Mobile Manipulators in Industry 4.0: A Review of Developments for Industrial Applications
Abstract
:1. Introduction
1.1. MMs: A History and Related Works
1.2. Towards Smarter Factory
1.3. Problem Statement
1.4. Motivation and Contribution
1.5. Organization of the Paper
2. Methodology
- Preliminary Search Strategy
- 2.
- Segregated Literature Review
- Industry 4.0-focused: These articles predominantly discussed the core concepts and facets of Industry 4.0 but might not explicitly mention MMs.
- Mobile Manipulator-focused: Papers that discussed the evolution, functionalities, and challenges of MMs, potentially without linking them directly to Industry 4.0.
- 3.
- Analysis of MM Applications in Industry
- 4.
- Synthesis of Industry 4.0 Recommendations for MMs
- 5.
- Exploration of MMs
- 6.
- MMs in the Context of Industry 4.0
3. Integration and Implementation of MMs in Industrial Environments
3.1. From Research to Industry
3.2. Industrial Applications
4. Industry 4.0: Requirements for Developing Adaptable MMs
4.1. Increased Connectivity and Interoperability
4.2. Data Collection and Analysis
4.3. Improved Flexibility
4.3.1. Flexible Navigation, Path Planning, Localization, and Mapping
4.3.2. Flexible Scheduling
4.3.3. Flexible Control and Coordination
4.4. Sensing and Perception
4.5. Human–Robot Interaction and Safety
4.6. Virtualization
4.7. Cyber Security
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Description |
AI | Artificial Intelligence |
AMR | Autonomous Mobile Robots |
AR | Augmented Reality |
CIM | Computer Integrated Manufacturing |
CMfg | Cloud Manufacturing |
cobots | Collaborative robots |
CPS | Cyber-Physical Systems |
DOF | Degrees of Freedom |
DT | Digital Twin |
IIoT | Industrial Internet of Things |
IoT | Internet of Things |
LH(s) | Little Helper(s) |
MM(s) | Mobile Manipulator(s) |
ROS | Robot Operating System |
TRL | Technology Readiness Level |
UAV(s) | Unmanned Aerial Vehicle(s) |
VR | Virtual Reality |
References
- Jain, A.; Jain, P.K.; Chan, F.T.S.; Singh, S. A review on manufacturing flexibility. Eur. J. Oper. Res. 2013, 51, 5946–5970. [Google Scholar] [CrossRef]
- Gao, Z.; Wanyama, T.; Singh, I.; Gadhrri, A.; Schmidt, R. From industry 4.0 to robotics 4.0—A conceptual framework for collaborative and intelligent robotic systems. Procedia Manuf. 2020, 46, 591–599. [Google Scholar] [CrossRef]
- Bøgh, S.; Hvilshøj, M.; Kristiansen, M.; Madsen, O. Autonomous industrial mobile manipulation (AIMM): From research to industry. In Proceedings of the 42nd International Symposium on Robotics, Chicago, IL, USA, 21–24 March 2011; p. 9. [Google Scholar]
- Srinivasa, S.S.; Berenson, D.; Cakmak, M.; Collet, A.; Dogar, M.R.; Dragan, A.D.; Knepper, R.A.; Niemueller, T.; Strabala, K.; Weghe, M.V.; et al. Herb 2.0: Lessons learned from developing a mobile manipulator for the home. Proc. IEEE 2012, 100, 2410–2428. [Google Scholar] [CrossRef]
- Sereinig, M.; Werth, W.; Faller, L.M. A review of the challenges in mobile manipulation: Systems design and RoboCup challenges: Recent developments with a special focus on the RoboCup. Elektrotech. Informationstech. 2020, 137, 297–308. [Google Scholar] [CrossRef]
- Chebab, Z.-E.; Fauroux, J.-C.; Bouton, N.; Mezouar, Y.; Sabourin, L. Autonomous Collaborative Mobile Manipulators: State of the Art. In Proceedings of the TrC-IFToMM Symposium on Theory of Machines and Mechanisms, Izmir, Turkey, 14–17 June 2015. [Google Scholar]
- Yang, M.; Yang, E.; Zante, R.C.; Post, M.; Liu, X. Collaborative mobile industrial manipulator: A review of system architecture and applications. In Proceedings of the ICAC 2019—2019 25th IEEE International Conference on Automation and Computing, Lancaster, UK, 5–7 September 2019. [Google Scholar] [CrossRef]
