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Abstract: Indoor air pollution is an urgent issue, posing a significant threat to the health of indoor
workers and residents. Individuals engaged in indoor occupations typically spend an average of
around 21 h per day in enclosed spaces, while residents spend approximately 13 h indoors on average.
Accurately predicting indoor air quality is crucial for the well-being of indoor workers and frequent
home dwellers. Despite the development of numerous methods for indoor air quality prediction, the
task remains challenging, especially under constraints of limited air quality data collection points.
To address this issue, we propose a neural network capable of capturing time dependencies and
correlations among data indicators, which integrates the informer model with a data-correlation
feature extractor based on MLP. In the experiments of this study, we employ the Informer model to
predict indoor air quality in an industrial park in Changsha, Hunan Province, China. The model
utilizes indoor and outdoor temperature, humidity, and outdoor particulate matter (PM) values
to forecast future indoor particle levels. Experimental results demonstrate the superiority of the
Informer model over other methods for both long-term and short-term indoor air quality predictions.
The model we propose holds significant implications for safeguarding personal health and well-being,
as well as advancing indoor air quality management practices.

Keywords: artificial intelligence; indoor air quality; public health; indoor environment quality;
public health

1. Introduction

Clean air is not just a luxury but a fundamental necessity for human survival. Even a
brief interruption in breathing can have severe consequences, leading to biological death.
Astonishingly, research conducted by esteemed institutions such as the U.S. Environmental
Protection Agency and Health Canada has unveiled a startling fact—approximately 68%
of human diseases are linked to air pollution [1]. Despite its critical importance, indoor
air quality often receives inadequate attention. People spend an average of 21 h indoors
daily, making the air they breathe a crucial factor in their health and safety. It is not just the
outdoor environment that needs clean air, indoor air quality is equally essential, especially
considering the amount of time individuals spend inside buildings and homes. PM2.5 is
harmful to the human respiratory system, cardiovascular system, and immune system.
In severe cases, it may lead to an increased risk of cancer [2]. This eye-opening statistic
underscores the urgent need to reduce air pollution globally, as it has the potential to
significantly decrease hospitalizations and enhance overall well-being.

In 2019, a groundbreaking study was conducted by the Chemical Institute of China
National Testing & Inspection Institute in Sichuan Province. The study analyzed data from
6482 indoor locations and published the “2019 White Paper on Indoor Air Pollution in
China”. The findings were concerning, revealing that a staggering 95% of indoor spaces
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failed to meet air quality standards within the first year of renovation [3]. Furthermore,
the non-compliance rate remained high at 55% even after three years. The situation was
particularly alarming in offices, where individuals spend a substantial portion of their time,
with a non-compliance rate reaching as high as 90% [4].

2. Related Work

Air quality is a critical matter of concern in terms of the impact on public health and
well-being. Numerous research studies state the adverse health effects associated with poor
air quality levels, which include premature death, and respiratory and cardiovascular dis-
ease, along with a relevant increase in asthma attacks, dementia, and cancer [5]. According
to the EPA, indoor levels of pollutants may be up to 100 times higher than outdoor pollutant
levels and have been ranked among the top 5 environmental risks to the public [6]. Thus,
accurate prediction of air pollutant concentrations is crucial for management authorities
and vulnerable populations to minimize the exposure to hazardous pollutants.

In the past few years, several methods have been proposed to predict indoor air quality.
In general, indoor air prediction methods can be divided into two categories: traditional
machine learning methods and deep learning methods.

For its powerful and fast predictions with big data, machine learning has gained
tremendous popularity. Some researchers have applied machine learning algorithms to the
short- and long-term prediction of air quality successfully. For example, Boznar M et al.
developed a method based on the neural network for prediction for SO2 pollution around
the biggest Slovenian thermal power plant at Sostanj [7]. Nieto P J G et al. built a regression
model of air quality by using the support vector machine (SVM) technique in the Avilés
urban area (Spain) at local scale [8]. Liu H et al. used a data-driven prediction method
based on a mixed GPR to predict the PM2.5 concentration in a subway station [9]. Taheri S
et al. used machine learning algorithms to forecast CO2 concentrations across a range of
forecasting horizons [10].

However, their performances are generally limited in practical application. This is
because the shallow structures of traditional machine learning models often make them
fail to capture the complex and nonstationary fluctuations of air pollutant data, resulting in
their poor performance in long-term air pollutant prediction, which is crucial to preemptive
air pollutant prevention and management.

