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Abstract: Synthetic aperture radar (SAR) sensor often produces a shadow in pairs with the target due
to its slant-viewing imaging. As a result, shadows in SAR images can provide critical discriminative
features for classifiers, such as target contours and relative positions. However, shadows possess
unique properties that differ from targets, such as low intensity and sensitivity to depression angles,
making it challenging to extract depth features from shadows directly using convolutional neural
networks (CNN). In this paper, we propose a new SAR image-classification framework to utilize
target and shadow information comprehensively. First, we design a SAR image segmentation method
to extract target regions and shadow masks. Second, based on SAR projection geometry, we propose a
data-augmentation method to compensate for the geometric distortion of shadows due to differences
in depression angles. Finally, we introduce a feature-enhancement module (FEM) based on depthwise
separable convolution (DSC) and convolutional block attention module (CBAM), enabling deep
networks to fuse target and shadow features adaptively. The experimental results on the Moving
and Stationary Target Acquisition and Recognition (MSTAR) dataset show that when only using
target and shadow information, the published deep-learning models can still achieve state-of-the-art
performance after embedding the FEM.

Keywords: synthetic aperture radar (SAR); SAR image classification; features of target and shadow;
convolutional neural network (CNN); attention mechanism

1. Introduction

Synthetic aperture radar (SAR), an active imaging sensor, can operate under all-day
and all-weather conditions and deliver high-resolution images [1]. SAR has extensive
applications in various civilian and military domains, such as geological surveying, climate
change monitoring, and environmental surveillance [2]. Despite the wealth of data gen-
erated by SAR, manually extracting relevant information is impractical; hence, automatic
target recognition (ATR) has become a crucial aspect of SAR image interpretation.

SAR ATR is generally divided into three steps: detection, discrimination, and
classification [3]. The classification stage can be further divided into feature extraction
and classifier design. Feature extraction reduces the dimensionality of the raw SAR
images and extracts highly discriminative features from the raw input for classifiers to
perform classification tasks. Standard classifiers in the SAR ATR field include support
vector machines (SVM) [4–6], sparse representation classifier (SRC) [7,8], and multilayer
perceptron (MLP) [9]. In recent years, researchers have designed various methods to
extract different features from SAR images, which can be categorized into three types:
handcrafted features, depth features, and fusion features.

Handcrafted features are mainly designed for the unique characteristics of SAR images,
including geometric structure features, transform domain features, and scattering features.
For example, the moment features describe the geometric structure information of the target
and shadow regions, such as area, center, centroid, and [10–13]. In addition, descriptors
encode or extract features from the contours of the target and shadow, using techniques
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such as Fourier descriptors, elliptic Fourier descriptors, and Zernike moments [4,12,14,15].
Fourier transform, Wavelet transform, Gabor transform, and principal component analysis
(PCA) could be used to extract the features from SAR images [9,16]. Scattering features in
SAR ATR mainly involve attributed scattering centers (ASCs) [17]. SAR ATR employing
scattering features typically relies on template matching or region matching methods, which
define a similarity measure between these features and assign the target label to the template
class with the highest similarity [18–21]. Although the handcrafted features designed
for the target and shadow in SAR images have physical explainability about geometric
information or the scattering mechanism, the overall ATR performance is not outstanding.
The reason for this is that a kind of feature cannot describe in-depth information about the
target or shadow; however, combining multiple features may fail to provide robust feature
representation due to redundancy or high correlation between different features.

Depth features are extracted by convolutional neural networks (CNN). Recently,
CNN-based methods have achieved extraordinary recognition accuracy in the field of
SAR image classification [22–27]. Profeta et al. [22] developed AFRLeNet, a network
specifically designed for the seven-classification problem of SAR images. To address the
issue of overfitting in deep neural networks for SAR image classification, Chen et al. [27]
proposed a fully convolutional neural network called A-ConvNets. Furthermore, with the
advancements in computer vision, attention mechanisms have been introduced in SAR
image target recognition. For instance, Zhan et al. [28] proposed the AM-CNN combined
with the CBAM, which achieved a classification accuracy of 99.35% on a 10-class MSTAR
dataset. Lang et al. [29] integrated a multidomain attention module into CNN, which fused
features from the frequency domain and the wavelet transform domain to enhance the
model’s feature extraction capability. Park et al. [30] proposed a novel channel attention
DS-AE, based on the squeeze-and-excitation (SE)mechanism, to preserve the integrity
of model channel information. Although depth feature-based ATR models demonstrate
outstanding classification accuracy, the mapping relationship between the model’s input
and output is challenging to interpret intuitively. Moreover, mainstream CNN models
typically take the original SAR image as input. This makes it difficult for them to extract
helpful depth information from shadows due to the unique properties of shadows.

Fusion features can use the complementarity between different features to improve
ATR performance further. Examples include the fusion of Gabor features and depth
features in [31], and the combination of Gabor features and texture features in [32]. In [31],
Gabor features and depth features are combined by initializing the inception blocks in
the Inception network with multi-scale and multi-directional Gabor filters. Additionally,
the combination of depth features and other handcrafted features also has achieved good
recognition results, such as the combination of depth features with gradient features [33],
depth features with transform domain features [34,35], and depth features with texture
features [36]. Currently, the fusion of depth and scattering features is also gaining attention.
On the one hand, data-driven depth features provide highly discriminative features for
classification. On the other hand, ASC features based on scattering theory provide physical
interpretability that depth features do not have. The effective combination of both has
spawned a wealth of research on SAR ATR [37–41].

Fusion features have become prevalent in SAR ATR, research on the fusion of shadow
and depth features has not been explored in depth. SAR sensors operate under the condition
of slant-viewing, which produces shadow regions in the resulting SAR image. Shadows
can indirectly represent the targets, such as their outlines and heights. Considering this,
traditional methods focus on extracting geometric properties or contour information from
shadows [7,13–15]. Although these methods have computational advantages, they struggle
to capture deep representations of shadows. It is possible to use CNN as a feature extractor
to fuse depth information of shadows and targets for classification automatically. However,
existing CNN-based SAR ATR methods often directly employ the original image as input,
which suppresses the expression of shadow features. There are two possible reasons for
this situation. Shadows have low amplitude, and they are sensitive to the depression angle.
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These two unique attributes make it difficult for CNN to utilize shadow features effectively.
First, the formation of the shadow is due to the occlusion of the high object, causing an
area of the scene not to produce radar echoes [42]. Therefore, the intensity of the shadow
is much lower than the target one, see Figure 1d,e. If the target and shadow regions are
directly fed to CNN without processing, it will harm extraction of targets depth features [43].
Second, it is difficult for the shadow to provide a stable representation of targets due to its
high sensitivity to the radar’s depression angle. According to our current understanding,
current research on the combination of shadows and deep CNN networks is not in depth.
Choi et al. [44] proposed a dual-branch CNN structure to separately extract depth features
from the preprocessed target region and shadow region. However, this ignores the relative
position relationship between the target and shadow. The relative position of the target
and shadow reflects the radar viewing angle and target attitude during imaging, which can
provide helpful discriminative information for the classifier [13].