- Sinnemann, J.; Boshoff, M.; Dyrska, R.; Leonow, S.; Mönnigmann, M.; Kuhlenkötter, B. Systematic literature review of applications and usage potentials for the combination of unmanned aerial vehicles and mobile robot manipulators in production systems. Prod. Eng. 2022, 16, 579–596. [Google Scholar] [CrossRef]
- Fernández-Caramés, T.M.; Blanco-Novoa, O.; Froiz-Míguez, I.; Fraga-Lamas, P. Towards an Autonomous Industry 4.0 Warehouse: A UAV and Blockchain-Based System for Inventory and Traceability Applications in Big Data-Driven Supply Chain Management. Sensors 2019, 19, 2394. [Google Scholar] [CrossRef] [PubMed]
- Bonci, A.; Cheng, P.D.C.; Indri, M.; Nabissi, G.; Sibona, F. Human-Robot Perception in Industrial Environments: A Survey. Sensors 2021, 21, 1571. [Google Scholar] [CrossRef]
- Yu, C.; Xu, X.; Lu, Y. Computer-Integrated Manufacturing, Cyber-Physical Systems and Cloud Manufacturing—Concepts and relationships. Manuf. Lett. 2015, 6, 5–9. [Google Scholar] [CrossRef]
- Staal, A.S.; Salvatierra, C.G.; Albertsen, D.D.; Mahendran, M.; Ravichandran, R.; Thomsen, R.F.; Hansen, E.B.; Bøgh, S. Towards a collaborative omnidirectional mobile robot in a smart cyber-physical environment. Procedia Manuf. 2020, 51, 193–200. [Google Scholar] [CrossRef]
- Dang, Q.; Nielsen, I.E.; Steger-Jensen, K. Scheduling a Single Mobile Robot for Feeding Tasks in a Manufacturing Cell. In Proceedings of the International Conference on Advances in Production Management Systems (APMS), Stavanger, Norway, 26–28 September 2011; pp. 1–8. [Google Scholar]
- Bogh, S.; Schou, C.; Rühr, T.; Kogan, Y.; Dömel, A.; Brucker, M.; Eberst, C.; Tornese, R.; Sprunk, C.; Tipaldi, G.D.; et al. Integration and assessment of multiple mobile manipulators in a real-world industrial production facility. In Proceedings of the Joint Conference of ISR 2014—45th International Symposium on Robotics and Robotik 2014—8th German Conference on Robotics, ISR/ROBOTIK, Munich, Germany, 2–3 June 2014; VDE: Berlin, Germany, 2014; pp. 305–312. [Google Scholar]
- Madsen, O.; Bøgh, S.; Schou, C.; Andersen, R.S.; Damgaard, J.S.; Pedersen, M.R.; Krüger, V. Integration of mobile manipulators in an industrial production. Ind. Robot. 2015, 42, 11–18. [Google Scholar] [CrossRef]
- Nielsen, I.; Dang, Q.V.; Bocewicz, G.; Banaszak, Z. A methodology for implementation of mobile robot in adaptive manufacturing environments. J. Intell. Manuf. 2017, 28, 1171–1188. [Google Scholar] [CrossRef]
- Ghodsian, N.; Benfriha, K.; Olabi, A.; Gopinath, V.; Arnou, A.; Charrier, Q. Toward designing an integration architecture for a mobile manipulator in production systems: Industry 4.0. Procedia CIRP 2022, 109, 443–448. [Google Scholar] [CrossRef]
- Benfriha, K.; El-Zant, C.; Charrier, Q.; Bouzid, A.H.; Wardle, P.; Belaidi, I.; Loubère, S.; Ghodsian, N.; Aoussat, A. Development of an advanced MES for the simulation and optimization of industry 4.0 process. Int. J. Simul. Multidiscip. Des. Optim. 2021, 12, 23. [Google Scholar] [CrossRef]
- Andersen, R.E.; Hansen, E.B.; Cerny, D.; Madsen, S.; Pulendralingam, B.; Bøgh, S.; Chrysostomou, D. Integration of a Skill-based Collaborative Mobile Robot in a Smart Cyber-physical Environment. Procedia Manuf. 2017, 11, 114–123. [Google Scholar] [CrossRef]
- Co-Manipulation of Large Parts by Dual-Arm Mobile Manipulator—Sherlock Project. Available online: https://www.sherlock-test.eu/?page_id=3613#top (accessed on 30 March 2023).
- Dimitropoulos, N.; Michalos, G.; Makris, S. An outlook on future hybrid assembly systems—The Sherlock approach. Procedia CIRP 2020, 97, 441–446. [Google Scholar] [CrossRef]
- Assembly of Solar Thermal Collectors—Sherlock Project. Available online: https://www.sherlock-test.eu/?page_id=3607 (accessed on 30 March 2023).