With the rapid growth of artificial intelligence, deep learning (DL) technologies, which
have deeper structures and more powerful learning abilities, have been extremely used
in the field of air pollution prediction [11]. A large number of researchers have applied
deep learning to outdoor air quality prediction, such as linear regression [12], recurrent
neural networks (RNN) [13], LSTM [14], and GRU [15], among others. They can not only
predict specific values of pollutant concentrations, but also classify pollutant levels as
well as achieve long-term prediction tasks for multiple days in the future. For example,
Monteil J et al., integrated deep learning together with techniques from PDE-based domain
decomposition to demonstrate a framework for air-pollution monitoring and forecasting at
Dublin, Ireland [16].

In the realm of indoor air quality prediction, Allen et al. conducted a study where
they monitored indoor particle matter and employed regression models to predict air
quality [17]. Zhao expanded on this approach by integrating external seasonal conditions
into regression models, incorporating a recurrent neural network (RNN) with long short-
term memory units as the framework. Their work sought to improve the accuracy of air
quality prediction by considering additional environmental factors [18].

Athira V et al. used seq2seq with LSTM and GRU for air quality prediction and
demonstrated that seq2seq is a promising method for air quality prediction [19]. For
heating, ventilation, and air conditioning (HVAC) systems affected by multiple environ-
mental variables, a deep learning model based on the main architectures of LSTM and
GRU was proposed to predict future microclimate conditions with optimization of en-
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ergy consumption, achieving advanced multivariate time series prediction of indoor air
quality [20].

Ahn jae-hyun et al. proposed a complex single-step multivariate time series indoor air
quality prediction model. The model aims to exploit the complex relationships between
different air quality parameters and improve the prediction ability [21].

Yeo-Kyung Lee’s research aims to improve the indoor air quality of office spaces,
especially considering the air quality of indoor office people for a long time and the
prevention of airborne diseases [22]. They developed an “Office Space CO2 Prediction and
IAQ Improvement Suggestion Tool” to help non-experts manage IAQ and reduce the harm
of air quality to indoor office workers.

Ali Majdi et al. published a study focusing on air quality control in smart buildings.
In this study, a neural network with radial basis functions was used to predict the indoor
air quality of a commercial office center in Mashhad, Iran [23].

Liang Y. and colleagues proposed an innovative model called AirFormer for predicting
air quality across thousands of locations in mainland China with unprecedented fine spatial
granularity. The model utilizes 4 years of data from 1085 monitoring stations in China.
Compared to previous models, AirFormer reduces the prediction error and improves the
forecast for the next 72 h by 5% to 8% [24].

However, on the other hand, the ability to capture the time-dependency and correlation
between data indicators in these methods still needs improvement. In practical applications,
they only focus on the temporal information within air quality data, while overlooking the
interdependencies among monitored data indicators.

In summary, research on PM2.5 prediction in indoor and outdoor environments as
well as long sequence prediction of indoor air quality is limited [25], but there is a high
demand for long-term sequence prediction in practical applications [26]. This holds great
significance for indoor air quality monitoring and management [27–29]. If more accurate
prediction results can be provided, it will help people take timely action to improve indoor
environments, thereby enhancing the quality of life and health [5,10].

Therefore, in this study, the informer model was employed for conducting long
sequence prediction of indoor air quality, aiming to validate the informer’s performance in
predicting long sequences of indoor air quality. Additionally, specific network structures
were integrated to enhance the model’s capability to learn correlations between different
data indicators. The main contributions of this research are summarized as follows:

1. We proposed an informer-based indoor air quality prediction model that not only
leverages informer’s advantage in capturing long sequence time dependencies but
also has the ability to capture correlations between air quality data indicators, thereby
enhancing the accuracy of indoor air quality prediction;

2. Through experiments on real datasets, our model demonstrated remarkable perfor-
mance in predicting indoor PM2.5 concentrations across different prediction timeframes;

3. The experiments indicate that our model can accurately predict not only PM2.5
concentrations, but also effectively forecast other air quality data. Furthermore, our
model exhibits adaptability to prediction tasks with fewer data dimensions, such as
long sequence prediction tasks that do not consider significant spatial dependencies
and involve high data correlation.