(a) (b) (c)

(d) (e)
Figure 1. Target and shadow intensity distribution in SAR image. (a) Original SAR image. (b) Target
and shadow region. (c) Target region and shadow mask. (d) 3D view of target and shadow region.
(e) Side view.

Therefore, to enable CNN to utilize depth features of both targets and shadows
comprehensively, the contributions of this paper are as follows.

(1) We first propose a segmentation method based on statistical features of the SAR
image to extract regions of targets and shadows. This preprocessing allows us to compen-
sate for the unique attributes of shadows to help the CNN extract the depth information of
shadows. Then, we use the target region and shadow mask as input of the CNN, which not
only solves the low-intensity problem of the shadow but also restricts the CNN to extract
depth features from shadow contours, see Figure 1c.

(2) A data-augmentation method is proposed to provide a robust representation of
shadows. Based on the shadow imaging geometry, this method can not only compensate
for the geometric distortion caused by different imaging depression angles but also increase
the diversity of the training set to prevent overfitting.

(3) We propose a novel feature-enhancement module (FEM) based on DSC and CBAM.
The attention-based FEM can comprehensively extract high-discriminative features of target
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regions and shadow masks. Specifically, we introduce a spatial attention mechanism in
the FEM, allowing it to fuse the depth features of targets and shadows adaptively. We also
perform interpretability analysis on FEM and spatial attention in FEM to further explore its
enhancement effect.

The rest of this paper is organized as follows. In Section 2, we first introduce the SAR
image segmentation method, followed by the data-augmentation method and the specific
details of FEM. Experiments and analysis based on the MSTAR dataset are in Section 3.
Finally, Section 4 provides conclusion.

2. Methodology

The overall framework proposed in this paper is shown in Figure 2. This framework
includes three main modules. First, SAR images are segmented to extract target areas
and shadow masks. Then, data augmentation is applied to the segmentation results to
increase the diversity of training samples and compensate for the geometric distortion
of shadows. Finally, the proposed FEM is embedded into existing deep CNN models for
feature extraction and classification. Each module is explained in detail below.

Figure 2. The proposed framework of SAR target recognition based on the target region and shadow
mask. The FEM is embedded into the downsampling layer of CNN models and weights the feature
maps of targets and shadows.

2.1. SAR Image Segmentation

A simple SAR image scene typically consists of three components: the target area,
the shadow area, and the background clutter. The intensity distributions of the target and
shadow regions exhibit different characteristics, as illustrated in Figure 1. Therefore, a
simple threshold-based method, relying on statistical models, can be employed to separate
the target and shadow regions from the SAR image [13,23,44]. Although threshold-based
segmentation effectively extracts target regions, it may not be entirely suitable for shadow
extraction due to the influence of speckle noise in SAR images and the occlusion caused
by other objects. Filtering methods commonly used in optical images, such as median
filtering and Gaussian filtering, are not appropriate for mitigating non-additive speckle
noise in SAR images [14]. Therefore, anisotropic diffusion filtering has been introduced
for denoising SAR images, as discussed in [14,15]. Anisotropic diffusion filtering can
effectively suppress SAR image noise while preserving the structural information of the
target and shadow regions. Motivated by [15,44,45], we propose a method for extracting the
shadow mask based on the target centroid-labeled. This method first employs anisotropic
diffusion filtering to denoise the SAR image, followed by a dual thresholding approach to
roughly segment the target and shadow regions. Finally, the Euclidean distance between
the centroid of the target contour and the centroids of suspicious shadow contours is used
to filter out false shadows, therefore enhancing the robustness of shadow segmentation.
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This paper first extracts the target mask based on the method in [44]. Then, the centroid
of the target mask is used as auxiliary information to extract the shadow mask. Suppose
an original SAR image is represented as I(x, y), where 1 ≤ x ≤ M and 1 ≤ y ≤ N, of size
M× N. The following is the detailed process of segmentation.

Step 1: Apply a logarithmic transformation to I(x, y) to enhance low grayscale value
regions, resulting in Ilog.

Step 2: Perform anisotropic diffusion filtering on Ilog to obtain Ipm.
Step 3: Normalize Ipm to obtain In, where In = Ipm/sum(Ipm).
Step 4: Binarize In by marking positions with intensities above 3% as 1 and the rest as

0, resulting in the target mask Tb. Similarly, mark positions with intensities below 6% as 1
and the rest as 0, obtaining the shadow mask Sb.

Step 5: Apply a sliding window of size W ×W to perform counting filter processing
on Tb and Sb separately, yielding the counting filter results Tc and Sc.

Step 6: Perform morphological dilation and closing operations on Tc and Sc separately.
Step 7: Select the largest connected region as the final target mask Tmask, and compute

its centroid (tx, ty).
Step 8: Calculate the centroids of binary regions in Sc and the Euclidean distances d

between each centroid and (tx, ty). Select the largest connected region with d < TD as the
final shadow mask Smask.

Step 9: Obtain the target region and shadow mask image by applying Tmask ×
I(x, y) + Smask .