- Helms, E.; Sehraft, R.D.; Hägele, M. Rob@work: Robot assistant in industrial environments. In Proceedings of the IEEE International Workshop on Robot and Human Interactive Communication, Berlin, Germany, 27 September 2002; pp. 399–404. [Google Scholar] [CrossRef]
- De Luca, A. SAPHARI Project Presentation. 2012. Available online: http://www.saphari.eu/images/presentations/saphari_projectpresentation.pdf (accessed on 8 March 2023).
- COLROBOT Demonstration for the Automotive Industry. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c1dfbaaf&appId=PPGMS (accessed on 1 March 2023).
- ColRobot Prototype in Aerospace Industry. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c12064a7&appId=PPGMS (accessed on 1 March 2023).
- ColRobot. Demonstration of the ColRobot in Aerospace Industry. 2020. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c13f8bb7&appId=PPGMS (accessed on 1 March 2023).
- ColRobot. COLROBOT Demonstration in Automotive Industry. no. 688807. 2020. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c128a917&appId=PPGMS (accessed on 1 March 2023).
- Innovative Robotic Applications for Highly Reconfigurable Production Lines—VERSATILE|VERSATILE Project|Fact Sheet|H2020|CORDIS|European Commission. Available online: https://cordis.europa.eu/project/id/731330 (accessed on 8 March 2023).
- Cherubini, A.; Passama, R.; Navarro, B.; Sorour, M.; Khelloufi, A.; Mazhar, O.; Tarbouriech, S.; Zhu, J.; Tempier, O.; Crosnier, A.; et al. A collaborative robot for the factory of the future: BAZAR. Int. J. Adv. Manuf. Technol. 2019, 105, 3643–3659. [Google Scholar] [CrossRef]
- ISABEL. Available online: http://www.projekt-isabel.de/?content=aktuelles (accessed on 29 March 2023).
- Mobile Robots for Inspection and Maintenance Activities in Extensive Industrial Plants|MAINBOT Project|Fact Sheet|FP7|CORDIS|European Commission. Available online: https://cordis.europa.eu/project/id/285245 (accessed on 29 March 2023).
- Maurtua, I.; Susperregi, L.; Fernández, A.; Tubío, C.; Perez, C.; Rodríguez, J.; Felsch, T.; Ghrissi, M. MAINBOT—Mobile robots for inspection and maintenance in extensive industrial plants. Energy Procedia 2014, 49, 1810–1819. [Google Scholar] [CrossRef]
- Maurtua, I. Mobile Robots for Inspection and Maintenance Activities in Extensive Industrial Plants—Report. 2014. Available online: https://cordis.europa.eu/project/id/285245/reporting (accessed on 29 March 2023).
- Engemann, H.; Cönen, P.; Dawar, H.; Du, S.; Kallweit, S. A robot-assisted large-scale inspection of wind turbine blades in manufacturing using an autonomous mobile manipulator. Appl. Sci. 2021, 11, 9271. [Google Scholar] [CrossRef]
- Caverot, A.-G.B.G.; Ezéquel, M.; Krüger, V. FP7 STAMINA—Sustainable and Reliable Robotics for Part Handling in Manufacturing Automation. 2014. Available online: https://cordis.europa.eu/project/id/610917 (accessed on 29 March 2023).
