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Abstract: Human detection is the task of locating all instances of human beings present in an
image, which has a wide range of applications across various fields, including search and rescue,
surveillance, and autonomous driving. The rapid advancement of computer vision and deep learning
technologies has brought significant improvements in human detection. However, for more advanced
applications like healthcare, human–computer interaction, and scene understanding, it is crucial
to obtain information beyond just the localization of humans. These applications require a deeper
understanding of human behavior and state to enable effective and safe interactions with humans
and the environment. This study presents a comprehensive benchmark, the Common Human
Postures (CHP) dataset, aimed at promoting a more informative and more encouraging task beyond
mere human detection. The benchmark dataset comprises a diverse collection of images, featuring
individuals in different environments, clothing, and occlusions, performing a wide range of postures
and activities. The benchmark aims to enhance research in this challenging task by designing novel
and precise methods specifically for it. The CHP dataset consists of 5250 human images collected
from different scenes, annotated with bounding boxes for seven common human poses. Using
this well-annotated dataset, we have developed two baseline detectors, namely CHP-YOLOF and
CHP-YOLOX, building upon two identity-preserved human posture detectors: IPH-YOLOF and
IPH-YOLOX. We evaluate the performance of these baseline detectors through extensive experiments.
The results demonstrate that these baseline detectors effectively detect human postures on the CHP
dataset. By releasing the CHP dataset, we aim to facilitate further research on human pose estimation
and to attract more researchers to focus on this challenging task.

Keywords: human detection; common human posture detection; CHP dataset; benchmark

1. Introduction

Human detection is an important task in computer vision, focusing on localizing and
identifying humans within given images or videos [1,2]. It serves as the foundation for
numerous downstream computer vision tasks, such as image captioning, robotics, and
human–machine interaction, among others. The primary goal of human detection is to
create computational models and techniques that offer essential location information for
computer vision applications. Thanks to the implementation of deep neural networks,
significant progress has been made in the field of human detection in recent years [3–5].

However, simply possessing human localization information is inadequate for more
sophisticated computer vision tasks. For example, scene understanding necessitates the
recognition of an individual’s pose, state, and action in order to incorporate significant
information at various levels and to derive semantic connections, roles, and events within
the scene [6,7]. The goal of autonomous driving is to develop and build a vehicle capable
of navigating independently without driver supervision. The ability to detect potentially
hazardous situations and anomalies is vital for driving safety and demands more infor-
mation than just human localization [8,9]. Service robots interact with humans in various
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ways, often aiming to enhance the consumer experience by providing assistance, providing
guidance, or performing specific tasks [10,11].

The interaction between the service receiver and the robot is a determining factor in
the user’s emotional experience with the service provider. To optimize the use of service
robots, it is crucial for these robots to obtain more information than just the localization
of the humans they serve. By acquiring additional data, such as user sitting and standing
postures, gesture, action, and emotions, service robots can better understand and respond
to individual needs, ultimately enhancing user experience and satisfaction [12]. Elderly
guardianship by robots has the potential to revolutionize elderly care by providing person-
alized, round-the-clock assistance and support, which refers to the use of robotic technology
and artificial intelligence to assist, support, and care for older adults, particularly those with
limited physical or cognitive abilities [13,14] These robots, often referred to as “carebots”
or “elder care robots”, can provide various services to improve the quality of life for seniors
and to support their independence while ensuring their safety and well-being [15,16]. They
are expected to provide physical care such as assistance with tasks like bathing, dressing,
and meal preparation; medical care such as monitoring the elderly person’s health and
ensuring that they receive appropriate medical attention; and emotional support such as
providing companionship, social interaction, and mental stimulation to help combat loneli-
ness and depression [17,18]. It is, therefore, essential for these robots to obtain information
beyond the localization of elders in these applications.

To draw attention to human detection beyond localization for more advanced com-
puter vision tasks, in this paper, we are concerned with the posture as well as localization
of a human being, which is crucial for many applications, as just mentioned above. Hu-
man posture or pose estimation has a variety of advanced computer vision applications,
including intelligent robot services [19–21], intelligent sports coaches [22–25], intelligent
security monitoring systems [26–28], virtual reality [29–31], and intelligent medical rehabil-
itation [30,32,33]. Its purpose is to locate the joints of the human in images and videos, that
is, to search for specific poses within the space of all joint poses. However, accurate pose
estimation is difficult for images lacking texture information. In this paper, we propose
and motivate a task that lies between human detection and human pose detection, which
applies to a wider range of advanced computer vision applications and provides more
information as an upstream task for other tasks.

Due to the remarkable advancements in deep learning and the availability of extensive
training data, great progress has been made in human detection and localization technolo-
gies in recent years [2–5]. Unfortunately, human detection can only offer the fundamental
elements of information that computer vision applications necessitate, such as the locations
of humans within a scene. However, this information alone is inadequate for more intri-
cate computer vision tasks. For example, recognizing the posture of person is crucial to
extracting high-level semantics for the task of scene understanding [34]. Estimating the
pose of persons underpins a variety of applications of human activity estimation, robotics,
motion tracking, augmented reality, etc. [35–38]. Human pose estimation generally uses
the keypoint estimation method to select a set of most representative points in human
pose, such as the head, shoulders, elbows, wrists, hips, knees, ankles, etc., and portrays
the human pose by connecting the lines [39,40]. However, the accurate identification
of these joints, especially through manual methods, greatly depends on the presence of
comprehensive texture data. It is very difficult to manually identify the joints of human
bodies when the subject is wearing loose or bulky clothing, which can obscure the joints
and make them difficult to locate. Additionally, overlapping body parts, poor lighting
conditions, and complex backgrounds can make it harder to discern the exact position of
joints. In cases where the subject is engaged in rapid or complex movements, it may also be
challenging to track joint positions accurately over time. Without sufficient well-annotated
data, developing and evaluating big deep learning models are hardly possible.