The remainder of this paper is organized as follows: In Section 3, we provide a
detailed description of the model architecture and its individual components. In Section 4,
we present the dataset, experimental setup, and experimental results. Finally, in Section 5,
we present our conclusions.

3. Methodology
3.1. Overview of Informer

The overall architecture of Informer is illustrated in Figure 1. Informer primarily
consists of two components: (1) MLP, which extracts valuable feature information from
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the raw monitoring data (i.e., indoor and outdoor air quality data); (2) the Informer layer,
which captures the long sequential temporal dependencies within the historical data.
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3.2. MLP Layer

Taking into consideration the influence of outdoor air quality on indoor air quality,
as well as the interrelation among various data indicators, this study employs an MLP to
extract features from the raw air quality and meteorological data as input for the Informer
layer. For instance, taking indoor PM2.5 as the predictive target, the historical indoor and
outdoor PM2.5, as well as temperature and humidity data, are represented as Xn ∈ R1×1×L,
while the corresponding feature data of dimension m (excluding indoor PM2.5) is repre-
sented as Fn ∈ R1×M×L. To acquire enhanced feature representations, we initially input
Fn ∈ R1×M×L into the MLP, extracting improved feature representations Fe ∈ RN×1×L from
the m-dimensional feature data.

3.3. Informer Layer

In the indoor air quality prediction task, capturing the temporal dependencies within
the data plays a crucial role. This paper introduces the Informer model based on the Trans-
former architecture to capture these temporal dependencies. Informer adopts a similar
encoder-decoder architecture; however, it enhances the original Transformer framework’s
performance on long sequence data prediction and reduces time complexity and mem-
ory usage by incorporating the ProbSparse self-attention mechanism and self-attention
extraction operations. Additionally, Informer employs a dynamic inference method for
predictive output.

The Informer’s encoder takes long sequence data as input and captures the temporal
dependencies within the data using the ProbSparse self-attention mechanism and self-
attention extraction operations. Probability-based self-attention: In comparison to the
original self-attention mechanism in Transformers, the ProbSparse self-attention mechanism
effectively reduces the time complexity. In the self-attention mechanism, each element is
paired with all other elements to determine the attention distribution, introducing heavy
computational burden and memory consumption when dealing with long sequence data.
However, in most real-world scenarios, the attention distribution is dominated by only a
few important query-key pairs.

To measure the similarity of attention distributions, Informer utilized Kullback-Leibler
(KL) divergence as a metric [30]. KL divergence can be used to compare differences between
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probability distributions. In this improved self-attention mechanism, the sparsity measure
of the i-th query is defined as follows:

M(qi, K) = ln∑LK
j=1 exp

(
qikT

j√
d

)
− 1

LK ∑LK
j=1

qikT
j√
d

(1)

where the M(qi, K) consists of two components: the LogSumExp (LSE) of q_iacross all keys,
and the arithmetic mean of the resulting values. A larger value of M(qi, K) for the i-th
query indicates a more ‘diverse’ attention probability p. This increased diversity leads to a
higher likelihood of including the dominant dot-product pairs in the header field of the
long-tail self-attention distribution [31].

If the sparsity measure M(qi, K) of the i-th query is large, its attention probability p is
more “diverse” and likely to include the important dot products in the head of the long-tail
attention distribution.

In order to identify the important qi, Informer’s ProbAttention utilizes a threshold to
determine whether each query exceeds it, thereby assessing its significance. Queries that
surpass the threshold are considered important and selected as the target of key attention.

−
M(qi, K) = max

j

{
qikT

j√
d

}
− 1

LK

LK

∑
j=1

qikT
j√
d

(2)

where max
j

is less affected by zero values and maintains numerical stability. In practice,

the input lengths of queries and keys are usually the same in self-attention computation,
denoted as LQ = LK = L, resulting in a total ProbSparse self-attention time and space
complexity of O(LlnL) [31].

Based on the informer proposed measurement [31], the ProbSparse self-attention is
achieved by restricting each key to attend only to the u most dominant queries:

A(Q, K, V) = So f tmax

 −QKT
√

d

V (3)

where
−
Q is a sparse matrix of the same size as q, which comprises only the Top-u queries

determined by the sparsity measurement M(q, K).
By incorporating this threshold-based approach, Informer effectively identifies and

prioritizes the queries with higher importance, enabling the model to focus on key attention.
This selection process helps in capturing the most relevant information for improved
prediction and enhances the overall performance of the Informer model.