- Zhou, K.; Ebenhofer, G.; Eitzinger, C.; Zimmermann, U.; Walter, C.; Saenz, J.; Castaño, L.P.; Hernández, M.A.F.; Oriol, J.N. Mobile manipulator is coming to aerospace manufacturing industry. In Proceedings of the 2014 IEEE International Symposium on Robotic and Sensors Environments (ROSE) Proceedings, Timisoara, Romania, 16–18 October 2014; pp. 94–99. [Google Scholar] [CrossRef]
- Saenz, J.; Penzlin, F.; Vogel, C.; Fritzsche, M. VALERI—A collaborative mobile manipulator for aerospace production. In Advances in Cooperative Robotics, Proceedings of the 19th International Conference on Climbing and Walking Robots and the Support, Technologies for Mobile Machines, CLAWAR 2016, London, UK, 12–14 September 2016; World Scientific: Singapore, 2016; pp. 186–195. [Google Scholar] [CrossRef]
- Ubezio, B.; Sharma, S.; van der Meer, G.; Taragna, M. Kalman filter based sensor fusion for a mobile manipulator. In Proceedings of the ASME Design Engineering Technical Conference, Anaheim, CA, USA, 18–21 August 2019. [Google Scholar] [CrossRef]
- Saenz, J.; Vogel, C.; Penzlin, F.; Elkmann, N. Safeguarding Collaborative Mobile Manipulators—Evaluation of the VALERI Workspace Monitoring System. Procedia Manuf. 2017, 11, 47–54. [Google Scholar] [CrossRef]
- Ritter, C.; Sharma, S. Hand-Guidance of a Mobile Manipulator Using Online Effective Mass Optimization. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte, Brazil, 2–6 December 2019; pp. 192–197. [Google Scholar] [CrossRef]
- Sharma, S.; Scheurer, C. Generalized unified closed form inverse kinematics for mobile manipulators with reusable redundancy parameters. In Proceedings of the ASME Design Engineering Technical Conference, Cleveland, OH, USA, 6–9 August 2017. [Google Scholar] [CrossRef]
- Scheurer, C.; Fiore, M.D.; Sharma, S.; Natale, C. Industrial implementation of a multi-task redundancy resolution at velocity level for highly redundant mobile manipulators. In Proceedings of the 47th International Symposium on Robotics, ISR 2016, Munich, Germany, 21–22 June 2016; pp. 109–117. [Google Scholar]
- Sinche, S.; Raposo, D.; Armando, N.; Rodrigues, A.; Boavida, F.; Pereira, V.; Silva, J.S. A survey of IoT management protocols and frameworks. IEEE Commun. Surv. Tutor. 2019, 22, 1168–1190. [Google Scholar] [CrossRef]
- Hazra, A.; Adhikari, M.; Amgoth, T.; Srirama, S.N. A comprehensive survey on interoperability for IIoT: Taxonomy, standards, and future directions. ACM Comput. Surv. (CSUR) 2021, 55, 9. [Google Scholar] [CrossRef]
- Pivoto, D.G.S.; de Almeida, L.F.F.; da Rosa Righi, R.; Rodrigues, J.J.P.C.; Lugli, A.B.; Alberti, A.M. Cyber-physical systems architectures for industrial internet of things applications in Industry 4.0: A literature review. J. Manuf. Syst. 2021, 58, 176–192. [Google Scholar] [CrossRef]
- Armesto, L.; Tornero, J. Automation of industrial vehicles: A vision-based line tracking application. In Proceedings of the 2009 IEEE Conference on Emerging Technologies & Factory Automation, Palma de Mallorca, Spain, 22–25 September 2009; Available online: https://ieeexplore.ieee.org/abstract/document/5347051/ (accessed on 8 September 2023).
- Campbell, S.; O’Mahony, N.; Carvalho, A.; Krpalkova, L.; Riordan, D.; Walsh, J. Where am I? Localization techniques for Mobile Robots A Review. In Proceedings of the 2020 6th International Conference on Mechatronics and Robotics Engineering, ICMRE 2020, Barcelona, Spain, 12–15 February 2020; pp. 43–47. [Google Scholar] [CrossRef]
- Sandakalum, T.; Ang, M.H. Motion Planning for Mobile Manipulators—A Systematic Review. Machines 2022, 10, 97. [Google Scholar] [CrossRef]
- Outón, J.L.; Villaverde, I.; Herrero, H.; Esnaola, U.; Sierra, B. Innovative mobile manipulator solution for modern flexible manufacturing processes. Sensors 2019, 19, 5414. [Google Scholar] [CrossRef] [PubMed]
- Klančar, G.; Zdešar, A.; Blažič, S.; Škrjanc, I. Autonomous Guided Vehicles. In Wheeled Mobile Robotics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 387–418. [Google Scholar] [CrossRef]