In order to address the aforementioned challenges, we formulate a new task that is
a compromise between human detection and human pose estimation. This task aims to
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provide additional information beyond the mere location of detected individuals and to
avoid difficulties in collecting well-annotated data for human pose estimation. Specifically,
this paper focuses on the localization of humans and the recognition of their postures
in RGB images. These postures are divided into seven common categories, i.e., bending,
squatting, sitting, running, going, standing, and lying. Figure 1 shows the difference
between traditional human detection and our common human posture detection. As the
posture of individuals being provided, this task finds potential applications in diverse
areas, including gaming [41], AI-powered personal trainers [42,43], robotics [38,44], video
surveillance [45,46], etc. We believe that this task holds significant potential for advancing
computer vision perception, analysis, and interpretation, potentially inspiring further
investigation into novel detection tasks beyond identification and localization. This task is
referred to as common human posture detection (CHPD). To facilitate future research on this
task, we introduce a dataset called CHPD, which contains seven types of human posture
of bounding-box annotations collected from 5250 RGB images. With this well-annotated
dataset, we have developed two baseline detectors, namely CHP-YOLOF and CHP-YOLOX,
building upon two identity-preserved human posture detectors, IPH-YOLOF and IPH-
YOLOX [47], and conduct comparative ablation experiments to evaluate their performance.

Figure 1. The previous method of human detection primarily concentrated on the identification
and localization of humans, as shown in (a). In contrast, our method also incorporates additional
information, specifically the common human posture, as shown in (b). It is worth noting that in (b),
the common postures of the human (‘bending’, ‘lying’, ‘going’, ‘running’, ‘sitting’, ‘squatting’, and
‘standing’ from left to right) are marked accordingly.

The key contributions of our work can be outlined as follows:

• We formulate a novel task of common human posture detection, which underpins a va-
riety of applications where information about human posture is desired but traditional
pose estimation is hard and which may also attract attention to more informative
object detection methods that extend beyond mere identification and localization.

• We introduced CHP dataset, the first benchmark dedicated to common human pos-
ture detection.

• We developed two baseline detectors, i.e., CHP-YOLOF and CHP-YOLOX, based on
two identity-preserved human posture detectors to support and stimulate further
research on CHP.

2. Related Work
2.1. Traditional Human Detection

In traditional human detection methods, many researchers have been enthusiastic
about utilizing manually designed human features and classifiers for human detection
and localization. For instance, Dalal et al. [48] proposed the Histogram of Oriented Gra-
dients (HOG) algorithm, which extracts human edge and texture features by computing
the histograms of local gradient orientations in the image. Wang et al. [49] introduced
a local image descriptor called LPP-HOG (Locality Preserving Projection-HOG) for fast
human detection. This method applies Locality Preserving Projection to the HOG feature
vector to obtain a low-dimensional LPP-HOG vector, which is then used as input to a linear
SVM classifier. Shen et al. [50] proposed an enhanced variable-size HOG feature based
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on boosting human detection models. The proposed feature leverages the information
that is overlooked in the quantization of gradient orientations and integrates it with a
fixed Gaussian template and integral orientation histograms. Wang et al. [51] combined
Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) as feature sets
and proposed a human detection model capable of handling partial occlusion. The model
employs a linear Support Vector Machine (SVM) to learn global detectors for the entire scan-
ning window and partial detectors for local regions from the feature sets. Pang et al. [52]
presented two methods to accelerate the HOG algorithm for human detection. One method
reuses features within blocks to construct HOG features for overlapping detection windows,
and the other method effectively computes HOG features for each block using sub-unit
based interpolation. Ye et al. [53] proposed a Piecewise Linear Support Vector Machine
(PL-SVM) approach, which constructs a linear classification boundary using piecewise
decision functions. Each piecewise SVM model is responsible for a subspace corresponding
to a specific viewpoint or pose of humans. This method discriminates multiple viewpoints
and poses of humans from the background in a high-dimensional feature space.

Although traditional human detection algorithms have some application value in
simple scenarios, with the development of deep learning techniques, algorithms based on
deep neural networks have achieved better performance, demonstrating their capability to
handle complex scenes and pose variations.

2.2. Deep Learning Methods for Human Detection

Due to the powerful feature representation and adaptability of deep learning detection
algorithms, they can handle challenges such as illumination variations and pose changes
in complex scenes, exhibiting excellent generalization capabilities. As a result, a plethora
of deep learning network models have been developed, including the one-stage You
Only Look Once (YOLO) series [54–59] and the two-stage Region-Convolutional Neural
Network (R-CNN) series [60–62]. Numerous researchers have devoted themselves to
applying deep learning networks to human detection tasks. For instance, Nikouei et al. [63]
employed the region-based Fast R-CNN [60] for pedestrian detection. They first extracted
image features using CNN and then established a region proposal network to extract
potential regions containing pedestrians, combined with K-means clustering analysis.
Zhao et al. [64] developed a two-stage method that utilizes depth data for real-time human
detection. This approach initially utilizes their proposed Physical Radius Depth (PRD)
detector for rapid detection of human candidates, followed by applying a CNN to extract
human features and subsequently refine the genuine human candidates based on the
CNN features. Lan et al. [65] improved the YOLO [54] algorithm and introduced a new
network structure, YOLO-R. They incorporated three Passthrough layers composed of
Route and Reorg layers into the original YOLO network to connect shallow and deep
layers, as well as high-resolution and low-resolution pedestrian features, reducing the
loss of human features. In [66], the researchers utilized an adaptive YOLO network to
improve the performance of detecting handball players. They evaluated multiple YOLO-
based models and network training configurations with different datasets to improve the
detection results of player identification in handball images. In order to address incomplete
human detection in specific video frames, Zhou et al. [67] proposed an enhanced YOLO v4
algorithm, which incorporates the Ghost module in the CBM module to reduce the number
of parameters further.