The parameter details of the proposed SAR image segmentation algorithm are in
Section 3.2. To provide a more intuitive understanding of each step in the algorithm,
Figure 3 presents the stepwise output of the segmentation. As seen in Figure 3c, applying
anisotropic diffusion filtering to the SAR image not only helps suppress speckle noise but
also preserves the structural and detailed information of the target and shadow regions,
resulting in smooth contours of the segmented shadow masks.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3. The stepwise output of the proposed segmentation method on a SAR image. (a) Original
ZSU23/4 image. (b) ZSU23/4 image in the log scale. (c) Image after denoising. (d) Target mask after
upper threshold processing (3%). (e) Target mask after count filtering. (f) Target mask by morphological
dilation. (g) The largest connected region is the target mask; the red dot indicates its centroid. (h) Shadow
mask after lower threshold processing (6%). (i) Shadow mask after count filtering. (j) Suspicious shadow
masks after morphological closing; red dots indicate their centroids. (k) Refined shadow mask processed
using distance threshold (TD). (l) Final target region and shadow mask.
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2.2. Data Augmentation

Given the characteristics of SAR images where shadows do not directly reflect the
high backscattering of targets, the intensity of shadow areas tends to be relatively low or
even close to 0, as depicted in Figure 1. Therefore, shadows can only provide auxiliary
information about targets, such as their contours. Some traditional SAR ATR methods
leverage this characteristic by extracting geometric features from the binarized shadow
mask (contour) instead of directly extracting features from the shadow area. For instance,
geometric properties such as a shadow mask’s center, centroid, and moment features can
be extracted [10–13]. Alternatively, descriptors can be employed to encode the shadow
contours directly, enabling the extraction of contour features [13–15]. Motivated by these
approaches, we propose to combine the shadow mask with a target region as input for
the deep-learning model. This circumvents the problem of significant intensity differences
between the shadow and the target and guides subsequent deep networks to extract
features from the shadow contours. Moreover, this processing method preserves the
relative positional relationship between the target and the shadow.

However, shadows tend to exhibit unstable characteristics due to their sensitivity
to depression angles in SAR images. Geometric distortions occur in both the target and
shadow areas of SAR images at different radar depression angles. These distortions lead
to variations in the shape and position of targets and shadows in training and test data,
posing challenges for SAR target recognition. Figure 4 illustrates the projection of ground
objects under different radar line of sight (RLOS) conditions. As depicted in Figure 4, the
projections of the target and shadow areas in the range direction experience compression
with scaling factors of cos(θ) and 1/ sin(θ), respectively, where θ represents the depression
angle of the radar [44,46]. For example, the SOC training and test set images under MSTAR
(as described in Section 3.1) are generated at depression angles of 17° and 15°, respectively.
Consequently, the scaling factor for the target region is:

λtarget =
cos(θtest )

cos(θtrain )
=

cos(15◦)
cos(17◦)

≈ 1.01 (1)

where λtarget denotes the scaling factor of the target region. However, the scaling factor of
the shadow is larger than the target area, namely:

λshadow =
1/ sin(θtest )

1/ sin(θtrain )
=

sin 17◦

sin 15◦
≈ 1.13 (2)

where λshadow is the scaling factor of the shadow region. Due to the scaled characteristic
of targets and shadows, we use affine transformation to geometrically adjust the image in
the training set to compensate for the geometric distortion of the training set compared
to the test set. Take the affine transformation of the shadow as an example. Assuming
that the shadow mask in the Cartesian coordinate system is S[x, y], after applying the
affine transformation, it becomes S[x′, y′], and its coordinate mapping can be calculated as
follows [44,46]: (

x′

y′

)
=

(
λshadow 0
0 1

)(
x
y

)
. (3)

Considering that the images in the MSTAR dataset are collected at azimuth angles
ranging from 0° to 360° with intervals of 5° to 6°, there may be some deviation in the scaling
factor. To address this, we applied four scaling parameters, namely [0.95, 1.15], with a step
size of 0.05 to the shadow mask. As a result, the newly generated training set is five times
larger than the original. Figure 5 illustrates the augmented images obtained by applying
different scaling factors to the 2S1 and BRDM2 images in the training set. It is important to
note that though the scaling factor for the target area is small, we simultaneously performed
an affine transformation on both the target and shadow to preserve their relative positional
relationship. This data-augmentation technique not only increases the diversity of training
samples to prevent overfitting in the deep-learning model but also compensates for the
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geometric distortion in the target and shadow areas caused by different depression angles
during imaging. Thus, the augmented training set becomes more representative of the data
distribution in the test set.

Figure 4. SAR projection geometry under different depression angles.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. Example of performing data augmentation on 2S1 and BRDM2. (a) 2S1 image at azimuth
angle 100◦ on training set. (b–d) 2S1 images enhanced with scale factors 0.95, 1.05, and 1.15, respec-
tively. (e) 2S1 image at azimuth angle 100◦ on test set. (f) BRDM2 at azimuth angle 35◦ on training
set. (g–i) BRDM2 images enhanced with scale factors 0.58, 0.73, and 0.88, respectively. (j) BRDM2
image at azimuth angle 35◦ on test set.

2.3. Feature-Enhancement Module

The low intensity and instability of shadows can be solved by binarized masking and
data augmentation, respectively, but the importance of targets and shadows is different. In
other words, the target region contains rich scattering information, while the shadow mask
can only provide the indirect expression of the target. Moreover, compared to the original
image, the CNN only takes the target region and shadow mask as input, which significantly
reduces the available information during deep feature extraction, especially when the pooling
layers compress the spatial resolution and cause more severe information loss.

Considering the above issues, we propose a feature-enhancement module (FEM) based
on DSC and CBAM. First, the CBAM in FEM adaptively fuses essential features of the target
and shadow for classification. Second, the module has enough generalization capability
so that we do not need to change existing backbone networks and can directly embed
FEM into their downsampling layers. Finally, and not least importantly, it can enhance the
feature extraction capability of the deep-learning model and compensate for the loss of
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features after pooling. This section first introduces DSC and CBAM. Detailed information
about FEM is then provided.

2.3.1. Depthwise Separable Convolution

The MobileNets series has recently gained popularity for their ability to achieve high
accuracy in image classification while being lightweight enough to run on mobile and
embedded devices [47–49]. A key innovation in these networks is the introduction of
depthwise separable convolution (DSC).

DSC differs from standard convolution by decomposing it into two separate steps:
depthwise convolution and pointwise convolution. In standard convolution, computations
are performed simultaneously in spatial and channel dimensions. However, DSC performs
these computations in two distinct stages. First, depthwise convolution executes convo-
lution operations on each channel of the input feature map individually. Then, pointwise
convolution linearly combines the results of the depthwise convolution using 1× 1 convo-
lutions [47]. By decomposing the convolution in this way, DSC significantly reduces the
number of trainable parameters in the CNN. Figure 6 illustrates the differences between
standard convolution and DSC.

(a) (b)

Figure 6. Comparison of standard convolution and depthwise separable convolution (DSC).
(a) Standard convolution. (b) Depthwise separable convolution.

