vulnerable GraphQL Application. ShiftLeft Scan stood out, with the highest accu-
racy and perfect precision, indicating a low rate of false positives. However, it also reported
a relatively higher number of false negatives. Semgrep achieved a balanced performance,
with good precision and sensitivity. Other tools, such as Aura, Horusec, and Bandit, showed
moderate performance with different trade-offs between accuracy, precision, and sensitivity.
Graudit had a limited performance, with no true positives reported.

Table 22. The values of the SAST tool indicators for the Damn Vulnerable GraphQL application application.

Aura Graudit Horusec Bandit ShiftLeft Scan Semgrep

TP 3 0 3 3 5 3

FN 6 9 6 6 4 6

FP 1 0 2 2 0 0

TN 1 2 0 0 2 2

P 9

N 2

TOTAL 11

ACC [%] 36.36 18.18 27.27 27.27 63.64 45.45

SEN [%] 33.33 0.00 33.33 33.33 55.56 33.33

PRE [%] 75.00 0.00 60.00 60.00 100.00 100.00

TP [%] 27.27 0.00 27.27 27.27 45.45 27.27

FN [%] 54.55 81.82 54.55 54.55 36.36 54.55

FP [%] 9.09 0.00 18.18 18.18 0.00 0.00

TN [%] 9.09 18.18 0.00 0.00 18.18 18.18

Table 23 presents the results of the assessment of SAST tools applied to the Damn
Vulnerable Python Web application. The results reveal important insights into each
tool’s performance:
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• Aura reported 1 TP and 2 FN. It achieved an ACC of 71.43%, a SEN of 33.33%,
and a perfect PRE of 100.00%;

• Graudit reported no TPs and three FNs. It had an ACC of 57.14%, a SEN of 0.00%,
and a PRE of 0.00%;

• Horusec achieved two TPs and one FN. It had the highest ACC at 85.71%, a SEN of
66.67%, and a perfect PRE of 100.00%;

• Bandit reported one TP and two FNs. It had an ACC of 71.43%, a SEN of 33.33%,
and a PRE of 100.00%;

• ShiftLeft Scan reported one TP and two FNs. It had the lowest ACC, at 14.29%, a SEN
of 33.33%, and a PRE of 20.00%;

• Semgrep reported two TPs and one FN. It achieved an ACC of 85.71%, a SEN of
66.67%, and a perfect PRE of 100.00%.

In summary, the SAST tools provided varying results when analyzing the Damn
Vulnerable Python Web Application. Horusec and Semgrep demonstrated the highest
accuracy and precision, indicating their ability to identify vulnerabilities, with fewer
false positives. Aura and Bandit showed moderate performance, with a balance between
accuracy, sensitivity, and precision. Graudit reported limited performance, with no true
positives, while ShiftLeft Scan had the lowest accuracy and precision among the tools.
The choice of a specific tool should consider the trade-offs between accuracy and precision,
depending on the specific application’s security requirements.

Table 23. The values of SAST tool indicators for the Damn Vulnerable Python Web application.

Aura Graudit Horusec Bandit ShiftLeft Scan Semgrep

TP 1 0 2 1 1 2

FN 2 3 1 2 2 1

FP 0 0 0 0 4 0

TN 4 4 4 4 0 4

P 3

N 4

TOTAL 7

ACC [%] 71.43 57.14 85.71 71.43 14.29 85.71

SEN [%] 33.33 0.00 66.67 33.33 33.33 66.67

PRE [%] 100.00 0.00 100.00 100.00 20.00 100.00

TP [%] 14.29 0.00 100.00 100.00 20.00 100.00

FN [%] 28.57 42.86 14.29 28.57 28.57 14.29

FP [%] 0.00 0.00 0.00 0.00 57.14 0.00

TN [%] 57.14 57.14 57.14 57.14 0.00 57.14

Table 24 presents the results of an assessment of SAST tools applied to the Tiredful
API application. The results reveal important insights into each tool’s performance:

• Aura reported two TPs and six FNs. It achieved an ACC of 37.50%, a SEN of 25.00%,
and a PRE of 33.33%;

• Graudit reported no TPs and eight FNs. It had an ACC of 50.00%, a SEN of 0.00%,
and a PRE of 0.00%;

• Horusec achieved two TPs and six FNs. It had an ACC of 62.50%, a SEN of 25.00%,
and a perfect PRE of 100.00%;

• Bandit reported two TPs and six FNs. It had an ACC of 62.50%, a SEN of 25.00%,
and a perfect PRE of 100.00%. ShiftLeft Scan reported six TPs and two FNs. It had
an ACC of 62.50%, a SEN of 75.00%, and a PRE of 60.00%;
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• Semgrep reported three TPs and five FNs. It achieved an ACC of 68.75%, a SEN of
37.50%, and a perfect PRE of 100.00%.