In summary, in the domain of object detection using a single neural network, the YOLO
series dominates. YOLO treats object detection as a regression task, predicting bounding
boxes and corresponding class probabilities. Compared with the R-CNN series, YOLO
excels in terms of real-time performance and simplicity. Hence, in this study, we have
developed two baseline detectors, namely CHP-YOLOF and CHP-YOLOX, by utilizing
two identity-preserved human posture detectors: IPH-YOLOF and IPH-YOLOX. These
detectors inherit their network architecture from the two most common state-of-the-art
YOLO variants.
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2.3. Human Pose Estimation

Traditional methods with human pose estimation mainly rely on handcrafted feature
extraction and machine learning algorithms such as random forests and Support Vector
Machines (SVM). However, these methods are limited by the representational and gen-
eralization capabilities of handcrafted features, imposing constraints on complex scenes
and posing variations. In recent years, deep learning techniques have made significant
breakthroughs in human pose estimation. Deep learning-based approaches leverage net-
work structures such as convolutional neural network (CNN) or recurrent neural network
(RNN) to learn mapping relationships from images to end-to-end poses. Some notable deep
learning-based human pose estimation methods include OpenPose [68], Stacked Hourglass
Network [69], EfficientPose [70], and others. Currently, most human pose estimation algo-
rithms focus on predicting the coordinates of human keypoints, i.e., keypoint localization,
to characterize human poses by determining spatial relationships between keypoints based
on prior knowledge. For example, Wei et al. [71] proposed the Convolutional Pose Ma-
chines (CPM) method, which optimizes keypoint position estimation progressively through
cascaded convolutional networks. Sun et al. [72] proposed an integral regression approach
for human pose estimation, enhancing the accuracy by predicting keypoint offsets at multi-
ple scales. However, recognizing human keypoints, especially manually identifying them,
relies on rich texture information. The influence of different environments (e.g., lighting,
occlusion) and camera angles leads to missing features of human instances in images,
making it challenging to identify keypoints of human instances in the images. Developing
and evaluating large-scale deep learning models for human pose estimation are impossible
without sufficient and diverse annotated data. In sum, it is difficult to use keypoint-based
methods to estimate pose for images with complex backgrounds or missing features. In
view of this, in this paper, we propose a new task between human body detection and
human pose estimation, i.e., common human posture detection.

3. Detection Benchmark for Human Posture

Our objective is to create a specialized dataset specifically designed for the identifica-
tion of common human postures (CHP). In the process of developing CHP, we ensure the
inclusion of a wide variety of scenarios and furnish each image with manual annotations,
as described subsequently. The CHP dataset is available at https://github.com/wuyou347
4/CHPDataset (accessed on 27 August 2023).

3.1. Image Collection

Acquiring a large and diverse dataset of images is essential for effectively training and
evaluating machine learning models for detecting common human postures. To facilitate
the process, we have gathered all the necessary images from the CHP dataset available
on the Internet, which adequately fulfills our requirements, we follow the principles of
the PASCAL VOC [73] and COCO [74] datasets in collecting our dataset CHP. Because
iconic images may lack important contextual information and non-normative viewpoints,
we cleaned and processed the collected images to remove images with non-normative
viewpoints. Human postures are classified into bending, standing, sitting, lying, squatting,
running, and going, considering their prevalence, usefulness for practical applications, and
ease of image collection. See Figure 2 for sample images of our dataset. Figure 3 shows
images that are not suitable for this type of task, all of which are broadly representative. It is
evident that while all of these images have distinct human features, the posture features are
either overlapping, or severely missing, or blurred. For example, both images (1) and (2) in
Figure 3 suffer from overlapping posture features. Images (3) through (10) are characterized
by missing posture features. Although the legs are out-of-view in image (5), we can infer
that the person is running. The images (11) and (12) have the problem of blurred and
missing features. In general, we filter out the images that we are unable to infer the posture
of the persons without ambiguity.

https://github.com/wuyou3474/CHPDataset
https://github.com/wuyou3474/CHPDataset
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Figure 2. Examples of humans exhibiting seven postures (‘bending’, ‘lying’, ‘going’, ‘running’, ‘sit-
ting’, ‘squatting’, and ‘standing’) are shown in the proposed CHP dataset. The objects are highlighted
by red bounding boxes to serve as identifiers.

Figure 3. The figure illustrates the types of images that are not suitable for this particular task during
the data collection phase.

3.2. Annotation

In this section, we will describe how to annotate the collected images. Based on the
proposed task of detecting common human postures, the image annotations necessitate the
subsequent attributes:

• Category: human.
• Common Human Posture box: one of ‘bending’, ‘lying’, ‘going’, ‘running’, ‘sitting’,

‘squatting’, and ‘standing’.
• Bounding box: an axis-aligned bounding box surrounding the extent of the human

visible in the image

Following the annotation guidelines proposed by PASCAL VOC and the annotation
rules of COCO, we divided the annotations into three steps: manual annotation, inspection,
and correction. Manual annotation was accomplished through the collaborative efforts
of our annotation team. Owing to potential inaccuracies and mistakes in each member’s
annotations, our verification team examined if the annotated information for each image
adhered to the guidelines. In case any images failed to meet the specifications, the correction
team undertook the necessary adjustments to the image. Figure 4 illustrates our annotation
process. The manual annotation team classified and annotated the images, and handed over
the annotated image set to the validation team. If there were category errors or omissions
in labeling, the image was recorded and submitted to the correction team for correction.
Our CHP dataset ensures a high quality of annotations through the above steps. Please
refer to Figure 2 for an example of the annotation for CHP.
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Figure 4. The annotation process for the CHP dataset can be broken down into three key steps:
labeling, checking, and correcting. This process involves illustrating how the data are annotated and
ensuring accurate annotations are made.

3.3. Dataset Statistics

The CHP dataset contains a diverse range of scenes, including both public and private
spaces, as well as variations in distance, perspective, lighting conditions, etc. The dataset
includes 5250 human images, which are divided into two main subsets: a train set and a
test set, with an 8:2 ratio (4200 images for training and 1050 images for testing) to facilitate
training and performance evaluation. Figure 5a illustrates the distribution of different
poses in the training and test sets of the CHP dataset, while Figure 5b depicts the average
number of each human pose per image in both the dataset and the test set. Due to uneven
data collection, the number of images for each pose varies. Although we were concerned
about potential sample imbalance, our experimental results indicate that this distribution
reflects the actual distribution of human poses in everyday life, alleviating our concerns.
The CHP dataset differs from traditional datasets in that standard annotation boxes only
annotate a single object or object feature, whereas our CHP annotations encompass two
pieces of information: humans and their poses.

Figure 5. (a) shows the number of each posture in in the train set and test set on the CHP, and
(b) shows the average number of each posture per image in the train set and test set on the CHP.