Assuming the application of a standard convolution with kernel K ∈ Rk×k×M×N to
the input feature map X ∈ RDx×Dx×M, resulting in feature map Y ∈ RDy×Dy×N , where
k represents the spatial size of the convolution kernel K, Dx and Dy are the heights and
widths of the input and output feature maps, respectively, and M and N denote the number
of channels in the input and output feature maps, respectively,

Yk,l,n = ∑
i,j,m

Ki,j,m,n · Xk+i−1,l+j−1,m. (4)

The computation of DSC is divided into two processes, namely depthwise convolu-
tion and 1× 1 convolution. The depthwise convolution kernel K̂ ∈ Rk×k×M is used for
channel-wise filtering of the feature map, i.e., the m-th filter of K̂ is convolved with the
m-th channel of X,

Ŷk,l,m = ∑
i,j

K̂i,j,m · Xk+i−1,l+j−1,m. (5)

A pointwise convolution is then performed on the result of the depthwise convolution.
Finally, the reduction of the DSC compared to the standard convolution can be calculated as:

R =
k · k ·M · Dx · Dx + M · N · Dx · Dx

k · k ·M · N · Dx · Dx
=

1
N

+
1
k2 . (6)

As seen from (6), DSC can significantly reduce the computational cost of the model
compared to standard convolution. Considering that the number of the output feature
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map channels N is usually large, the computational expense of using a 3 × 3 DSC is
approximately 1/9 that of standard convolution.

2.3.2. CBAM

The convolutional block attention module (CBAM) is an attention mechanism that
can adaptively adjust the weights of different spatial positions and channels in the feature
map to improve the performance of the model [50]. The CBAM module consists of channel
and spatial attention, as shown in Figure 7. Given a feature map X ∈ RH×W×C, CBAM first
infers the attention weights Mc ∈ R1×1×C in the channel dimension and then infers the
attention weights Ms ∈ RH×W×1 in the spatial position, where H, W and C represent the
height, width and the number of channels of the feature map, respectively. The calculation
process is as follows [50]:

Yc = Mc(X)⊗ X,

Y = Ms(X)⊗ Yc,
(7)

where ⊗ represents element-wise multiplication, and Y is the refined output of X after
passing through the CBAM. The specific calculation method of the channel attention
weight Mc is:

Mc(X) = σ(MLP(AvgPool(X)) + MLP(MaxPool(X)))

= σ
(

W1

(
W0

(
Xc

avg

))
+ W1(W0(Xc

max))
) (8)

where σ represents the nonlinear activation function, MLP denotes a multilayer perceptron
with weights W0 ∈ RC/r×C and W1 ∈ RC×C/r, r is the reduction ratio and Xc

avg ∈ R1×1×C

and Xc
max ∈ R1×1×C represent the average pooling and max pooling results of X in the

spatial dimension, respectively. As can be seen from the channel attention module in
Figure 7, the computation of channel attention first applies global average pooling and
global max pooling on the spatial dimension of feature map X to generate average-pooled
feature Xc

avg and max-pooled feature Xc
max, used to describe spatial context information.

Then, a shared fully connected layer is used to weight the average-pooled and max-pooled
features further. As a result, the channel attention mechanism can adaptively adjust the
weight of each channel, enhancing the representation of valuable features and reducing
noise interference from irrelevant features.

Figure 7. The network topology of CBAM. The upper left is the channel attention module, and the
upper right is the spatial attention module.
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The computation of spatial attention is similar to channel attention. However, it
performs global average pooling and global max pooling on the feature map X in the
channel dimension to obtain average-pooled feature Xs

avg ∈ RH×W×1 and max-pooled
feature Xs

max ∈ RH×W×1, respectively. Then, the two are concatenated along the channel
dimension and passed through a standard convolution to obtain a 2D spatial attention
weight. That is:

Ms(X) = σ(Conv([AvgPool(X); MaxPool(X)]))

= σ
(

Conv
([

Xs
avg; Xs

max

])) (9)

where σ represents the nonlinear activation function, and Conv denotes a standard convo-
lution operation. As shown in Figure 7, spatial attention focuses on which positions in the
feature map have richer information. In other words, it adaptively weights different spatial
positions of feature maps of the targets and shadows to emphasize the most useful features
for classification.

2.3.3. Feature-Enhancement Module

The FEM primarily comprises the inverse residual block and CBAM, as illustrated in
Figure 8. The inverse residual block utilizes DSC to expand the input feature map in the
channel dimension and downsample it in the spatial dimension [49]. CBAM then assigns
distinct weights to different spatial positions and channels of the feature map, emphasizing
the spatial and channel importance of the feature map of target and shadow, respectively [50].

Figure 8. The network topology of the proposed FEM. FEM is embedded in the downsampling layer
of the CNN.

To provide more detail, given a feature map X ∈ RH×W×C, the pooling operation
first downsamples X to obtain Yp

1 ∈ RH/2×W/2×C. Subsequently, the convolution kernel
K1 ∈ R1×1×C×2C is used to expand the channel dimension of the input feature map X, pro-
ducing a new feature map Ye

2 ∈ RH×W×2C. Then, depthwise convolution (see (5)) is applied
for further feature extraction and downsampling, resulting in Yd

2 ∈ RH/2×W/2×2C. Using
equation (7), the spatial and channel dimensions of Yd

2 are weighted to generate the CBAM-
refined feature map Yc

2 ∈ RH/2×W/2×2C. The convolution kernel K2 ∈ R1×1×2C×C is then
convolved with Yc

2 to acquire the final enhanced feature map Yr
2 ∈ RH/2×W/2×C. Lastly,
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residual connections are used to connect the pooled feature map Yp
1 and the enhanced

feature map Yr
2:

Y = Yp
1 + Yr

2. (10)

Here, Y represents the enhanced feature map. The FEM employs the inverse residual
block based on DSC, which is lightweight and does not significantly increase the number
of trainable parameters of the original models. Furthermore, by integrating spatial and
channel attention within CBAM, the FEM adaptively can fuse the depth representation of
the target region and the shadow mask, prioritizing the most relevant parts for classification.
For example, Figure 9 displays the detailed network structure of A-ConvNets [27] with the
added FEM.

Figure 9. The network structure of A-ConvNets after embedding FEM.

3. Experiments and Analysis

In this section, we design a series of experiments to validate the gains of the proposed
shadow mask and FEM under different conditions and analyze the interpretability of the FEM.
We first present the dataset used in this paper and different operating conditions. Next, under
different experiment configurations, we incorporate FEM into several existing deep network
models to calculate its gains. The final part is the interpretability analysis of FEM.