The encoder is the most crucial component of Informer as it extracts important tem-
poral dependencies from the input time series and computes feature attention weights
from different perspectives using multi-head attention. In the encoder, the input sequence
Xt undergoes processing and is transformed into a matrix Xe

t n ∈ R(Lx×dmodel), where Lx
represents the length of the input sequence and dmodel is the dimension of the model.

Another crucial aspect of the Informer encoder is self-attention distilling. It enhances the
quality and focus of the encoder’s feature maps, further improving computational efficiency.

X(j+1)
t = MaxPool

(
ELU

(
Conv1d

([
X j

t

]
A

B
)))

(4)

where [·]AB represents an attention block that includes multi-head ProbSparse self-attention
and other necessary operations. Conv1d denotes a 1D convolution operation along the time
dimension, utilizing ELU(·) as the activation function. MaxPool represents a max pooling
operation with a stride of 2, used for downsampling and halving the output.
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By incorporating this threshold-based approach, Informer effectively identifies and
prioritizes the queries with higher importance, enabling the model to focus on key attention.
This selection process helps in capturing the most relevant information for improved
prediction and enhances the overall performance of the Informer model.

The Decoder of the Informer model is capable of generating long sequence outputs
in a single forward pass. It adopts a standard decoder structure consisting of a stack of
two identical multi-head attention layers. However, the Decoder of Informer differs from
traditional decoder architectures as it employs a generative inference approach to address
the speed degradation issue in long sequence prediction.

In the Decoder, the input vector is represented as Xtde, which is formed by concate-
nating the start token Xttoken and a placeholder Xt0 for the target sequence. The start
token Xttoken is a vector of length Ltoken, representing the initial input of the decoder. The
placeholder Xt0 for the target sequence is a vector of size Ly× dmodel , with each scalar value
set to 0.

In ProbSparse self-attention calculations, a masked multi-head attention mechanism is
utilized, where the masked dot products are set to negative infinity (−∞) to prevent each
position from attending to future positions, thus avoiding the autoregressive issue. The
final output is obtained through a fully connected layer, with the output dimension dy
being multi-dimensional as defined in the paper.

Generative inference is an important technique in Informer, inspired by the “dynamic
decoding” method in the field of natural language processing, and extended to a generative
approach. In generative inference, instead of selecting a specific token as the start token,
a randomly sampled subsequence of length Ltoken from the input sequence is used as the
start token. The generative inference decoder of Informer also includes the timestamps X0
of the target sequence, which provide contextual information about the target week. This
allows the decoder to generate long sequence outputs in a single forward pass without the
need for time-consuming “dynamic decoding” as in traditional decoders.

3.4. Evaluation Metrics

In our research, we utilized two key loss functions—Mean Absolute Error (MAE)
and Mean Squared Error (MSE)—to train and assess our indoor air quality prediction
model. MAE measures the average absolute difference between predicted and actual
values, providing robustness against outliers and unexpected fluctuations in air quality.
On the other hand, MSE, calculating the average squared difference, offers a more sensitive
evaluation of larger errors. The combination of MAE and MSE allowed us to holistically
evaluate our model’s predictive performance, considering both absolute and squared errors.
This approach enabled us to strike a balance between minimizing overall prediction errors
and handling extreme cases effectively, thus ensuring strong generalization capabilities
across diverse indoor air quality conditions, which are expressed as:

MSE =
1
N

N

∑
i=1

(
ypredi

− ytruei

)2
(5)

MAE =
1
N ∑(i = 1)N

∣∣∣ypredi
− ytruei

∣∣∣ (6)

where ypredi
and ytruei denote the predicted value and ground truth of an indoor air quality

(e.g., PM2.5). The MSE and MAE are used to measure prediction errors. A smaller value of
MSE or MAE indicates better predictive performance.

4. Experiment
4.1. Dataset and Hyperparameter
4.1.1. Dataset

The dataset originates from the Quality Control Building of Yuanda Central Air
Conditioning Park in Changsha County. It encompasses air quality data for six parameters,
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including indoor and outdoor temperature and humidity, as well as indoor and outdoor
PM2.5 concentrations, from January to December of 2019. The sampling frequency is once
every hour.