4. Baseline Detectors for Detecting Common Human Postures

We propose two baseline detectors to promote the development of detecting com-
mon human postures, whose network architecture was inherited from IPH-YOLOF and
IPH-YOLOX [47], which were proposed for identity-preserved human posture detection.
The researchers in [47] improved two state-of-the-art YOLO variants (YOLOX [59] and
YOLOF [58]) by introducing an extra classification head to each original model. This
modification enables the models to predict the posture of individuals in thermal images.
These two detectors were adapted for our research, and we have improved them in various
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ways as a result. Specifically, in order to improve the performance of IPH-YOLOX, we use
CoaT (Co-Scale Conv-Attentional Image Transformers) [75] or InternImage [76] as the its
backbone network to replace its original one, i.e., CSPDarkNet and the Spatial Pyramid
Pooling(SPP) [77]. CoaT is built on cross-scale attention and efficient conv-attention op-
erations, and InternImage utilizes deformable convolution as its core operator, allowing
its model to possess a large effective receptive field while also having adaptive spatial
aggregation based on input and task information. It should be pointed out that the IPH-
YOLOX model relies on its ability to fuse multiple-level features by utilizing PANet [78] as
the neck sub-network, which is an improved version of FPN. However, IPH-YOLOF only
utilizes the highest-level features for detection, limiting spatial aggregation capabilities
and the interactions between features of different scales. To improve the performance
of the IPH-YOLOF, we introduce the ECA (Efficient Channel Attention) module [79] or
Convolutional Block Attention Module with ECA (CBAME) module to its extra head. ECA
is based on a local cross-channel interaction strategy without dimensionality reduction.
The Convolutional Block Attention Module (CBAM) [80] sequentially infers attention maps
along two separate dimensions, channel and spatial, which is a simple yet effective attention
module for feed-forward convolutional neural networks. In our proposed CBAME module,
we used ECA module as the channel dimension to achieve the better performance. Due to
the fact that IPH-YOLOF incorporated with CBAME and IPH-YOLOX incorporated with
InternImage achieve better results, as reported in Section 5.3, we use them as the default
settings in this paper. Therefore, the proposed baseline detectors are named CHP-YOLOF
and CHP-YOLOX, respectively, and their detailed descriptions are provided below.

4.1. CHP-YOLOF

Figure 6 displays the network structure of CHP-YOLOF we proposed in this paper.
ResNet50 [81], pre-trained on ImageNet [82], is used as the CHP-YOLOF’s backbone
network. The backbone network outputs a C5 feature map, which has 2048 channels
and a downsampling multiplicity of 32. The dilated encoder of the neck sub-network
is responsible for receiving and performing the encoding process on these features. The
final decoding module contains two concurrent task-specific heads for classification and
regression. Based on the IPH-YOLOF model, an extra classification head is also introduced
to predict the common human posture. To achieve a better performance in common human
posture estimation, we introduce the CBAME Module in the extra head, which is a novel
combination of the ECA and CBAM modules that we proposed. The network architecture
of this module is depicted in Figure 7. Specifically, by using 1D convolution, ECA achieves
a local cross-channel interaction strategy without dimensionality reduction, which only
involves a handful of parameters while bringing clear performance gains from this strategy.
The CBAM consists of two consecutive sub-modules, called the channel and spatial sub-
modules. At each convolutional block of deep networks, the CBAM module adaptively
refines the intermediate feature map. In our proposed CBAME, we use ECA as its channel
sub-module to replace origin one (i.e., origin one utilizes both max-pooling outputs and
average-pooling outputs with a shared network) for better performance. The loss function
for training the CHP-YOLOF model is defined as follows:

Ltotal = Lcls + Lreg + λLposture (1)

The losses for classification, regression, and common human posture prediction are
denoted by Lcls, Lreg, and Lpoture, respectively. Additionally, the constant λ is used as the
weight coefficient to represent the loss for the prediction head of common human postures.
We follow [47,83,84] to provide the definitions of these losses below:
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Lcls =
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∑
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FL(yn
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poture ⊗ pn
obj),

Lreg =
1

Npos

Npos

∑
n=0

(smoothL1(bn
t − bn

p)) (2)

The ground truth for the classification and human posture is indicated by the variables
ycls and ypoture, and the predictions for the classification, human posture, and boxes (i.e.,
is there any person in the box) are represented by pn

cls, pn
poture, and pn

obj. The amount of
positive anchor is denoted by Npos; the scalar product is denoted by ⊗p; and the ground
truth bounding box and the prediction bounding box, respectively, are denoted by bn

t
and bn

p. The focal loss [85] and the smoothL1 loss functions are represented by FL(·) and
smoothL1, respectively. The focal loss function is frequently employed to solve the challenge
of imbalanced distribution between difficult and easy samples in machine learning models.
The smoothL1 function is widely used in training deep neural networks as it suppresses
outliers, which are at a greater distance from the mean. This capability results in less
proneness to the gradient exploding problem by controlling the gradient values.

Figure 6. The CHP-YOLOF detector adopts the network structure of IPH-YOLOF, with the sole differ-
ence being the integration of the CBAME module into its common human posture prediction head.

Figure 7. The CBAME module’s network architecture comprises two sequential sub-modules: channel
and spatial (from the above figure to the following figure in (b)). The channel sub-module utilizes the
ECA, which is the difference from the original CBAM. Our module (CBAME) adaptively refines the
intermediate feature map at each convolutional block of deep networks.

4.2. CHP-YOLOX

Figure 8 displays the network structure of CPH-YOLOX we proposed in this paper.
To improve the performance of CHP-YOLOX, we replace the original backbone network
of CHP-YOLOX, CSPDarkNet, along with the Spatial Pyramid Pooling (SPP) [77], with
InternImage [86] as its new backbone network. Specifically, InternImage utilizes deformable
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convolution as its core operator, which allows the model to effectively scale to large
parameter sizes and to acquire more powerful representations from extensive training
data. The basic block design of this module refers to ViTs, incorporating more advanced
components such as LN [87], feed-forward networks (FFN) [88], and GELU [89]. In order
to acquire hierarchical feature maps, it employs convolutional stem and downsampling
layers to resize the feature maps to various scales. For more comprehensive information
on this module, please refer to [86]. The backbone network outputs the C3, C4, and C5
feature maps, which have 128, 256, and 512 channels with downsampling multipliers of
8, 16, and 32, respectively. The PANet [78] of the neck sub-network is responsible for
receiving these features and combining them with shallow features through a bottom-up
path and subsequently with deep features via a top-down path. The final decoding module
contains two concurrent task-specific heads for classification and regression, in addition to
an extra prediction head we also introduce for common human posture prediction, similar
to IPH-YOLOX. The total loss function for training the CHP-YOLOX model is defined
as follows:

Figure 8. The CHP-YOLOX detector adopts the network structure of IPH-YOLOX, with the only
distinction being the utilization of InternImage as its backbone, a CNN foundation model.