- Montazeri, A.; Can, A.; Imran, I.H. Unmanned aerial systems: Autonomy, cognition, and control. In Unmanned Aerial Systems: Theoretical Foundation and Applications: A Volume in Advances in Nonlinear Dynamics and Chaos (ANDC); Academic Press: Cambridge, MA, USA, 2021; pp. 47–80. [Google Scholar] [CrossRef]
- Liu, H. Introduction. In Robot Systems for Rail Transit Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–36. [Google Scholar] [CrossRef]
- Tzafestas, S.G. Mobile Robot Path, Motion, and Task Planning. In Introduction to Mobile Robot Control; Elsevier: Amsterdam, The Netherlands, 2014; pp. 429–478. [Google Scholar] [CrossRef]
- Carriker, W.F.; Khosla, P.K.; Krogh, B.H. Path Planning for Mobile Manipulators for multiple task execution. IEEE Trans. Robot. Autom. 1991, 7, 813–817. [Google Scholar] [CrossRef]
- Zhao, M.; Ansari, N.; Hou, E.S.H. Mobile manipulator path planning by a genetic algorithm. J. Robot. Syst. 1994, 11, 143–153. [Google Scholar] [CrossRef]
- Yoo, W.S.; Kim, J.D.; Na, S.J. A study on a mobile platform-manipulator welding system for horizontal fillet joints. Mechatronics 2001, 11, 853–868. [Google Scholar] [CrossRef]
- Korayem, M.H.; Esfeden, R.A.; Nekoo, S.R. Path planning algorithm in wheeled mobile manipulators based on motion of arms. J. Mech. Sci. Technol. 2015, 29, 1753–1763. [Google Scholar] [CrossRef]
- Burget, F.; Bennewitz, M.; Burgard, W. BI2RRT*: An efficient sampling-based path planning framework for task-constrained Mobile manipulation. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Daejeon, Republic of Korea, 9–14 October 2016; pp. 3714–3721. [Google Scholar] [CrossRef]
- Silva, G.; Costa, P.; Rocha, L.; Lima, J. Path planning optimization for a mobile manipulator. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2019; Volume 2116, pp. 1–5. [Google Scholar] [CrossRef]
- Wang, H.J.; Liu, X.P.; Wang, G.; Han, S. Optimization of Mobile Manipulator Sorting Path Based on Improved Genetic Algorithm. Beijing Youdian Daxue Xuebao/J. Beijing Univ. Posts Telecommun. 2020, 43, 34–40. [Google Scholar] [CrossRef]
- Haddad, M.; Hanchi, S.; Lehtihet, H.E. Point-to-point trajectory planning of wheeled mobile manipulators with stability constraint. Extension of the random-profile approach. Eur. J. Mech. A/Solids 2009, 28, 477–493. [Google Scholar] [CrossRef]
- Korayem, M.H.; Rahimi, H.N.; Nikoobin, A. Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints. Appl. Math. Model. 2012, 36, 3229–3244. [Google Scholar] [CrossRef]
- Pajak, G.; Pajak, I. Sub-optimal trajectory planning for mobile manipulators. Robotica 2015, 33, 1181–1200. [Google Scholar] [CrossRef]
- Giftthaler, M.; Farshidian, F.; Sandy, T.; Stadelmann, L.; Buchli, J. Efficient kinematic planning for mobile manipulators with non-holonomic constraints using optimal control. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3411–3417. [Google Scholar] [CrossRef]
- Akli, I. Trajectory planning for mobile manipulators including Manipulability Percentage Index. Int. J. Intell. Robot. Appl. 2021, 5, 543–557. [Google Scholar] [CrossRef]
- Kousi, N.; Dimosthenopoulos, D.; Matthaiakis, A.S.; Michalos, G.; Makris, S. AI based combined scheduling and motion planning in flexible robotic assembly lines. Procedia CIRP 2020, 86, 74–79. [Google Scholar] [CrossRef]
- Al-Hussaini, S.; Thakar, S.; Kim, H.; Rajendran, P.; Shah, B.C.; Marvel, J.A.; Gupta, S.K. Human-Supervised Semi-Autonomous Mobile Manipulators for Safely and Efficiently Executing Machine Tending Tasks. arXiv 2020, arXiv:2010.04899. [Google Scholar]
- Weyrer, M.; Brandstötter, M.; Husty, M. Singularity avoidance control of a non-holonomic mobile manipulator for intuitive hand guidance. Robotics 2019, 8, 14. [Google Scholar] [CrossRef]