The purpose of collecting this dataset is to investigate and monitor the relationship
between fine particulate matter (PM2.5) concentration levels in the air and temperature and
humidity. These data allow us to comprehend and analyze the variations and distribution
patterns of particles within this size range. The distribution of indoor PM levels in this
dataset exhibits a non-uniform pattern, characterized by the presence of numerous outliers.
This unique distribution poses challenges when attempting long sequence forecasting.

After collecting the air quality data, preprocessing is necessary. On one hand, due to
issues such as sensor malfunctions and equipment maintenance interruptions at monitoring
points, the air quality data for each monitoring point contain missing values. In this study,
a linear interpolation method is employed to fill in the missing values in the air quality
data for each monitoring point a common and straightforward strategy used in related
works [32]. As a result, each monitoring point has 14,005 indoor and outdoor air quality
records, including PM2.5, CO2, Temperature, and Relative Humidity.

On the other hand, to mitigate the impact of different dimensions of data on model
training and accelerate the convergence speed of the model, standardization is applied to
various features of both air quality and meteorological data. This standardization can be
expressed as:

z =
x− µ

σ
(7)

where x and z represent the original data and standardized data, respectively, µ is the mean
of x, and σ is the standard deviation of x. As a result, the distribution of each feature is
scaled to have a mean of 0 and a standard deviation of 1.

4.1.2. Experimental Parameter Configuration

In this paper, the Informer model is optimized using the Adam optimizer, with the
learning rate initialized at 1 × 10−4 and halved at the end of each epoch. The training
process consists of 8 epochs, and an early stopping strategy is implemented to improve
efficiency. The model’s encoder is constructed with 4 layers, while the decoder comprises
2 layers. The batch size is set to 32 during the training process.

Our Informer model consists primarily of two parts: MLP layers and Informer layers.
The implementation details of each part are described below.

Firstly, the MLP layers consist of four fully connected layers, with an input feature
data dimension of 6 and a hidden layer of 100 neurons, the latter being the number of
neurons in the final layer. The Informer layers consist of 4 encoder and 2 decoder layers,
with a hidden dimension of 512. In both the encoder and decoder layers, the ProbSparse
self-attention mechanism is implemented, along with residual connections, feedforward
networks with 2048 inner neurons, and a Dropout layer with a dropout rate of 0.01. The
attention head count is set to 8.

The learning rate is set to 1 × 10−4, batch size is 32, and the model is trained using
mean squared error loss and the Adam optimizer. The monitoring point data consists
of air quality data for 12 months; hence, the training/validation/testing time split is
8/2/2 months. The total number of epochs is set to 100, and an early stopping strategy
with a patience of 5 is employed to train the model. For a more detailed list of parameters,
please refer to Table 1.

All experiments were conducted on the windows server with an Intel i9 9900k CPU
(5.0 GHz, 16 M RAM) and an Nvidia RTX 2080ti GPU (11G GPU RAM).
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Table 1. Hyperparameters.

Hyper-Parameter Value

Learn_rate 1 × 10−4

optimizer Adam
Batch 32
attn 8

patience 3
Epoch 50

seq_len 96
label_len 48
Pred_len 24
E_layers 4
D_layers 2

4.2. Experimental Results
4.2.1. Performance Comparison

To demonstrate the effectiveness of the proposed model, we compared it with three
different baseline methods. All methods were trained and tested using the same training,
validation, and testing datasets. The details of the baselines are as follows:

DNN (Deep Neural Network): DNN is an artificial neural network composed of
multiple fully connected layers with sigmoid activation functions. It is used to uncover
relationships between historical and future data.

LSTM (Long Short-Term Memory) [33]: LSTM is a type of recurrent neural network
(RNN) designed to address the vanishing gradient problem in traditional RNNs. It is
capable of learning long-term dependencies in sequential data by selectively remembering
or forgetting information.

GRU (Gated Recurrent Unit) [34]: GRU is similar to an LSTM with a forget gate,
but it has fewer parameters since it lacks an output gate. GRU performs similarly to
LSTM in tasks such as polyphonic music modeling, speech signal modeling, and natural
language processing.

Transformer [35]: the Transformer is constructed with an encoder and a decoder, both
equipped with self-attention mechanisms, enabling it to capture long-range dependencies
within sequence data.