Ltotal = Lcls + Lreg + Lobj + λLposture (3)

The losses for classification, regression, confidence of boxes, and common human
posture prediction are denoted by Lcls, Lreg, Lobj, and Lposture, respectively. Additionally,
the constant λ is used as the weight coefficient to represent the loss for the prediction
head of common human postures. We follow [47,83,84] to provide the definitions of these
losses below:

Lcls =
−1

Npos

Npos

∑
n=1

yn
clsln(σ(pn

cls)),

Lposture =
−1

Npos

Npos

∑
n=1

yn
postureln(σ(pn

posture)),

Lobj =
−1

Npos

Npos

∑
n=1

yn
objln(σ(pn

obj)),

Lreg =
1

Npos

Npos

∑
n=1

(1− IOU(bn
t , bn

p)) (4)

The ground truth for the classification, common human posture, and the boxes is
indicated by the variables ycls, ypoture, and yobj, and the predictions for the classification,
common human posture, and boxes (i.e., is there any person in the box) are represented by
pn

cls, pn
poture, and pn

obj. The amount of positive anchor is denoted by Npos, and the ground
truth bounding box and the prediction bounding box are denoted by bn

t , and bn
p , respectively.

The softmax activation and IOU loss functions are represented by σ and IOU(·), respectively.
Due to the fact that the intersection over union (IOU) exhibits the characteristic of scale
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invariance, it is usually utilized to identify both positive and negative samples, as well
as to evaluate the distance between the predicted bounding box (bbox) and the ground
truth bbox.

5. Evaluation
5.1. Evaluation Metrics

The performance of the two baseline detectors is evaluated in the experiment through
the measurement of their average precision (AP) and mean average precision (mAP).
Additionally, we use the Intersection of Union (IOU) metric to evaluate the accuracy of
the predicted bounding boxes compared with the ground truth bounding boxes. The
precision for a specific object calculated by determining the area under the precision–
recall curve in relation to the coordinate axes is referred to as AP, while the algorithm’s
performance in evaluating multiple targets or classes is defined as mAP, which is calculated
by summing all individual AP values for each target and dividing it by the total number of
targets. Recall refers to the true positive rate, which is the proportion of correct positive
predictions out of all the actual positives. Precision represents the positive prediction
value, which measures the proportion of correct positive predictions out of all the positive
predictions made. Recall and precision are defined as follows: Precision = TP/(TP + FP)
and Recall = TP/(TP + FN), respectively. The number of true positive detections is
referred to as TP, the number of false positive detections is referred to as FP, and the number
of false negative detections is referred to as FN. For a more thorough description, please
refer to [73].

According to the COCO evaluation [74], we use three metrics, i.e., 0.5, 0.75, and 0.5 to
0.95, as the IoU threshold. Specifically, the AP value is calculated by considering IoU values
from 0.5 to 0.95 with an increment of 0.05, which is denoted as AP@[0.50:0.05:0.95]. Addi-
tionally, the AP@0.5 denotes the average precision at an IoU threshold of 0.5, whereas the
AP@0.75 represents the average precision at an IoU threshold of 0.75. We use the COCO
mAP to evaluate the performance of detectors for detecting common human postures. In
this paper, the task we propose is common human postures detection, which combines the
conventional task of human detection with the task of human pose estimation into a novel
task. Our precision metric for this task must consider predicting both the category and the
posture simultaneously, unlike the general object detection precision that only predicts the
accuracy of the target category. The precision metrics used to predict the human category,
common human posture, and their combination are referred to as APc, APp, and APcp,
respectively. When we add the prefix ’m’, it indicates the mean average precision, known
as mAP.

5.2. Evaluation Results

Comparison with traditional YOLO models. To demonstrate the superiority of our
proposed method, we conducted a comparison between the original traditional YOLO
algorithms, namely YOLOv3 [57] and YOLOv5, and the YOLO variant algorithms, namely
YOLOF and YOLOX, in terms of APc metric. As shown in Table 1, YOLOF is essentially the
top-performing detector, although it has a slightly lower APc@0.5 compared with YOLOX.
Compared with these two variants of YOLO, YOLOv3 and YOLOv5 exhibit relatively
lower performance. Specifically, when comparing the highest values of three performance
indicators in the YOLO variant models, YOLOv3 exhibited APcs lower than 10.8%, 12.8%,
and 10.2%, respectively, while YOLOv5 demonstrated APcs lower than 4.9%, 5.4%, and
4.3%, respectively. Therefore, it makes sense that we developed our baseline detector based
on YOLO variant models.

Overall performance. We conducted an extensive evaluation of the CHP dataset
using the baseline detectors. As shown in Table 2, the evaluation results are reported
using the precision metrics APc, APp, and APcp defined in Section 5.1. The table clearly
shows that CHP-YOLOF is essentially the best detector, although it has slightly lower
APs@0.5 and mAPp compared with CHP-YOLOX. Moreover, Table 2 also indicates that the



Sensors 2023, 23, 8061 12 of 20

average for predicting common human postures is lower than the precision for predicting
human categories for all detectors. Specifically, the differences between mAPc and mAPp
are all greater than 9.0%. The CHP-YOLOF detector shows the largest difference of 12.0%,
which indicates that detecting common human postures is more difficult and challenging
than detecting human themselves. Estimating a common human posture may pose more
difficulties compared with distinguishing a human from their surroundings, as the former
exhibits greater inter-class variation. Despite the challenges involved in this task, we hope
that our study will serve as motivation for other researchers to explore the field of common
human posture detection.

