Simplifying Rogowski Coil Modeling: Simulation and Experimental Verification
Abstract
:1. Introduction
2. Motivation and Background
2.1. The Rogowski Coil
2.2. Motivation
3. The Modelling Procedure
4. Validation
4.1. Validation by Simulation
4.1.1. Frequency Sweep
4.1.2. Sources of Uncertainty
4.2. Validation by Measurements
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahmed, Y.A.; Rashid, A.; Khurshid, M.M. Investigating the determinants of the adoption of solar photovoltaic Systems—Citizen’s perspectives of two developing countries. Sustainability 2022, 14, 1764. [Google Scholar] [CrossRef]
- Linhart, M.; Rodin, V.; Moser, S.; Kollmann, A. Citizen participation to finance pv power plants focused on self-consumption on company roofs-findings from an austrian case study. Energies 2021, 14, 738. [Google Scholar] [CrossRef]
- Breschi, V.; Ravazzi, C.; Strada, S.; Dabbene, F.; Tanelli, M. Fostering the mass adoption of electric vehicles: A network-based approach. IEEE Trans. Control Netw. Syst. 2022, 9, 1666–1678. [Google Scholar] [CrossRef]
- Lv, Z.; Qiao, L.; Cai, K.; Wang, Q. Big data analysis technology for electric vehicle networks in smart cities. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1807–1816. [Google Scholar] [CrossRef]
- Hieu, L.T.; Lim, O.T. Effects of the structure and operating parameters on the performance of an electric scooter. Sustainability 2023, 15, 8976. [Google Scholar] [CrossRef]
- Kubik, A. The energy consumption of electric scooters used in the polish shared mobility market. Energies 2022, 15, 8193. [Google Scholar] [CrossRef]
- Razmi, P.; Ghaemi Asl, M. Machine learning approaches in a real power system and power markets. In Application of Machine Learning and Deep Learning Methods to Power System Problems; Power Systems; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Zhu, Y.; Singh, C. End-to-end topology-aware machine learning for power system reliability assessment. In Proceedings of the 2022 17th International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2022, Manchester, UK, 12–15 June 2022. [Google Scholar] [CrossRef]
- Chen, X.; Xu, J.; Fang, Y.; Li, W.; Ding, Y.; Wan, Z.; Tu, Z. Temperature and humidity management of PEM fuel cell power system using multi-input and multi-output fuzzy method. Appl. Therm. Eng. 2022, 203, 117865. [Google Scholar] [CrossRef]
- Wu, W.; Yue, S.; Zhou, X.; Guo, M.; Wang, J.; Ren, L.; Yuan, B. Observational study on the impact of large-scale photovoltaic development in deserts on local air temperature and humidity. Sustainability 2020, 12, 3403. [Google Scholar] [CrossRef]
- Peretto, L.; Tinarelli, R.; Ghaderi, A.; Mingotti, A.; Mazzanti, G.; Valtorta, G.; Danesi, S. Monitoring cable current and laying environment parameters for assessing the aging rate of MV cable joint insulation. In Proceedings of the Annual Report—Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, Shenzhen, China, 20–23 October 2018; pp. 390–393. [Google Scholar] [CrossRef]
- IEC 61869-1:2010; Instrument Transformers—Part 1: General Requirements. International Standardization Organization: Geneva, Switzerland, 2010.
- IEC 61869-6; Instrument Transformers—Part 6: Additional General Requirements for Low-Power Instrument Transformers. International Standardization Organization: Geneva, Switzerland, 2016.