- Stetco, C.; Muhlbacher-Karrer, S.; Lucchi, M.; Weyrer, M.; Faller, L.-M.; Zangl, H. Gesture-based Contactless Control of Mobile Manipulators using Capacitive Sensing. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Weyrer, M.; Brandstötter, M.; Mirkovic, D. Intuitive hand guidance of a force-controlled sensitive mobile manipulator. In Mechanisms and Machine Science; Springer International Publishing: New York, NY, USA, 2019; pp. 361–368. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, L.; Wang, R.; Zhang, X. Experimental Eye-in-hand Calibration for Industrial Mobile Manipulators. In Proceedings of the 2020 IEEE International Conference on Mechatronics and Automation, ICMA 2020, Beijing, China, 13–16 October 2020; pp. 582–587. [Google Scholar] [CrossRef]
- Andrianakos, G.; Dimitropoulos, N.; Michalos, G.; Makris, S. An approach for monitoring the execution of human based assembly operations using machine learning. Procedia CIRP 2020, 86, 198–203. [Google Scholar] [CrossRef]
- Sarantopoulos, I.; Kiatos, M.; Doulgeri, Z.; Malassiotis, S. Split Deep Q-Learning for Robust Object Singulation. In Proceedings of the IEEE International Conference on Robotics and Automation, Paris, France, 31 May–31 August 2020; pp. 6225–6231. [Google Scholar] [CrossRef]
- Sarantopoulos, I.; Kiatos, M.; Doulgeri, Z.; Malassiotis, S. Total singulation with modular reinforcement learning. IEEE Robot. Autom. Lett. 2021, 6, 4118–4125. [Google Scholar] [CrossRef]
- Kleitsiotis, I.; Mariolis, I.; Giakoumis, D.; Likothanassis, S.; Tzovaras, D. Anisotropic Diffusion-Based Enhancement of Scene Segmentation with Instance Labels. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer International Publishing: New York, NY, USA, 2021; pp. 383–391. [Google Scholar] [CrossRef]
- Markis, A.; Papa, M.; Kaselautzke, D.; Rathmair, M.; Sattinger, V.; Brandstötter, M. Safety of Mobile Robot Systems in Industrial Applications. In Proceedings of the ARW OAGM Workshop 2019, Steyr, AT, USA, 9–10 May 2019; pp. 26–31. [Google Scholar]
- ISO 10218-2:2011; Robots and Robotic Devices—Safety Requirements for Industrial Robots—Part 2: Robot Systems and Integration. ISO: Geneve, Switzerland, 2011. Available online: https://www.iso.org/obp/ui/#iso:std:iso:10218:-2:ed-1:v1:en (accessed on 30 March 2023).
- Bexten, S.; Scholle, J.; Saenz, J.; Walter, C.; Elkmann, N. Validation of workspace monitoring and human detection for soft safety with collaborative mobile manipulator using machine learning techniques in the ColRobot project. In Proceedings of the ISR 2018, 50th International Symposium on Robotics, Munich, Germany, 20–21 June 2018; pp. 191–198. Available online: https://ieeexplore.ieee.org/abstract/document/8470596 (accessed on 28 February 2023).
- Michalos, G.; Karagiannis, P.; Dimitropoulos, N.; Andronas, D.; Makris, S. Human Robot Collaboration in Industrial Environments. In Intelligent Systems, Control and Automation: Science and Engineering; Springer Science and Business Media B.V.: Berlin, Germany, 2022; pp. 17–39. [Google Scholar] [CrossRef]
- Haninger, K. Robot Inference of Human States: Performance and Transparency in Physical Collaboration. In Intelligent Systems, Control and Automation: Science and Engineering; Springer Science and Business Media B.V.: Berlin, Germany, 2022; pp. 55–69. [Google Scholar] [CrossRef]
- Haninger, K.; Hegeler, C.; Peternel, L. Model Predictive Control with Gaussian Processes for Flexible Multi-Modal Physical Human Robot Interaction. In Proceedings of the IEEE International Conference on Robotics and Automation 2022, Philadelphia, PA, USA, 23–27 May 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 6948–6955. [Google Scholar] [CrossRef]
- Eimontaite, I. Human–Robot Collaboration Using Visual Cues for Communication. In Intelligent Systems, Control and Automation: Science and Engineering; Springer Science and Business Media B.V.: Berlin, Germany, 2022; pp. 71–85. [Google Scholar] [CrossRef]
- Ibarguren, A.; Eimontaite, I.; Outón, J.L.; Fletcher, S. Dual arm co-manipulation architecture with enhanced human–robot communication for large part manipulation. Sensors 2020, 20, 6151. [Google Scholar] [CrossRef]