Performance on per posture. To provide more valuable insights into common human
posture detection, we conducted an evaluation of the performance of the two baseline
detectors on each posture. We use Table 3 to display the mAPcp of the detectors. In
general, all detectors exhibit optimal performance among ‘going’, ‘running’, and ‘sitting’,
with all the mAPcp above 50%. Compared to them, the mAPcp of ‘bending’, ‘lying’, and
‘squatting’ have relatively low performance, with all the mAPcp being only greater than
40%, and the mAPcp of ‘standing’ is the worst, less than 40%. We can use the following
facts to explain these phenomena: (1) ‘bending’, ‘lying’, ‘squatting’, and ‘standing’ face
more intra-class variations than ‘going’, ‘running’, and ‘sitting’ due to potentially more
background clustering, occlusion, and larger posture variations for the former; (2) the
postures of ‘going’, ‘running’, and ‘sitting’ are generally clear and distinct single objects
in each image, usually with a standard target size. Specifically, detecting ‘bending’ and
‘standing’ postures pose significant challenges due to various factors. Despite having the
largest amount of data, these postures are susceptible to occlusion, multiple targets with
non-standard sizes, and intra-class variation. For instance, when the bending angle is small,
the detectors often mistake it for the ‘standing’ posture, further complicating the detection
process. Regarding the ‘lying’ posture, besides the potential obstruction and the lack of
more training data, the challenge of detecting this posture in the image is heightened by the
lack of a complete human body image, leading to less than ideal test results. Similarly, the
adequacy of training data is not the sole factor influencing squatting posture. In instances
where the squatting angle is too slight, the detector may mistakenly identify it as a standing
posture, thereby posing challenges to accurate detection. Despite not having the largest
training data, the postures of ‘going’, ‘running’, and ‘sitting’ are typically clear and distinct
single objects in each image, often with a standard target size. This characteristic makes the
detection of these postures relatively simple. We will consider these factors in our future
study to enhance the accuracy of common human posture detection.

Table 1. The APcs of the four original detectors, i.e., YOLOv3, YOLOV5, YOLOF, and YOLOX, are
evaluated on the CHP dataset.

Model {APc @0.5, APc @0.75, mAPc } Model {APc @0.5, APc @0.75, mAPc }

YOLOv3 (0.766, 0.595, 0.520) YOLOF (0.868, 0.718, 0.622 )

YOLOv5 (0.825, 0.669, 0.573) YOLOX (0.874, 0.723, 0.616)

Table 2. The APs of the two baseline detectors, namely CHP-YOLOF and CHP-YOLOX, are evaluated
on the CHP dataset. It is important to note that APc, APp, and APcp are the accuracy metrics employed
to predict human, common human posture, and combinations of both.

Model {APc , APp , APcp }@0.5 {APc 75, APp 75, APcp }@0.75 {mAPc , mAPp , mAPcp }

CHP-YOLOF (0.818, 0.652, 0.708) (0.720, 0.579, 0.632) (0.608, 0.488, 0.531)

CHP-YOLOX (0.828, 0.696, 0.727) (0.692, 0.579, 0.612) (0.588, 0.490, 0.516)
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Table 3. The mAPcp for predicting the combination of humans and their postures was compared
between the two baseline detectors, i.e., CHP-YOLOF and CHP-YOLOX, on the CHP dataset.

Bending Lying Going Running Sitting Squatting Standing

(mAPcp )CHP-YOLOF 0.482 0.429 0.559 0.546 0.545 0.490 0.363

(mAPcp )CHP-YOLOX 0.498 0.452 0.536 0.572 0.511 0.493 0.389

Figure 9. A qualitative evaluation of 28 CHP samples. The last two rows show occasions when
detectors predicted incorrectly, while the top two rows show situations where two detectors predicted
correctly. The common human postures are indicated by the letter that comes before the vertical line,
where the letters b, l, g, r, si, sq, and st stand for, respectively, bending, lying, going, running, sitting,
squatting, and standing. GT stands for ground truth.

Qualitative evaluation. In Figure 9, we display the qualitative detection results of
the 28 samples by using the two baseline detectors. The first two rows display fourteen
samples where the two baseline detectors perform exceptionally well, demonstrating
accurate prediction of common human postures. In contrast, the last two rows display
fourteen samples where the detectors fail to correctly predict the common human postures.
As shown in the figure, we use the black and purple bounding boxes to represent the
detection results of CHP-YOLOF and CHP-YOLOX, respectively. The letter preceding the
vertical line in the box numbers, such as b|0.93, denotes the predicted category of common
human posture (b, l, g, r, si, sq, and st represent ‘bending’, ‘lying’, ‘going’, ‘running’, ‘sitting’,
‘squatting’, and ‘standing’ postures, respectively.), while the decimal number following the
vertical line represents the predicted score. The excellent performance of the two baseline
detectors in the first two rows can be attributed to the absence of any occlusion, minimal
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background clustering, and the presence of images with standard target sizes. However,
accurately predicting the postures can be challenging due to the presence of a background
cluster in the last two rows and the variation in human size. We use the samples in the last
row to analyze the potential sources of detection errors. The first example illustrates false
and missed detections in the ‘bending’ posture, which can be attributed to challenges such
as clustering, small objects, and a very small bending angle. The incorrect detections in the
second, third, and fifth samples can be attributed to missed detections, primarily caused
by factors such as clustering, occlusion, and the presence of small objects. Similarly, in the
fourth sample, occlusion resulted in incomplete human body images, causing the detector
to confuse the ‘running’ posture with ‘standing’ and ‘sitting’ postures. In the sixth sample,
the detector incorrectly identified the ‘squatting’ posture as the ‘sitting’ posture, likely
due to their similarity in appearance. In the last sample, the lack of clear texture features,
presence of clusters, and ambiguity led to an incorrect prediction of the ‘standing’ posture.
The experimental results indicate that in challenging scenarios, it increases the difficulty
for the detector to accurately predict common human postures, resulting in detectors that
may incorrectly detect the postures.