To ensure that the prediction results are not biased towards specific randomly initial-
ized weight parameters, each method was run three times, and Table 2 reports the average
metrics for each method. Table 2 presents the performance of the Informer model and other
baseline models in predicting PM2.5 air pollutant concentrations for 6 h, 12 h, and 24 h
ahead. We can observe that our Informer model significantly outperforms other baselines
in terms of MSE and MAE. Furthermore, performance of deep learning methods based on
attention mechanisms generally surpasses that of traditional deep learning models for time
series data. This suggests that attention-based methods have better capabilities in handling
complex and nonlinear time series air quality data.

Table 2. Comparison of informer and other baselines in predicting PM2.5 atmospheric pollutant
concentrations.

24 h 12 h 6 h

MSE MAE MSE MAE MSE MAE

DNN 0.492 0.531 0.399 0.487 0.396 0.502
LSTM 0.203 0.398 0.204 0.393 0.317 0.443
GRU 0.143 0.301 0.197 0.391 0.213 0.387

Transformer 0.097 0.224 0.167 0.313 0.209 0.381
Informer (Our) 0.017 0.023 0.160 0.157 0.227 0.392
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4.2.2. Model Fitting Results

By fitting the model with the hyperparameters from Table 1, the Informer model
demonstrated excellent predictive performance on the test dataset, as shown in Figure 2.
The results clearly indicate that the model’s predictions closely align with the actual values
of indoor PM (Particulate Matter) concentrations.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 11 
 

 

Batch 32 
attn 8 

patience 3 
Epoch 50 

seq_len 96 
label_len 48 
Pred_len 24 
E_layers 4 
D_layers 2 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. The predicted variations of indoor PM values exhibit significant fluctuations, with nu-
merous outliers. Overall, the model closely approximates the true distribution trends in the fol-
lowing ways: (a) The model demonstrates a relatively close fit to the data but fails to predict sud-
den spikes in certain trends; (b) The model nearly perfectly predicts the data; (c) The model accu-
rately forecasts the overall trends, but lags in predicting specific time steps; (d) The model correct-
ly predicts the trends but encounters significant fluctuations, struggling to handle extreme outlier 
points. 

The Informer architecture’s ability to capture and leverage temporal dependencies 
in the indoor air quality data plays a crucial role in achieving accurate predictions. Its 
self-attention mechanism and feature extraction capabilities allow it to effectively cap-
ture complex patterns and relationships within the data, enabling it to make precise 
forecasts. 

Moreover, the model’s performance on the test dataset underscores its robustness 
and generalization ability. It successfully handles the challenges posed by the uneven 
distribution and outliers in the data, providing reliable predictions even in challenging 
scenarios. 
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outliers. Overall, the model closely approximates the true distribution trends in the following ways:
(a) The model demonstrates a relatively close fit to the data but fails to predict sudden spikes in
certain trends; (b) The model nearly perfectly predicts the data; (c) The model accurately forecasts the
overall trends, but lags in predicting specific time steps; (d) The model correctly predicts the trends
but encounters significant fluctuations, struggling to handle extreme outlier points.

The Informer architecture’s ability to capture and leverage temporal dependencies
in the indoor air quality data plays a crucial role in achieving accurate predictions. Its
self-attention mechanism and feature extraction capabilities allow it to effectively capture
complex patterns and relationships within the data, enabling it to make precise forecasts.

Moreover, the model’s performance on the test dataset underscores its robustness and
generalization ability. It successfully handles the challenges posed by the uneven distribu-
tion and outliers in the data, providing reliable predictions even in challenging scenarios.

5. Conclusions

In this study, we introduce an indoor air quality prediction model that excels in indoor
air quality forecasting. To harness the temporal correlations and data dependencies in air
quality data, the model employs a feature extraction layer based on MLP to learn the data
correlations among various monitoring indicators. This extraction layer is designed to
capture both short-term and long-term temporal information and data correlations within
air quality data. Moreover, the main objective of the MLP-based feature extraction layer is
to learn data correlations from indoor air quality data nodes and outdoor air quality data
nodes. In essence, this design captures the data dependency and temporal dependency
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issues between indoor air quality and closely situated outdoor nodes, leading to more
accurate predictions.

Experimental results demonstrate that our proposed air quality prediction model
outperforms other methods in predicting both short-term and long-term air quality data.
The indoor air quality model presented in this paper holds significant implications for
safeguarding personal health and well-being, as well as advancing indoor air quality
management practices.
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