In summary, the SAST tools provided varying results when analyzing the Tiredful
API application. Semgrep demonstrated the highest accuracy, sensitivity, and precision,
indicating its ability to identify vulnerabilities effectively. Horusec and Bandit showed
moderate performance, with a balanced accuracy and precision. Aura had the lowest
accuracy and precision among the tools. The choice of a specific tool should consider
the trade-offs between accuracy and precision, depending on the specific application’s
security requirements.

Table 24. The values of the SAST tool indicators for the Tiredful API application application.

Aura Graudit Horusec Bandit ShiftLeft Scan Semgrep

TP 2 0 2 2 6 3

FN 6 8 6 6 2 5

FP 4 0 0 0 4 0

TN 4 8 8 8 4 8

P 8

N 8

TOTAL 16

ACC [%] 37.50 50.00 62.50 62.50 62.50 68.75

SEN [%] 25.00 0.00 25.00 25.00 75.00 37.50

PRE [%] 33.33 0.00 100.00 100.00 60.00 100.00

TP [%] 12.50 0.00 12.50 12.50 37.50 18.75

FN [%] 37.50 50.00 37.50 37.50 12.50 31.25

FP [%] 25.00 0.00 0.00 0.00 25.00 0.00

TN [%] 25.00 50.00 50.00 50.00 25.00 50.00

Table 25 presents the average values of selected SAST tool indicators for applications
developed using Python technology. These averages provide an overview of the overall
performance of each SAST tool across multiple applications:

• On average, the SAST tools achieved accuracy scores ranging from approximately
34.90% to 63.07%. Semgrep had the highest average accuracy, indicating that it
provided the most correct results on average. This suggests that Semgrep can be relied
upon to accurately identify vulnerabilities in Python code;

• The average SEN scores ranged from around 0.00% to 47.92%. Semgrep and Horusec
exhibited relatively better sensitivity, making them suitable for detecting a broad range
of vulnerabilities;

• The PRE scores varied widely, with Semgrep achieving the highest average precision
(97.50%). This means that when Semgrep flagged a vulnerability, it was highly likely
to be a true positive;

• Semgrep had the highest average TP rate (29.36%), suggesting that it had a reasonably
good ability to find vulnerabilities within Python applications;

• The average FN rates ranged from approximately 12.50% to 65.10%. Graudit had
the highest FN rate, implying that it missed a substantial number of vulnerabilities.
Semgrep and ShiftLeft Scan demonstrated relatively lower FN rates;

• The average FP rates ranged from around 0.00% to 20.54%. ShiftLeft Scan had the
highest FP rate, followed by Aura. Semgrep produced the fewest false alarms;

• Graudit achieved the highest TN rate, followed by Semgrep.
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Table 25. Average values of selected SAST tool indicators for applications developed using
Python technology.

Aura Graudit Horusec Bandit ShiftLeft Scan Semgrep

ACC [%] 48.23 34.90 59.59 54.59 39.87 63.07

SEN [%] 32.64 0.00 47.92 38.19 42.36 46.88

PRE [%] 77.08 0.00 86.43 86.15 70.00 97.50

TP [%] 21.85 0.00 31.37 26.61 25.50 29.36

FN [%] 43.25 65.10 33.73 38.49 39.60 35.73

FP [%] 8.52 0.00 6.93 9.93 20.54 1.19

TN [%] 26.38 34.90 27.98 27.98 14.37 33.71

In summary, Semgrep consistently performed well across multiple evaluation criteria,
making it a strong candidate for analyzing Python applications for security vulnerabilities.
However, the choice of the most suitable SAST tool should also consider project-specific
requirements; the types of vulnerabilities you are targeting; and trade-offs between ac-
curacy, sensitivity, and precision. Additionally, it is essential to keep in mind that the
effectiveness of these tools can vary depending on the specific codebase and the complexity
of the application. Therefore, conducting comprehensive testing and fine-tuning the tool’s
configurations may be necessary to achieve optimal results.