- Besharatifard, H.; Hasanzadeh, S.; Muyeen, S.M.; Kamwa, I. Evaluation of a calibration technique in measuring partial discharges inside mineral oils with a high-frequency current transformer (HFCT) sensor: A case study. IET Gener. Transm. Distrib. 2023, 17, 706–715. [Google Scholar] [CrossRef]
- Chen, Y.; Crotti, G.; Dubowik, A.; Letizia, P.S.; Mohns, E.; Luiso, M.; Bruna, J. Novel calibration systems for the dynamic and steady-state testing of digital instrument transformers. In Proceedings of the AMPS 2021—2021 11th IEEE International Workshop on Applied Measurements for Power Systems, Virtual, 29 September–1 October 2021. [Google Scholar] [CrossRef]
- Mingotti, A.; Peretto, L.; Tinarelli, R.; Angioni, A.; Monti, A.; Ponci, F. A simple calibration procedure for an LPIT plus PMU system under off-nominal conditions. Energies 2019, 12, 4645. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Stano, E. Challenges of accurate measurement of distorted current and voltage in the power grid by conventional instrument transformers. Energies 2023, 16, 2648. [Google Scholar] [CrossRef]
- Lesniewska, E. Modern methods of construction problem solving in designing various types of instrument transformers. Energies 2022, 15, 8199. [Google Scholar] [CrossRef]
- Tee, S.; Liu, Q.; Wang, Z.; Hafid, F.; Tournet, P. Failure investigation and asset management of combined measuring instrument transformers. High Volt. 2021, 6, 61–70. [Google Scholar] [CrossRef]
- Estupiñán JS, R.; Vachoux, A.; Pascal, J. Electro-thermal modeling of a rogowski coil sensor system. In Proceedings of the 2015 International Symposium on VLSI Design, Automation and Test, VLSI-DAT, Hsinchu, Taiwan, 27–29 April 2015. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; Abd-Elhady, A.M. Design and modeling of a two-winding rogowski coil sensor for measuring three-phase currents of a motor fed through a three-core cable. IEEE Sens. J. 2021, 21, 8289–8296. [Google Scholar] [CrossRef]
- Liu, X.; Huang, H.; Jiao, C. Modeling and analyzing the mutual inductance of rogowski coils of arbitrary skeleton. Sensors 2019, 19, 3397. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.; Xin, Z.; Liu, W.; Loh, P.C. Structure and modelling of four-layer screenreturned PCB rogowski coil with very few turns for high-bandwidth SiC current measurement. IET Power Electron. 2020, 13, 765–775. [Google Scholar] [CrossRef]
- Mingotti, A.; Peretto, L.; Tinarelli, R. A simple modelling procedure of rogowski coil for power systems applications. In Proceedings of the AMPS 2019—2019 10th IEEE International Workshop on Applied Measurements for Power Systems, Aachen, Germany, 25–27 September 2019. [Google Scholar] [CrossRef]
- Mingotti, A.; Peretto, L.; Tinarelli, R. A smart frequency domain-based modeling procedure of rogowski coil for power systems applications. IEEE Trans. Instrum. Meas. 2020, 69, 6748–6755. [Google Scholar] [CrossRef]
- Orosz, T.; Tamus, Z.A.; Vajda, I. Modeling the high frequency behavior of the rogowski-coil passive L/r integrator current transducer with analytical and finite element method. In Proceedings of the Universities Power Engineering Conference, Cluj-Napoca, Romania, 2–5 September 2014. [Google Scholar] [CrossRef]
- Sabiha, N.A.; Alkhammash, H.I. Modeling rogowski coils for monitoring surge arrester discharge currents. Comput. Syst. Sci. Eng. 2021, 42, 439–449. [Google Scholar] [CrossRef]
- IEC 61869-10; Instrument Transformers—Part 10: Additional Requirements for Low-Power Passive Current Transformers. International Standardization Organization: Geneva, Switzerland, 2017.
- Styblìkovà, R.; Draxler, K. Design and calibration of Rogowski coils. In Proceedings of the Power and Energy Workshop, Noordwijk, The Netherlands, 22–23 March 2011. [Google Scholar]