5.3. Ablation Study

Impact of the proposed components. The effect of the proposed components on the
detector varies. To determine the most effective components for improving the performance
of detectors, we conducted training and evaluation using two baseline detectors on the
CHP dataset. We use Table 4 to display the mAPs and APs at fixed IoUs (0.5 and 0.75) of
two baseline detectors on the CHP dataset with respect to various proposed components.
Based on the data presented in the table, it is evident that the incorporation of ECA or
CBAME has resulted in an overall improvement in the performance of CHP-YOLOF. More
specifically, when ECA is incorporated, LCD-YOLOF’s mAPc, mAPp, and mAPcp increase
by 1.4%, 4.0%, and 2.6%, respectively. On the other hand, when CBAME is incorporated,
there are noticeable increases of 1.6%, 4.7%, and 3.2% in CHP-YOLOF’s mAPc, mAPp,
and mAPcp, respectively. Simultaneously, it is clear that the incorporation of CoaTnet
or InternImage has led to an overall improvement in the performance of CHP-YOLOX.
Specifically, when CoaTnet is incorporated, the mAPp and mAPcp of LCD-YOLOF have
increased by 1.0% and 1.2%, respectively, except for its mAPc being slightly lower than the
original CHP-YOLOX. Similarly, when InternImage is incorporated, there are noticeable
increases of 1.1%, 4.1%, and 3.8% in the mAPc, mAPp, and mAPcp of CHP-YOLOX. Based
on the experiment results, it is indicated that incorporating an ECA or CBAME module
into the additional classification head has the potential to improve the performance of the
CHP-YOLOF detector. Similarly, using CoaTnet or InternImage as the backbone network
for the CHP-YOLOX model would also contribute to its performance enhancement. We can
use the following facts to illustrate these phenomena: (1) CoaTnet is built on cross-scale
attention and efficient conv-attention operations, and InternImage leverages deformable
convolution as its core operator, which enables its model to adapt spatial aggregation based
on the input and task information; (2) PANet, an enhancement built upon the framework
of FPN, also relies on the ability to effectively fuse features from different levels, which
is a crucial factor contributing to the success of FPN; (3) ECA only involves a handful of
parameters while bringing clear performance gains from local cross-channel interaction
strategies without dimensionality reduction; utilizing the ECA module as its channel
dimension, CBAME is able to enhance the adaptive feature refinement of CBAM, thereby
improving its overall performance.
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Table 4. Illustrating how the AP metrics of baseline detectors change when different proposed
components are applied on the CHP dataset. EM, CM, CT, and IE represent the ECA Module,
CBAME Module, Coat, and InternImage, respectively. The symbol × indicates the usage of this
component in the corresponding model, while the symbol X indicates its non-usage.

Method EM CM CT IE {APc , APt , APct}@0.5{APc , APt , APct}@0.5{APc , APt , APct}@0.5 {APc , APt , APct}@0.75{APc , APt , APct}@0.75{APc , APt , APct}@0.75 {mAPc , mAPt , mAPct}{mAPc , mAPt , mAPct}{mAPc , mAPt , mAPct}

CHP-YOLOF × × × × (0.790, 0.586, 0.659) (0.704, 0.528, 0.596) (0.590, 0.441, 0.499)

CHP-YOLOF X × × × (0.809, 0.636, 0.694) (0.717, 0.574, 0.626) (0.604, 0.481, 0.525)

CHP-YOLOF × X × × (0.818, 0.652, 0.708) (0.720, 0.579, 0.632) (0.606, 0.488, 0.531)

CHP-YOLOX × × × × (0.817, 0.637, 0.677) (0.673, 0.530, 0.561) (0.577, 0.449, 0.478)

CHP-YOLOX × × X × (0.817, 0.659, 0.698) (0.652, 0.553, 0.567) (0.572, 0.459, 0.490)

CHP-YOLOX × × × X (0.828, 0.696, 0.727) (0.692, 0.579, 0.612) (0.588, 0.490, 0.516)

Weighting the loss of predicting common human posture. To comprehend the im-
pact of the weighting coefficient on predicting common human posture, we evaluate
CHP-YOLOF on CHP by using a varying weighting coefficient ranging from 0.2 to 2.0
in increments of 0.2, i.e., λ in Equation (1), to find an optimal weighting coefficient for
predicting common human posture. We use Table 5 to display the mAPs and APs at fixed
IoUs (0.5 and 0.75) of CHP-YOLOF on CHP with different weighting coefficients. The line
chart depicted in Figure 10 presents the results of the mAP metric, which provides us with
a more intuitive and effective comparative analysis. Based on the data presented in the
table, it is clear that the optimal average precision (AP) for CHP-YOLOF falls within the
range of 1.4 to 2.0. However, it is important to note that obtaining the highest AP values
simultaneously at a fixed λ is not possible. Specifically, the variation in λ has little impact on
APc, as the difference between the highest and lowest values of APc does not exceed 3.0%.
Nevertheless, noticeable fluctuations in both APp and APcp can be discerned as λ varies,
and it can be inferred that the alterations in APp and APcp are essentially synchronized,
implying a strong correlation between APc and APcp. It is noteworthy that the optimal
APp and APcp are obtained when λ falls within the range of 1.6 to 2.0. Furthermore, the
overall maximum values are obtained at λ = 2.0, which is the default setting. In summary,
a value of λ = 1.4 is considered an optimal option for APcs, while a value of λ = 2.0 is
considered an optimal option for both APps and APcps. The experimental results suggest
that simultaneously performing both human detection and common human pose estima-
tion tasks as a composite task can be challenging, as these two tasks may contradict each
other. Developing more efficient methods to tackle this challenge is crucial, and it will be a
primary focus area for our future research.

Figure 10. The adjustment of the weighting coefficient for the loss predicting common human posture
on the CHP dataset has an impact on the values of the three indicators.
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Table 5. A demonstration of the changes in the AP metrics of CHP-YOLOF in relation to the weighting
coefficient for predicting common human posture on the CHP dataset is illustrated.

Model λ {APc , APp , APcp}@0.5{APc , APp , APcp}@0.5{APc , APp , APcp}@0.5 {APc , APp , APcp}@0.75{APc , APp , APcp}@0.75{APc , APp , APcp}@0.75 {mAPc , mAPp , mAPcp}{mAPc , mAPp , mAPcp}{mAPc , mAPp , mAPcp}

0.2 (0.790, 0.499, 0.627) (0.703, 0.440, 0.576) (0.589, 0.369, 0.478)
0.4 (0.790, 0.521, 0.623) (0.703, 0.470, 0.571) (0.594, 0.392, 0.480)
0.6 (0.790, 0.586, 0.673) (0.704, 0.526, 0.604) (0.593, 0.442, 0.508)
0.8 (0.800, 0.570, 0.665) (0.713, 0.518, 0.605) (0.600, 0.433, 0.506)