5.5. Scan Duration

Table 26 presents a comparison of the scan duration times (in seconds) for the various
security scanning tools across different applications. The results are given rounded to the
nearest second. The times were rounded up. The table demonstrates a significant variability
in scan duration times across different security scanning tools and applications. Scan times
ranged from a few seconds to several minutes, depending on the combination of the tool
and the target application. Bandit consistently demonstrated fast scan times, typically
taking only 1 s to complete its analysis, regardless of the application. Other tools, such as
Graudit, also exhibited fast scan times, completing scans in just 1 s for most applications.
The choice of the target application had a considerable impact on scan duration. Some
applications, such as Broken Crystals, required longer scan times, with Bearer CLI taking
510 s for this particular application. Semgrep and ShiftLeft Scan both showed competitive
scan times across a wide range of applications. They tended to provide relatively quick
results, without compromising on scan depth. On average, across all applications, Bearer
CLI had the longest scan time, averaging 181 s (approximately 3 min). In contrast, Bandit,
Graudit, and Semgrep had average scan times of 1 s. While some tools, such as Bandit,
consistently exhibited fast scan times, they might have limitations in terms of the types of
vulnerabilities they can detect. Therefore, the choice of a tool should consider not only scan
duration but also the tool’s coverage and effectiveness in identifying vulnerabilities. Scan
times can also be influenced by tool configurations, such as the scan depth and the number
of rules enabled. Adjusting these configurations might help balance scan duration with the
depth of analysis. The complexity and size of the target application play a significant role in
scan times. For example, Bearer CLI takes longer to scan more complex applications, while
smaller applications generally have shorter scan times. In practice, organizations should
consider a balance between scan duration and the tool’s ability to identify vulnerabilities
effectively. A tool with a very fast scan time but low detection rates may not be as valuable
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as a slightly slower tool with more comprehensive coverage. Additionally, organizations
may need to factor in their specific requirements, such as the need for quick feedback in
a continuous integration/continuous deployment (CI/CD) pipeline or the depth of analysis
required for critical applications. Overall, the choice of a security scanning tool should be
based on a combination of factors, including scan duration, effectiveness, coverage, and the
specific needs of the project or organization.

Table 26. Comparison of scan duration times. All results presented in the table are in seconds (s).
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EasyBuggy - - - 93 s 1 s 60 s 44 s - - 144 s 1 s