- Eimontaite, I.; Jaksic, C.; Fletcher, S.; Johnson, T.; Oostveen, A.-M. Will Operators Work in Close Proximity to Industrial Robots? A Study of Acceptance Using Psychological and Physiological Responses. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Dimitropoulos, N.; Togias, T.; Zacharaki, N.; Michalos, G.; Makris, S. Seamless human–robot collaborative assembly using artificial intelligence and wearable devices. Appl. Sci. 2021, 11, 5699. [Google Scholar] [CrossRef]
- Dimitropoulos, N.; Togias, T.; Michalos, G.; Makris, S. Operator support in human-robot collaborative environments using AI enhanced wearable devices. Procedia CIRP 2020, 97, 464–469. [Google Scholar] [CrossRef]
- Ramasubramanian, A.K.; Mathew, R.; Preet, I.; Papakostas, N. Review and application of Edge AI solutions for mobile collaborative robotic platforms. Procedia CIRP 2022, 107, 1083–1088. [Google Scholar] [CrossRef]
- Ramasubramanian, A.K.; Aiman, S.M.; Papakostas, N. On using human activity recognition sensors to improve the performance of collaborative mobile manipulators: Review and outlook. Procedia CIRP 2020, 97, 211–216. [Google Scholar] [CrossRef]
- Haninger, K.; Radke, M.; Vick, A.; Kruger, J. Towards High-Payload Admittance Control for Manual Guidance With Environmental Contact. IEEE Robot. Autom. Lett. 2022, 7, 4275–4282. [Google Scholar] [CrossRef]
- Evangelou, G.; Dimitropoulos, N.; Michalos, G.; Makris, S. An approach for task and action planning in Human-Robot Collaborative cells using AI. Procedia CIRP 2020, 97, 476–481. [Google Scholar] [CrossRef]
- Ramasubramanian, A.K.; Papakostas, N. Operator—Mobile robot collaboration for synchronized part movement. Procedia CIRP 2020, 97, 217–223. [Google Scholar] [CrossRef]
- Ramasubramanian, A.K.; Mathew, R.; Kelly, M.; Hargaden, V.; Papakostas, N. Digital Twin for Human-Robot Collaboration in Manufacturing: Review and Outlook. Appl. Sci. 2022, 12, 4811. [Google Scholar] [CrossRef]
- Frese, C.; Zube, A.; Frey, C. Workspace monitoring and planning for safe mobile manipulation. arXiv 2020, arXiv:2006.01546. [Google Scholar]
- SAPHARI—Safe and Autonomous Physical Human-Aware Robot Interaction—Results. Available online: http://www.saphari.eu/index.php?option=com_content&view=article&id=189&Itemid=125 (accessed on 29 March 2023).
- Lamon, E.; Fusaro, F.; Balatti, P.; Kim, W.; Ajoudani, A. A visuo-haptic guidance interface for mobile collaborative robotic assistant (MOCA). In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 11253–11260. [Google Scholar] [CrossRef]
- Leonori, M.; Gandarias, J.M.; Ajoudani, A. MOCA-S: A Sensitive Mobile Collaborative Robotic Assistant Exploiting Low-Cost Capacitive Tactile Cover and Whole-Body Control. IEEE Robot. Autom. Lett. 2022, 7, 7920–7927. [Google Scholar] [CrossRef]
- Kousi, N.; Michalos, G.; Aivaliotis, S.; Makris, S. An outlook on future assembly systems introducing robotic mobile dual arm workers. Procedia CIRP 2018, 72, 33–38. [Google Scholar] [CrossRef]
- Gkournelos, C.; Karagiannis, P.; Kousi, N.; Michalos, G.; Koukas, S.; Makris, S. Application of wearable devices for supporting operators in human-robot cooperative assembly tasks. Procedia CIRP 2018, 76, 177–182. [Google Scholar] [CrossRef]
- Kousi, N.; Stoubos, C.; Gkournelos, C.; Michalos, G.; Makris, S. Enabling human robot interaction in flexible robotic assembly lines: An augmented reality based software suite. Procedia CIRP 2019, 81, 1429–1434. [Google Scholar] [CrossRef]
- Lotsaris, K.; Gkournelos, C.; Fousekis, N.; Kousi, N.; Makris, S. AR based robot programming using teaching by demonstration techniques. Procedia CIRP 2020, 97, 459–463. [Google Scholar] [CrossRef]
- Kousi, N.; Gkournelos, C.; Aivaliotis, S.; Michalos, G.; Makris, S. Dynamic, Model-based Reconfiguration for Flexible Robotic Assembly Lines. In Proceedings of the Fifteenth International Conference on Autonomic and Autonomous Systems (ICAS 2019), Athens, Greece, 2–6 June 2019; pp. 15–20, ISBN 978-1-61208-712-2. [Google Scholar]
- Kousi, N.; Gkournelos, C.; Aivaliotis, S.; Giannoulis, C.; Michalos, G.; Makris, S. Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines. Procedia Manuf. 2019, 28, 121–126. [Google Scholar] [CrossRef]