- Moreno, M.V.R.; Robles, G.; Albarracín, R.; Rey, J.A.; Tarifa, J.M.M. Study on the self-integration of a Rogowski coil used in the measurement of partial discharges pulses. Electr. Eng. 2017, 99, 817–826. [Google Scholar] [CrossRef]
Accuracy Class | Linearity Error | Resistance of the Windings | Transformation Ratio |
Max Current | Bandwidth | Temperature Class | Rated Burden |
Frequency (Hz) | (%) | (mrad) |
---|---|---|
50 | −0.01 | 3.2 |
100 | −0.01 | 6.3 |
150 | −0.01 | 9.5 |
200 | −0.01 | 12.6 |
250 | −0.01 | 15.8 |
300 | −0.02 | 18.9 |
350 | −0.02 | 22.1 |
400 | −0.02 | 25.2 |
450 | −0.02 | 28.4 |
500 | −0.03 | 31.5 |
550 | −0.03 | 34.7 |
600 | −0.03 | 37.8 |
650 | −0.04 | 41.0 |
700 | −0.04 | 44.1 |
750 | −0.05 | 47.3 |
800 | −0.05 | 50.4 |
850 | −0.06 | 53.6 |
900 | −0.06 | 56.7 |
950 | −0.07 | 59.9 |
1000 | −0.08 | 63.0 |
1050 | −0.08 | 66.2 |
1100 | −0.09 | 69.3 |
1150 | −0.1 | 72.5 |
1200 | −0.11 | 75.6 |
1250 | −0.11 | 78.8 |
1300 | −0.12 | 81.9 |
1350 | −0.13 | 85.1 |
1400 | −0.14 | 88.2 |
1450 | −0.15 | 91.4 |
1500 | −0.16 | 94.5 |
1550 | −0.17 | 97.7 |
1600 | −0.18 | 100.9 |
1650 | −0.19 | 104.0 |
1700 | −0.2 | 107.2 |
1750 | −0.21 | 110.3 |
1800 | −0.23 | 113.5 |
1850 | −0.24 | 116.6 |
1900 | −0.25 | 119.8 |
1950 | −0.26 | 122.9 |
2000 | −0.28 | 126.1 |
2050 | −0.29 | 129.2 |
2100 | −0.3 | 132.4 |
2150 | −0.32 | 135.5 |
2200 | −0.33 | 138.7 |
2250 | −0.35 | 141.8 |
2300 | −0.36 | 145.0 |
2350 | −0.38 | 148.1 |
2400 | −0.39 | 151.3 |
2450 | −0.41 | 154.4 |
2500 | −0.43 | 157.6 |
Uncertainty Considered (%) | Quantity | |||
---|---|---|---|---|
1 | (-) | 1340 | 1309 | 1370 |
10 | (-) | 1350 | 1054 | 1665 |
20 | (-) | 1402 | 837 | 2092 |
1 | (F) | |||
10 | (F) | |||
20 | (F) | |||
1 | (H) | |||
10 | (H) | |||
20 | (H) |
Feature | R1 | R2 | R3 |
---|---|---|---|
(mV/kA) | 100 | 100 | 100 |
(mm) | 8 | 8 | 12 |
(mm) | 50 | 57 | 21.5 |
(Ω) | 256 | 381 | 22 |
Cross-Section | Circular | Circular | Oval |
Accuracy Class | 0.5 | 1 | 1 |
Bandwidth | 1 Hz to 100 kHz | NA | 20 Hz to 5 kHz |
Operating Temperature | −30 °C to 80 °C | −20 °C to 85 °C | −20 °C to 70 °C |
Rated Current (A) | 1000 | 10,000 | 1000 |
Converter | 24-bit | Voltage Range | ±500 mV |
Sampling Frequency | 50 kSa/s/Ch | Input Impedance | >1 GΩ |
Simultaneous Channels | Yes | Gain Error | ±0.07% |
Offset Error | ±0.005% | Input Noise |
Frequency (Hz) | R1 | R2 | R3 | |||
---|---|---|---|---|---|---|
PE (mrad) | VD (%) | PE (mrad) | VD (%) | PE (mrad) | VD (%) | |
50 | 2.92 | 0.4 | −2.80 | 0.5 | −4.41 | 1.8 |
250 | 14.36 | 1.2 | −12.83 | 1.0 | −15.88 | 4.2 |
550 | 31.39 | 2.7 | −26.91 | 1.5 | −33.66 | 8.9 |
850 | 48.34 | 4.6 | −40.71 | 1.7 | −51.73 | 13.5 |
1250 | 70.93 | 5.3 | −59.10 | 0.8 | −75.91 | 13.7 |
2500 | 141.77 | 15.8 | 116.92 | −5.1 | −151.31 | 22.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mingotti, A.; Betti, C.; Tinarelli, R.; Peretto, L. Simplifying Rogowski Coil Modeling: Simulation and Experimental Verification. Sensors 2023, 23, 8032. https://doi.org/10.3390/s23198032
Mingotti A, Betti C, Tinarelli R, Peretto L. Simplifying Rogowski Coil Modeling: Simulation and Experimental Verification. Sensors. 2023; 23(19):8032. https://doi.org/10.3390/s23198032
Chicago/Turabian StyleMingotti, Alessandro, Christian Betti, Roberto Tinarelli, and Lorenzo Peretto. 2023. "Simplifying Rogowski Coil Modeling: Simulation and Experimental Verification" Sensors 23, no. 19: 8032. https://doi.org/10.3390/s23198032
APA StyleMingotti, A., Betti, C., Tinarelli, R., & Peretto, L. (2023). Simplifying Rogowski Coil Modeling: Simulation and Experimental Verification. Sensors, 23(19), 8032. https://doi.org/10.3390/s23198032