3.1. Dataset

The Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset is
generated by collecting high-resolution spotlight SAR images of former Soviet ground
target military vehicles under different imaging conditions [27]. SAR sensors acquire
target slices at every 5° to 6° in all azimuth viewing angles. The MSTAR includes ten
different ground target types (rocket launcher: 2S1; armored personnel carrier: BMP2,
BRDM2, BTR60, BTR70; bulldozer: D7; tank: T62, T72; truck: ZIL131; air defense unit:
ZSU23/4). The spatial resolution of each class is 0.3 m × 0.3 m, with image sizes of nearly
128× 128 pixels. Figure 10 shows the optical images of these targets and their corresponding
SAR images.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Optical and SAR images of ten different types of ground targets. (a) 2S1. (b) BMP2.
(c) BRDM2. (d) BTR60. (e) BTR70. (f) D7. (g) T62. (h) T72. (i) ZIL131. (j) ZSU23/4.

As different imaging conditions can cause changes in the distribution of SAR image
data, the MSTAR dataset typically includes two types of data sets to evaluate the algorithm’s
generalization: standard operating conditions (SOC) and extended operating conditions
(EOCs) [51]. In SOC, images of the training and test sets were obtained under similar
depression angles (17° for training and 15° for testing). Table 1 shows detailed information
on the ten target types under SOC.

Table 1. Detailed Information of Targets Under SOC.

Class SerNum
Training Test

Depression Number Depression Number

2S1 B01 17◦ 299 15◦ 274
BMP2 9566 17◦ 232 15◦ 195

BRDM2 E-71 17◦ 298 15◦ 274
BTR60 7532 17◦ 256 15◦ 195
BTR70 c71 17◦ 233 15◦ 196

D7 13015 17◦ 299 15◦ 274
T62 A51 17◦ 299 15◦ 273
T72 132 17◦ 232 15◦ 196

ZIL131 E12 17◦ 299 15◦ 274
ZSU23/4 d08 17◦ 299 15◦ 274

In contrast, in EOCs, the training and test sets differ significantly. The EOCs include
three different variants: large depression angle variant (EOC1), target configuration variant
(EOC2-C), and version variant (EOC2-V). The EOC1 dataset consists of four target classes:
2S1, BRDM2, T72, and ZSU23/4, as shown in Table 2. Images under the depression angle
of 17° are used as the training set, while those of 30° are used for the testing. Due to the
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sensitivity of SAR images to depression angles, it is crucial to evaluate the performance of
recognition algorithms using images under different depression angles. In addition, the
MSTAR dataset contains multiple target classes, and each class has several serial numbers.
Different serial numbers within the same class mainly reflect the difference of the target in
local structures. As shown in Table 3, although the test set in the EOC2-C scenario consists
of multiple serial numbers, they all belong to the same category, namely T72. Like EOC2-C
the training and test sets in EOC2-V are composed of different version numbers in the same
class. Further details about the EOC2-V can be found in Table 4.

Table 2. Detailed Information of Targets Under EOC1.

Class SerNum
Training Test

Depression Number Depression Number

2S1 B01 17◦ 299 30◦ 288
BRDM2 E-71 17◦ 298 30◦ 287

T72 A64 17◦ 299 30◦ 288
ZSU23/4 d08 17◦ 299 30◦ 288

Table 3. Detailed Information of Targets Under EOC2-C.

Class SerNum
Training Test

Depression Number Depression Number

BMP2 9563 17◦ 233 - -
BRDM2 E-71 17◦ 298 - -
BTR70 c71 17◦ 233 - -

T72 132 17◦ 232 - -
A32 - - 17◦, 15◦ 572
A62 - - 17◦, 15◦ 573
A62 - - 17◦, 15◦ 573
A64 - - 17◦, 15◦ 573
S7 - - 17◦, 15◦ 419

Table 4. Detailed Information of Targets Under EOC2-V.

Class SerNum
Training Test

Depression Number Depression Number

BMP2 9563 17◦ 233 - -
9566 - - 17◦, 15◦ 428
C21 - - 17◦, 15◦ 429

BRDM2 E-71 17◦ 298 - -
BTR70 C71 17◦ 233 - -

T72 132 17◦ 232 - -
812 - - 17◦, 15◦ 426
A04 - - 17◦, 15◦ 573
A05 - - 17◦, 15◦ 573
A07 - - 17◦, 15◦ 573
A10 - - 17◦, 15◦ 567

3.2. Experimental Setups

This experiment evaluates the methods proposed in Section 2 based on the MSTAR
dataset. First, we use the method in Section 2.1 to segment SAR images to extract the
target region and shadow mask as input for subsequent deep networks. In Section 2.1,
the iteration number of anisotropic diffusion filtering is set to 20 in Step 2. In Step 5, we
use a sliding window of size 5× 5 and set the threshold of counting filtering to 15. After
experimental validation, it was determined that a distance threshold TD within the range
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of [40, 50] was suitable. The structural elements employed in the morphological operations
in Step 6 are as follows: 

0 1 1 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 1 0

. (11)

Then, the data-augmentation method in Section 2.2 is used to segment training set
images. Since the FEM proposed in Section 2.3.3 is generalizable, it can be easily embedded
into existing SAR image-classification backbones. Therefore, to more comprehensively
explore the performance of the proposed FEM, we not only choose classification models
with outstanding performance in the SAR image domain, such as A-ConvNets [27], AM-
CNN [28], ES-CNN [43], LM-BN-CNN [23], and ESENet [52], but also include some classic
models in the optical image domain, such as MobileNetV3 [49] and ResNet [53].

Since different deep networks require different input image sizes, such as the (1, 88,
88) input for A-ConvNets, resizing the input images following the original model’s require-
ments is essential. Furthermore, the number of input channels for the first convolutional
layer in optical image-classification models (MobileNetV3 and ResNet) is changed to 1 to
accommodate grayscale SAR images. To adapt to the full azimuth angle imaging of the
MSTAR dataset, we applied random center rotations ranging from 0° to 30° to the SAR
images in the training set.

We used the Adam optimizer, with an initial learning rate of 0.001, a weight decay of
0.00005 every 20 epochs, and a batch size of 32, and each model was trained for 250 epochs.
All deep network models were implemented using the PyTorch framework, with an RTX
2080 Ti GPU and an Intel(R) Xeon(R) Platinum 8255C CPU.