CHP-YOLOF 1.0 (0.800, 0.609, 0.682) (0.703, 0.554, 0.615) (0.596, 0.462, 0.517)
1.2 (0.790, 0.624, 0.676) (0.704, 0.566, 0.615) (0.590, 0.473, 0.514)
1.4 (0.819, 0.626, 0.699) (0.720, 0.559, 0.624) (0.608, 0.468, 0.525)
1.6 (0.799, 0.620, 0.678) (0.700, 0.601, 0.603) (0.588, 0.462, 0.505)
1.8 (0.818, 0.632, 0.701) (0.720, 0.568, 0.633) (0.607, 0.474, 0.528)
2.0 (0.818, 0.652, 0.708) (0.720, 0.579, 0.632) (0.606, 0.488, 0.531)

6. Conclusions

This paper formulates a novel task to identify common human postures, which re-
quires detecting humans and estimating their common poses. This task plays a vital role
in comprehending human actions, enabling efficient and secure interactions with both
humans and the surrounding environment. To address this task, we have developed a com-
prehensive benchmark dataset called Common Human Postures (CHPs). This dataset is
designed to go beyond human detection and to stimulate more informative and promising
research directions. In addition, we have established two baseline detectors, namely CHP-
YOLOF and CHP-YOLOX. These detectors serve as initial models to provide a foundation
for further exploration and development in this challenging task. We anticipate that our
work will attract increased attention in the field of identifying common human postures,
as this task holds significant implications for advanced applications such as autonomous
driving, elderly guardianship systems, and hospital care.

However, it is important to note that the current performance of our proposed net-
work architectures is still not satisfactory. In future work, our aim is to investigate better
techniques to reduce the conflict between localizing humans and estimating their postures,
with the ultimate goal of improving the detection accuracy of our detectors.

Author Contributions: Conceptualization, Y.L., Y.W., H.T. and S.L.; Data curation, Y.L., Y.W., X.C.
and D.K.; Formal analysis, Y.L.; Funding acquisition, H.T. and S.L.; Investigation, Y.L., Y.W., X.C.,
H.C. and D.K.; Methodology, Y.L., Y.W., H.T. and S.L.; Software, Y.L., Y.W., X.C., H.C. and D.K.;
Supervision, H.T. and S.L.; Validation, Y.L., Y.W., H.C., H.T. and S.L.; Writing—original draft, Y.L.
and Y.W.; Writing—review and editing, Y.L., Y.W., H.T. and S.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was partly funded by the Guangxi Science and Technology Base and Talent
Special Project (Grant no. Guike AD22035127), the 2023 Guangxi Province University Young and
Middle-aged Teachers’ Research Basic Ability Improvement Project (Grant no. 2023KY0264), and the
National Natural Science Foundation of China (Grant no. 62262011).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cui, H.; Dahnoun, N. High Precision Human Detection and Tracking Using Millimeter-Wave Radars. IEEE Aerosp. Electron. Syst.

Mag. 2020, 36, 22–32. [CrossRef]
2. Ansari, M.A.; Singh, D.K. Human detection techniques for real time surveillance: A comprehensive survey. Multimed. Tools Appl.

2020, 80, 8759–8808. [CrossRef]
3. Khan, M.A.; Mittal, M.; Goyal, L.M.; Roy, S. A deep survey on supervised learning based human detection and activity

classification methods. Multimed. Tools Appl. 2021, 80, 27867–27923. [CrossRef]

http://doi.org/10.1109/MAES.2020.3021322
http://dx.doi.org/10.1007/s11042-020-10103-4
http://dx.doi.org/10.1007/s11042-021-10811-5


Sensors 2023, 23, 8061 17 of 20

4. Rahmaniar, W.; Hernawan, A. Real-Time Human Detection Using Deep Learning on Embedded Platforms: A Review. J. Robot.
Control. (JRC) 2021, 2, 462–468.

5. Sumit, S.S.; Rambli, D.R.A.; Mirjalili, S.M. Vision-Based Human Detection Techniques: A Descriptive Review. IEEE Access 2021,
9, 42724–42761. [CrossRef]

6. Pawar, P.; Devendran, V. Scene Understanding: A Survey to See the World at a Single Glance. In Proceedings of the 2019 2nd
International Conference on Intelligent Communication and Computational Techniques (ICCT), Jaipur, India, 28–29 September
2019; pp. 182–186.

7. Naseer, M.; Khan, S.H.; Porikli, F.M. Indoor Scene Understanding in 2.5/3D for Autonomous Agents: A Survey. IEEE Access
2018, 7, 1859–1887. [CrossRef]

8. Taeihagh, A.; Lim, H.S.M. Governing autonomous vehicles: Emerging responses for safety, liability, privacy, cybersecurity, and
industry risks. Transp. Rev. 2018, 39, 103–128. [CrossRef]

9. Guo, Z.; Huang, Y.; Hu, X.; Wei, H.; Zhao, B. A Survey on Deep Learning Based Approaches for Scene Understanding in
Autonomous Driving. Electronics 2021, 10, 471. [CrossRef]

10. Schepers, J.; Streukens, S. To serve and protect: A typology of service robots and their role in physically safe services. J. Serv.
Manag. 2022, 32, 197–209. [CrossRef]

11. Wirtz, J.; Patterson, P.G.; Kunz, W.H.; Gruber, T.; Lu, V.N.; Paluch, S.; Martins, A. Brave new world: Service robots in the frontline.
J. Serv. Manag. 2018, 29, 907–931. [CrossRef]

12. Lu, V.N.; Wirtz, J.; Kunz, W.H.; Paluch, S.; Gruber, T.; Martins, A.; Patterson, P.G. Service robots, customers and service employees:
What can we learn from the academic literature and where are the gaps? J. Serv. Theory Pract. 2020, 30, 361–391. [CrossRef]

13. Zhang, H.; Zhang, F.; Zhang, Y.; Cheng, H.; Gao, R.; Li, Z.; Zhao, J.; Zhang, M. An Elderly Living-alone Guardianship Model
Based on Wavelet Transform. In Proceedings of the 2022 4th International Conference on Power and Energy Technology (ICPET),
Xining, China, 28–31 July 2022; pp. 1249–1253.

14. Umbrello, S.; Capasso, M.C.; Balistreri, M.; Pirni, A.; Merenda, F. Value Sensitive Design to Achieve the UN SDGs with AI: A Case
of Elderly Care Robots. Minds Mach. 2021, 31, 395–419. [CrossRef] [PubMed]

15. Yew, G.C.K. Trust in and Ethical Design of Carebots: The Case for Ethics of Care. Int. J. Soc. Robot. 2020, 13, 629–645. [CrossRef]
[PubMed]
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