Java Vulnerable
Lab

- - - 1 s 1 s 11 s 7 s - - 85 s 1 s

Security Shepherd - - - 7 s 2 s 56 s 66 s - - 160 s 46 s

Vulnerable App - - - 3 s 1 s 82 s 66 s - - 155 s 1 s

Broken Crystals - - 510 s - 2 s 17 s 29 s - - - 4 s

Damn Vulnerable
Web Services

- - 40 s - 1 s 9 s 2 s - - - 12 s

Juice Shop - - 148 s - 1 s 28 s 31 s - - - 92 s

NodeGoat - - 26 s - 1 s 10 s 3 s - - - 1 s

Conviso
Vulnerable

Web Application

- - - - 1 s 10 s - 1 s 1 s 89 s 1 s

Damn Vulnerable
Web Application

- - - - 1 s 12 s - 1 s 3 s 72 s 1 s

WackoPicko - - - - 1 s 9 s - 1 s 1 s 5 s 1 s

Xtreme Vulnerable
Web Application

- - - - 1 s 11 s - 1 s 1 s 9 s 33 s

Damn Small
Vulnerable Web

1 s 1 s - - 1 s 16 s - - - 1 s 1 s

Damn Vulnerable
GraphQL

Application

12 s 1 s - - 1 s 14 s - - - 85 s 52 s

Damn Vulnerable
Python Web
Application

5 s 1 s - - 1 s 12 s - - - 108 s 63 s

Tiredful API 3 s 1 s - - 1 s 11 s - - - 98 s 6 s

Average 5 s 1 s 181 s 26 s 1 s 23 s 31 s 1 s 2 s 84 s 20 s

6. Conclusions

The primary objective of this study was to conduct a comprehensive comparative
analysis of open-source static code analysis tools, with a specific focus on their efficacy in
identifying vulnerabilities. The investigation hinged on the examination of the vulnerabili-
ties cataloged by these tools and their subsequent application in scrutinizing vulnerable
web applications crafted in selected programming languages.
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To facilitate a testing environment, a dedicated test infrastructure was established.
This infrastructure encompassed a host machine and a virtual machine, serving as the
platform for experimental execution. The study provided concise descriptions of the
scrutinized tools and the web applications subjected to evaluation. A total of eleven distinct
tools, each tailored to diverse technologies prevalent in web application development,
underwent assessment. The research encompassed a broad spectrum of programming
languages, including Java, JavaScript, PHP, and Python, and involved the analysis of sixteen
vulnerable web applications. The analysis adhered to a structured methodology, where
scan reports were standardized into a uniform format, outcomes for each application were
consolidated, and each detected vulnerability was categorized into one of three labels: True
Positives (TP), False Positives (FP), or Not Applicable (N/A). Vulnerabilities designated
as N/A were excluded from subsequent analyses. Finally, performance metrics were
computed for each tool, and the results underwent meticulous scrutiny.

The findings emerging from this exhaustive analysis of security testing tools for static
code analysis underscore a pivotal realization: the absence of a universally impeccable tool.
A salient example is Semgrep, which exhibited outstanding performance when evaluating
applications developed using JavaScript technologies but faltered when confronted with
applications forged in PHP technologies. This observation underscores the intricacy of tool
selection, as distinct tools exhibit superior efficacy in disparate contexts. For instance, native
tools specifically engineered for particular technologies, such as Java and PHP, generally
outperformed their counterparts when evaluated within their respective domains. Con-
versely, “multitechnology” tools demonstrated enhanced effectiveness when scrutinizing
applications developed with JavaScript and Python technologies.

Furthermore, it is imperative to emphasize that the deliberate inclusion of security
vulnerabilities in the test applications amplifies the real-world relevance of this study’s
outcomes. These insights transcend the domain of web applications, as the tested tools
are inherently versatile and can be applied to a spectrum of application types, including
those designed for embedded systems, IoT, or sensor-equipped devices. This versatility
accentuates their relevance in fortifying overall software security across diverse domains,
extending beyond the confines of web development.

In summation, this study advocates for a nuanced approach to tool selection in the
realm of static code analysis, given the absence of a universally flawless tool. Tailoring
tool choices to the specific technologies in use emerged as a critical consideration for
effective vulnerability detection. The deliberate inclusion of security errors in the test
applications reinforces the practical applicability of the study’s findings, thereby elucidating
the versatility of these tools in diverse application landscapes beyond web development.

Author Contributions: Conceptualization, K.K. and M.W.; methodology, K.K.; software, K.K.; val-
idation, M.W.; formal analysis, K.K.; investigation, K.K.; resources, K.K.; data curation, K.K.; writ-
ing—original draft preparation, K.K.; writing—review and editing, M.W.; visualization, K.K.; super-
vision, M.W.; project administration, M.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by Wrocław University of Science and Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank Wroclaw University of Science and Technology
(statutory activity) for the financial support.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 7978 31 of 33

Abbreviations

The following abbreviations are used in this manuscript:

ACC Accuracy
API Application Programming Interface
AST Abstract Syntax Tree
CD Continuous Delivery
CI Continuous Integration
CVE Common Vulnerabilities and Exposures
CVSS Common Vulnerability Scoring System
CWE CommonWeakness Enumeration
DAST Dynamic Application Security Testing
ETL Extraction, Transformation, Loading process
FN False Negative
FP False Positive
IAST Interactive Application Security Testing
MSSDL Microsoft’s Security Development Lifecycle
N Negative
NIST National Institute of Standards and Technology
P Positive
PRE Precision
RASP Runtime Application Self-Protection
SAST Static Application Security Testing
SDLC Software Development Life Cycle
SEN Sensitivity
SSDLC Secure Software Development Life Cycle
TN True Negative
TP True Positive
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