3.3. Experimental Results under SOC

In this section, we measure the enhancement effects of the shadow information
and FEM under SOC, where the image details of SOC are shown in Table 1. Since each
classification model has different inputs, to compare their performance more fairly,
we show their recognition accuracy under different input types in Tables 5 and 6. In
this paper, Tregion and Tregion + Sregion represent the target region, the target and shadow
regions, respectively. Moreover, Tregion + Smask represents the target region and shadow
mask. The #Params column provides the number of parameters for each model, allowing
for comparing their complexity. The bold font in parentheses indicates the additional
parameters introduced by embedding FEM. The Accuracy (%) column presents the
recognition accuracy of each model under different inputs. Furthermore, comparing the
recognition accuracy of ATR models under different operational conditions (i.e., SOC
and EOCs) provides a comprehensive assessment of the algorithm’s robustness. The
boldface in the Accuracy (%) column represents the accuracy gains achieved by adding
FEM or shadow information. It is important to note that when the input is Tregion, it
represents the gain of the FEM. However, when the input is Tregion + Smask, it signifies
the combined gain of the shadow information and FEM.

Table 5. Accuracy of different methods based on original image and target information under SOC.

Input Model #Params Accuracy (%)

Original Image

A-ConvNets [27] 303 K 99.13
AM-CNN [28] 2.5 M 99.35
CA-Net [54] 0.7 M 99.59

MVGGNet [37] 16.8 M 99.27
DS-AE-Net [30] 11.2 M 99.30
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Table 5. Cont.

Input Model #Params Accuracy (%)

Tregion

A-ConvNets [27] 303 K 95.12
AM-CNN [28] 2.5 M 97.59

ES-Net [43] 95 K 96.41
LM-BN-CNN [23] 141 K 96.44

ESENet [52] 551 K 97.32
ResNet18 [53] 11.2 M 96.57

MobileNetV3 [49] 2.6 M 97.60

Tregion

A-ConvNets + FEM 332 K (+29 K) 98.47 (+3.35)
AM-CNN + FEM 3.0 M (+0.5 M) 98.68 (+1.12)

ES-Net + FEM 168 K (+73 K) 96.98 (+0.57)
LM-BN-CNN + FEM 187 K (+46 K) 98.14 (+1.70)

ESENet + FEM 597 K (+46 K) 98.43 (+1.11)
MobileNetV3 + FEM 2.6 M 98.13 (+0.53)

Table 6. Accuracy of different methods based on target and shadow information under SOC.

Input Model #Params Accuracy (%)

Tregion + Sregion

ES-CNN [43] 95 K 79.10
ZSL-Net [55] - 91.93

ResNet18 + IFTS [44] 22 M 98.90

Tregion + Smask

A-ConvNets + FEM 332 K (+29 K) 99.71 (+4.59)
AM-CNN + FEM 3.0 M (+0.5 M) 99.75 (+2.16)

ES-Net + FEM 168 K (+73 K) 99.34 (+2.93)
LM-BN-CNN + FEM 187 K (+46 K) 99.46 (+3.02)

ESENet + FEM 597 K (+46 K) 99.58 (+2.26)
MobileNetV3 + FEM 2.6 M 99.71 (+2.11)

As shown in Table 5, when using original SAR images as input, the accuracy of each
baseline model reaches more than 99%. However, by taking only the target region as
input, the performance of all models will suffer a significant degradation. This degradation
indicates that clutter greatly influences extracting depth features [43], which demonstrates
the necessity of SAR image segmentation. However, it is worth noting that models incor-
porating attention mechanisms, such as AM-CNN, ESENet, and MobileNetV3, perform
better than the others. Therefore, the performance of baseline models that combine with
FEM is improved. For example, A-ConvNets + FEM reaches over 98%, only increasing the
parameters by 29 K.

To further investigate the contribution of the shadow to ATR performance, Table 6
presents the recognition results when the input consists of the target and shadow infor-
mation. If the target and shadow regions are fed directly into the deep model without
preprocessing, the accuracy will be lower than using only the target region. Specifically, for
ES-CNN, its performance is 96% using the target region; however, its accuracy is just 79%
when the input includes both the target and shadow regions. The reason for this is that the
intensity of the target is much higher than its shadow, which makes CNN unable to extract
shadow features effectively. However, after compensating for shadows using the data
augmentation proposed in this paper, the classification accuracy of ES-CNN + FEM reaches
99% when the input includes both the target region and the shadow mask. This indicates
that the proposed preprocessing strategy helps CNN to extract discriminative features from
the shadows. In addition, the ZSL-Net [55] and Resnet18+IFTS [44] (Table 6) also preprocess
the shadow region differently because of considering the unique properties of shadows. To
offer a clearer view of the classification performance for each target, Table 7 presents the
confusion matrix of A-ConvNets + FEM under SOC when the input is composed of the
target region and shadow mask.
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Table 7. Confusion matrix of the A-ConvNets + FEM under SOC.

Class 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU23/4 Acc (%)

2S1 266 0 0 0 1 0 0 0 0 0 99.62
BMP2 0 195 0 0 1 0 0 0 0 0 99.48

BRDM2 0 0 274 0 0 0 0 0 0 0 100
BTR60 0 0 1 189 0 0 0 0 0 0 99.47
BTR70 0 0 1 0 195 0 0 0 0 0 99.48

D7 1 0 0 0 0 269 0 0 1 2 98.53
T62 0 0 0 1 0 1 269 1 0 1 98.53
T72 0 0 0 0 0 0 0 196 0 0 100

ZIL131 0 0 0 0 0 0 0 0 274 0 100
ZSU23/4 0 0 0 0 0 0 0 0 0 269 100

Average 99.50

It is worth noting that, despite having fewer trainable parameters compared to optical
images, the customized CNN models [23,27,28,52] for SAR images still achieve the desired
classification performance. Deep networks for optical images often seek more trainable
parameters to improve feature representation capabilities. However, this does not apply to
SAR images with a limited number of samples. Large deep networks tend to be severely
overfitted in SAR images. Therefore, improving SAR ATR performance through deeper
backbone models is limited. Considering this problem, this paper primarily explores
enhancing CNN performance from the perspective of SAR feature fusion, i.e., the fusion of
depth and shadow features. In terms of the number of parameters, on the one hand, the
FEM proposed is lightweight enough because of using the DSC. On the other hand, it is
embedded in the downsampling layer of the CNN. Consequently, it does not significantly
increase the number of parameters of the original deep network, seeing Tables 5 and 6.