- Kousi, N.; Gkournelos, C.; Aivaliotis, S.; Lotsaris, K.; Bavelos, A.C.; Baris, P.; Michalos, G.; Makris, S. Digital twin for designing and reconfiguring human–robot collaborative assembly lines. Appl. Sci. 2021, 11, 4620. [Google Scholar] [CrossRef]
- Outón, J.L.; Merino, I.; Villaverde, I.; Ibarguren, A.; Herrero, H.; Daelman, P.; Sierra, B. A real application of an autonomous industrial mobile manipulator within industrial context. Electronics 2021, 10, 1276. [Google Scholar] [CrossRef]
- Engemann, H.; Du, S.; Kallweit, S.; Cönen, P.; Dawar, H. Omnivil—An autonomous mobile manipulator for flexible production. Sensors 2020, 20, 7249. [Google Scholar] [CrossRef]
- Dieber, B.; Breiling, B. Security Considerations in Modular Mobile Manipulation. In Proceedings of the 3rd IEEE International Conference on Robotic Computing, IRC 2019, Naples, Italy, 25–27 February 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 70–77. [Google Scholar] [CrossRef]
Mobile Manipulators Applications | ||
---|---|---|
Assistive Tasks | Logistics Tasks | Service Tasks |
Machine tending | Transportation | Maintenance, Repair and overhaul (MRO) |
Assembly/Pre-assembly | Part feeding (multi) | Cleaning |
Inspection | Part feeding (Single) | |
Process execution |
Citation | Application | Industry | Project | MM | Year |
---|---|---|---|---|---|
[3] | Multiple-part feeding | Grundfos | Little Helper | 2011 | |
[14] | Assembly, machine tending, quality control | Grundfos | TAPAS | LH3 and omniRob | 2014 |
[15] | Assembly, quality control, logistics | Grundfos | TAPAS | Two LHs | 2015 |
[16] | Multiple-part feeding | CR 1-2-3 impeller line | LH | 2017 | |
[19] | Part feeding | Festo cyber-physical factory | LH6 | 2017 | |
[21] | Placement of common object with human | Aerospace | SHERLOCK | 2014 | |
[22] | High payload assembly | CALPAK | SHERLOCK | 2023 | |
[23] | Assembly of hydraulic pumps and the assistance of manual gas metal arc welding | Hydraulic pumps | MORPHA | rob@work | 2002 |
[24] | Logistics and assembly | Automotive, aerospace | SAPHARI | omniRob | 2012 |
[27] | Kitting | TAS-F | ColRobot | KMR IIWA | 2020 |
[28] | Fastener tightening and automatic refill | Automotive industries | ColRobot | ColRobot prototype | 2020 |
[30] | Smart logistics, assembly of vehicle dashboards, assembly of aircraft wing parts, and handling and packaging of shaver handles | PSA, AIRBUS, BIC | VERSATILE | BAZAR | 2019 |
[31] | Fetch-and-carry | Clean room | ISABEL | ISABEL | 2023 |
[35] | Quality control | Production of wind turbines | FiberRadar | OMNIVIL | 2021 |
[36] | Bin-picking, kitting | PSA | STAMINA | 2014 | |
[37] | Applying sealant and visual inspection | Aerospace, shipbuilding | VALERI | VALERI | 2014 |
[32,33] | Industrial maintenance | VALLLE energy plant | MAINBOT | MAINBOT | 2014, 2023 |
System Control | Description | Benefits | Drawbacks |
---|---|---|---|
Manual | Fully controlled by humans | Timely error handling | Can be complicated |
Semi-automatic | Partial human control | More robust | May be inefficient |
Automatic | No human intervention | Efficient | Decision costs can be high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghodsian, N.; Benfriha, K.; Olabi, A.; Gopinath, V.; Arnou, A. Mobile Manipulators in Industry 4.0: A Review of Developments for Industrial Applications. Sensors 2023, 23, 8026. https://doi.org/10.3390/s23198026
Ghodsian N, Benfriha K, Olabi A, Gopinath V, Arnou A. Mobile Manipulators in Industry 4.0: A Review of Developments for Industrial Applications. Sensors. 2023; 23(19):8026. https://doi.org/10.3390/s23198026
Chicago/Turabian StyleGhodsian, Nooshin, Khaled Benfriha, Adel Olabi, Varun Gopinath, and Aurélien Arnou. 2023. "Mobile Manipulators in Industry 4.0: A Review of Developments for Industrial Applications" Sensors 23, no. 19: 8026. https://doi.org/10.3390/s23198026
APA StyleGhodsian, N., Benfriha, K., Olabi, A., Gopinath, V., & Arnou, A. (2023). Mobile Manipulators in Industry 4.0: A Review of Developments for Industrial Applications. Sensors, 23(19), 8026. https://doi.org/10.3390/s23198026