3.4. Experimental Results under EOCs

This section investigates the performance enhancement of the shadow mask and FEM
under EOCs. Table 8 shows the overall recognition results under EOCs. The experimental
results under EOC1, EOC2-C, and EOC2-V are analyzed as follows.

Table 8. Accuracy of different methods based on target and shadow information under EOCs.

Input Model #Params
Accuracy(%)

EOC1 EOC2-C EOC2-V

Tregion

A-ConvNets [27] 303 K 92.13 88.74 88.26
AM-CNN [28] 2.5 M 92.35 89.51 92.10
ES-CNN [43] 95 K 90.74 87.96 86.85

LM-BN-CNN [23] 141 K 91.90 90.05 88.60
ESENet [52] 551 K 92.93 89.58 89.35

Resnet18 [53] 11.2 M 91.79 90.10 92.50
MobileNetV3 [49] 2.6 M 91.92 90.93 91.45

A-ConvNets + FEM 332 K (+29 K) 93.18 (+0.97) 89.98 (+1.24) 92.08 (+5.00)
AM-CNN + FEM 3.0 M (+0.5 M) 94.26 (+1.91) 90.13 (+0.62) 93.84 (+1.74)

LM-BN-CNN + FEM 187 K (+46 K) 93.74 (+1.84) 91.22 (+1.17) 92.13 (+4.13)
ESENet + FEM 597 K (+46 K) 94.45 (+1.52) 91.58 (+2.00) 93.42 (+4.07)

MobileNetV3 + FEM 2.6 M 94.00 (+2.08) 92.33 (+1.40) 92.95 (+1.05)

Tregion + Smask

A-ConvNets + FEM 332 K (+29 K) 96.13 (+4.00) 97.56 (+8.82) 98.09 (+9.83)
AM-CNN + FEM 3.0 M (+0.5 M) 96.60 (+2.34) 98.10 (+8.59) 98.15 (+6.05)

LM-BN-CNN + FEM 187 K (+46 K) 96.87 (+4.97) 97.20 (+7.05) 97.91 (+9.31)
ESENet + FEM 597 K (+46 K) 97.39 (+4.46) 97.71 (+8.13) 98.22 (+8.87)

MobileNetV3 + FEM 2.6 M 95.48 (+3.56) 98.53 (+7.60) 97.67 (+6.22)
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3.4.1. Results under EOC1

As demonstrated in Table 2, EOC1 represents a four-class classification task under a
large depression angle variant. As shown in Table 8, even though EOC1 only encompasses
four classes compared to SOC, the recognition accuracy of each CNN model declines
significantly. For instance, taking only the target region as input, the classification accuracy
of existing deep-learning models under SOC generally exceeds 96% (Table 5), while it is
around 91% under EOC1 (Table 8). The reason for this is that the target produces more
significant distortion under high depression angles. However, all models incorporating
FEM achieve performance improvement (gains surpass 1%, see Table 8) compared to the
original models. This suggests that FEM contributes to the enhancement of the target depth
features. Furthermore, when the input includes target and shadow information, the ATR
performance of deep-learning models combined with FEM is further improved, indicating
that the shadow can still provide helpful classification features even under large depression
angle variations. The confusion matrix of A-ConvNets + FEM under EOC1 is displayed
in Table 9.

Table 9. Confusion matrix of the A-ConvNets + FEM under EOC1.

Class 2S1 BRDM2 T72 ZSU23/4 Acc (%)

2S1 277 7 3 1 96.18
BRDM2 0 287 0 0 100

T72 5 6 264 13 91.66
ZSU23/4 0 0 9 269 93.40

Average 95.31

3.4.2. Results under EOC2-C

As illustrated in Table 3, the training set under EOC2-C comprises BMP2, BRDM2,
BTR70, and T72 (132), while the test set consists of T72 targets with different configurations.
Like EOC1, when the input is only the target region, the original deep-learning models
generally exhibit lower ATR performance (accuracy below 90%), as seen in the EOC2-C
column in Table 8. However, existing models combined with FEM achieve varying gains
(greater than 1% improvement) using the target information. Furthermore, when the input
consists of both the target and shadow, each deep-learning model with FEM achieves
its maximum gain. Considering that the test set of EOC2-C has only one class, namely
T72, this proves that shadows provide supplementary information about targets under
configuration variants. The confusion matrix of A-ConvNets + FEM under EOC2-C is
presented in Table 10.

Table 10. Confusion matrix of the A-ConvNets + FEM under EOC2-C.

Class SerNum BMP2 BRDM2 BTR70 T72 Acc (%)

T72

A32 9 3 0 560 97.90
A62 8 0 1 564 98.43
A63 9 0 0 564 98.43
A64 22 0 2 549 95.81
S7 10 1 1 407 97.13

Average 97.54

3.4.3. Results under EOC2-V

The EOC2-V reflects different versions of the BMP2 and T72 target types, including
four classes for the training set and two classes for the test set (see details in Table 4). As
demonstrated in the third column of Table 8, the performance of deep-learning models
under EOC2-V is generally lower than that in SOC when the input is just the target region.
However, by taking target regions and shadow masks as input, deep models combined
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with FEM achieve huge performance improvements. Classification accuracy of all models
exceeds 97%. Therefore, we can infer that in the case of changes in the local structure of
the target (such as the fuel tank), the shadow can still maintain the overall structure of the
target. Table 11 shows the confusion matrix of A-ConvNets + FEM under EOC2-V.

Table 11. Confusion matrix of the A-ConvNets + FEM under EOC2-V.

Class SerNum BMP2 BRDM2 BTR70 T72 Acc (%)

BMP2 9566 406 0 0 22 94.86
C21 389 1 2 37 90.67

T72

812 6 0 0 420 98.59
A04 0 0 0 573 100
A05 0 0 0 573 100
A07 0 0 0 573 100
A10 0 0 0 567 100

Average 97.73

3.5. Analysis on Results of the SOC and EOCs

According to the experimental results under SOC (Table 5), existing SAR image-
classification models have achieved good recognition accuracy when using raw SAR
images as input. However, this approach tends to rely on the similarity of background
clutter to achieve higher classification scores. Therefore, we can extract the valid and
relevant target and shadow features from SAR images for classification by employing
image segmentation techniques. This approach avoids the background clutter of SAR
images and improves the model’s generalization performance across different scenarios.
Notably, we customized the processing of shadows, including intensity and geometric
distortion compensation, enabling the CNN model to extract highly discriminative features
for classification from the shadow information. Comparing the results in Tables 5 and 6, the
published SAR classification models achieve state-of-the-art performance even when the
input only includes target and shadow information after embedding FEM. The experimental
results under EOCs (Table 8) further demonstrate the effectiveness of shadow features
in extended operational conditions. However, the accuracy of the classification model
in EOC1 is lower than in EOC2-C and EOC2-V, mainly due to the more severe shadow
distortion caused by large depression angle differences. Therefore, shadow features are
unsuitable for cases with significant changes in the depression angles.

It is worth noting that this paper focuses on using CNN to comprehensively extract
depth features of targets and shadows to enhance the recognition performance and general-
ization of existing SAR classification models on the MSTAR dataset. Therefore, for SAR
images in complex scenes, modern SAR image segmentation methods can be chosen to
ensure the accuracy of shadow extraction [43]. Integrating advanced segmentation methods
or classification networks into the proposed SAR target recognition framework will further
enhance its universality.

3.6. Contributions of the Target and Shadow

In this section, we present a visual analysis of the FEM, which provides some intuitive
interpretability of the deep networks and helps us understand the role of FEM in the
network. On the one hand, visualizing the spatial attention weights in the FEM helps
observe the importance of the target region and shadow mask. On the other hand, we use
Grad-CAM to visually analyze the entire FEM, therefore explaining how FEM enhances
the performance of existing deep networks. We take the trained A-ConvNets + FEM as an
example, with its network structure shown in Figure 9.

To provide a visualization of the spatial attention weights in the FEM, we overlay
the spatial attention weights with the original input image. Specifically, we normalize
the attention weight matrix and compute the mean value along the channel dimension.
Subsequently, the attention weight matrix is aligned to the input image. Then, a color
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mapping technique is employed to transform the normalized results into a color heatmap
and overlay the heatmap on the input image. Figure 11b–d,f–h illustrate the overlay
results of three spatial attention weights in A-ConvNets + FEM combined with the input
image. As depicted in Figure 11, high-scattering regions of the target are assigned large
weights by FEM because of their rich backscattering characteristic. However, for the
shadow, we use their mask as input, allowing deep-learning models to extract depth
features from its contour and emphasize the importance of different contour segments.
This strategy is consistent with traditional methods that employ shadow contour features
for classification [13–15]. In addition, Figure 11 shows that the deep models combined with
FEM can comprehensively capture the depth features of targets and shadows.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Spatial attention visualization of FEM. (a) Target region and shadow mask of T72; (b–d) are
FEM1, FEM2 and FEM3 attention overlays of A-ConvNets + FEM, respectively. (e) Target region and
shadow of BMP2; (f–h) are FEM1, FEM2 and FEM3 attention overlays of A-ConvNets + FEM, respectively.

As a visualization technique, Grad-CAM can explain the decision-making process for
specific categories in the CNN [56]. It highlights crucial regions in the input image related
to the target class, helping us understand the feature-enhancement effect of FEM in deep
networks. Figure 12 shows the target area and shadow mask images of ten classes under
SOC and their corresponding class activation maps.

From the class activation maps of FEM in Figure 12, when the scattering information
of the target area is not clear, FEM will focus on the shadow mask and extract useful depth
features for the classifier. Moreover, if the shadow mask provides discriminative features
for the classifier, such as the barrel of the T72 (A05) under EOC2-V, FEM will generate a
large amount of activation around the gun barrel in the class activation map, as shown
in Figure 13.

To intuitively demonstrate the effectiveness of shadows from a global perspective,
we visualized the high-dimensional feature vectors extracted by different models using
the t-SNE algorithm [57]. Figure 14 displays the distribution of high-dimensional features
obtained by A-ConvNets and A-ConvNets + FEM under various input conditions. Because
the test set of EOC2-V only includes two main target types, each color in the figure repre-
sents a different target type. It can be observed that, compared to the high-dimensional
features obtained solely from the target region (Figure 14a,b), the high-dimensional features
acquired by A-ConvNets + FEM from both the target region and the shadow mask exhibit
enhanced separability. This qualitatively confirms that shadow features can still provide
effective classification characteristics under variant configuration scenarios.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Input images and class activation maps for ten object categories under SOC. (a) 2S1.
(b) BMP2. (c) BRDM2. (d) BTR60. (e) BTR70. (f) D7. (g) T62. (h) T72. (i) ZIL131. (j) ZSU23/4.

(a) (b) (c) (d)

Figure 13. Class activation maps of important parts of T72 (A05). (a,c) are T72 input images. (b,d) are
their class activation maps, respectively.

(a) (b) (c)
Figure 14. t-SNE visualization of output features of A-ConvNets + FEM under EOC2-V. (a,b) are the
output features of A-ConvNets and A-ConvNets + FEM under only the target region, respectively.
(c) The output features of A-ConvNets + FEM under the target region and shadow mask.
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4. Conclusions

Shadows in SAR images can reveal the structural information of the target from
a side perspective, providing unique features distinct from the target itself. However,
shadows exhibit properties of low intensity and depression angle sensitivity, which make
it challenging for CNN to extract useful information from them. To address this problem,
we propose a novel strategy for fusing target and shadow information to enable CNN to
extract depth features from targets and shadows comprehensively. First, we introduce a
segmentation method to extract the target and shadow information. Taking the target region
and shadow mask as input to CNN helps solve the shadow’s low-amplitude issue, enabling
subsequent networks to extract deep representation from the shadow contour. Second,
we propose a data-augmentation technique to compensate for the geometric distortion of
shadows due to different depression angles. Finally, we present a FEM that can adaptively
fuse the target and shadow information while emphasizing the partial importance of targets
and shadows. Extensive experiments conducted on the MSTAR dataset demonstrate that
the FEM can improve the ability of existing networks to extract information on target and
shadow, therefore achieving state-of-the-art performance in both SOC and EOC scenarios.

Future work includes the following aspects. First, advanced segmentation methods,
such as deep-learning-based SAR image segmentation, can be utilized to improve target
and shadow extraction in complex scenes. Second, the proposed FEM can be integrated
into deep backbone networks to enhance recognition accuracy; however, this may increase
the complexity of the models. Lastly, integrating the proposed method with the modern
SAR ATR framework can help in handling SAR images with multiple targets.
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